
The SKB: A Semi-Completely-Connected Bus
for On-Chip Systems

Masaru Takesue

Dept. Electronics and Information Engr., Hosei University, Tokyo 184-8584 Japan
takesue@ami.ei.hosei.ac.jp

Abstract. This paper proposes a semi-completely-connected bus, called
SKB, to alleviate the long-wire and pin-neck problems against on-chip
systems through a small diameter and dynamic clustering. Dynamic clus-
tering allows to reduce the traffic to the per-cluster units such as the
global interconnect interface, as compared with the static clustering fixed
in hardware. We derive a 2n-node semi-complete (SK) graph from a sim-
ple node-partitioning. An SKB is produced from the SK graph when we
replace the links incident to a node by a single bus for the node. The
diameter of SKB equals 1 (bus step), though the bus length is rather
long, O(

√
2n). Simulation results show that relative to the hypercube

with the link delay of 1 clock, the SKB’s bandwidth is about 0.97 and
0.14 assuming the bus delay of 1 and 8 clocks, respectively, that increases
to about 4.57 and 0.71 with the dynamic clustering.

1 Introduction

With future LSI technologies, we will be able to put a large portion of a system in
a single chip. However, the technologies have three problems above all: First, the
signal delay due to long wires will dominate the clock cycle time of the system
if the feature size of wires will scale with the same pace as for transistors [1].

Second, the design of a system on a chip (SoC) may be restricted by the
power consumable in the chip. In the current high-performance microprocessors,
interconnect power is over 50% of the total dynamic power, and its about 50% is
consumed by global wires [2]. So a large-scale network on a chip (NoC) may limit
the performance and/or power consumption against high-performance SoCs.

Third, on-chip multiprocessors (CMPs) in the near future will have on-chip
caches and off-chip memory. Then a CMP design may be restricted by the num-
ber of available I/O pins. Although the number of pins per chip will increase,
the number of transistors per chip will increase at a much higher rate [3]. So
with the limited number of pins, we have to maintain a high traffic rate required
between the on-chip caches and probably off-chip memory.

Static clusters fixed in hardware are effective to reduce the traffic to mem-
ory [12,13], and hence, to alleviated the pin-neck problem. However, the traffic
concentrates on the per-cluster units such as the global interconnect interface
and the cache coherence directory when the request rate is high in each cluster,
leading to a long delay for the requests crossing the chip boundary.

K. Li et al. (Eds.): NPC 2007, LNCS 4672, pp. 404–414, 2007.
c© IFIP International Federation for Information Processing 2007

The SKB: A Semi-Completely-Connected Bus for On-Chip Systems 405

Good news with VLSI technologies is that a small node degree (i.e., the num-
ber of links incident to a node) is not necessarily a measure of good networks
since almost all links of a network can be accommodated in the chip. Notice that
a larger node degree generally leads to a smaller diameter but longer wires.

This paper proposes a semi-completely-connected bus (SKB) to cope with the
long-wire and pin-neck problems mentioned above. We approach to the first
problem by a small diameter, while to the second one by one set of dynamic
clusters produced for each target, such as a memory block, of requests.

The small diameter with a large node degree may aggravate the long-wire
problem, though it reduces the number of hops required in communications. So
we assume a technology for very fast global wires, such as the transmission lines
with a delay determined by an LC time constant [4], instead of an RC constant.
Alternatively, we can assume a much larger number of metal planes than the
current (about 10) to allow very fat and very sparse wires.

We derive a semi-complete (SK) graph by a simple partitioning of nodes. The
SKB has the topology of a modified SK graph so that the links incident to a
node are replaced by a single bus owned by the node. The diameter of the SKB
is equal to 1 bus step. The layout pattern for the buses is very regular, but the
maximum bus length of the 2n-node SKB is rather long, i.e., O(

√
2n).

In the rest of paper, Section 2 introduces the simple partitioning and derives
SK graph and its recursive version. Section 3 presents the structure, layout, rout-
ing, and clustering of the SKB. Section 4 shows the evaluation results. Section
5 describes related work, and Section 6 concludes the paper.

2 Semi-Complete Graphs

This section introduces the simple partitioning and defines the SK graph and its
recursive version.

Let 〈sp1 , �k1〉 denote an n-bit node address, where sp1 and �k1 are the values of
the upper p1-bit and the lower k1-bit (p1+k1 = n) parts of the address. Moreover,
let P〈s,�〉 be the partition represented by leader (i.e., the representative node)
〈s, �〉. Then the simple partitioning is defined as follows:

Definition 1. The suit Ssp1
consists of 2k1 leaders 〈sp1 , ∗k1〉, and the partition

P〈sp1 ,�k1〉 has 2p1 members 〈∗p1 , �k1〉, where ∗b stands for b-bit don’t care.

With Definition 1, we can partition the n-bit address space in two ways: First we
can produce 2p1 suits S = {Ssp1

| 0 ≤ sp1 ≤ 2p1 −1} each of 2k1 leaders. Second,
with each suit Ssp1

, we can obtain a set of 2k1 partitions Psp1
= {P〈sp1 ,�k1〉 | 0 ≤

�k1 ≤ 2k1 − 1} each of 2p1 nodes and represented by leader P〈sp1 ,�k1〉, leading to
a total of 2p1 sets P = {Psp1

| 0 ≤ sp1 ≤ 2p1 − 1}.
This partitioning has the following interesting property: Members 〈∗p1 , �k1〉

of partition P〈sp1 ,�k1〉 are distributed to the all suits, and a member 〈s′p1
, �k1〉 ∈

P〈sp1 ,�k1〉 (s′p1
�= sp1) is the leader of partition P〈s′

p1
,�k1 〉 when partitioned with

suit 〈s′p1
, ∗k1〉. Note that partition P〈s′

p1
,�k1〉 has also the members 〈∗p1 , �k1〉. We

406 M. Takesue

graphically represent this property by a partition graph PGn(p1, k1) that has a
link between each member and the leader in every partition.

Property 1. The PGn(p1, k1) graph has 2k1 complete graphs, Kp1 ’s, each con-
sisting of the 2p1 nodes 〈∗p1 , �k1〉.

Example 1. The PG3(2, 1) graph (p1 = 2 and k1 = 1) is shown in Fig. 1(a), where
the node address 〈sp1 , �k1〉 is denoted by sp1�k1 . In this case, we can produce 4
(= 2p1) suits, S0, S1, S2, and S3, each of 2 (= 2k1) leaders. With any of the suits,
we can obtain 2 (= 2k1) partitions each of 4 (= 2p1) members. For instance, with
suit S1, we can obtain the two partitions P〈1,0〉 = {〈1, 0〉, 〈0, 0〉, 〈2, 0〉, 〈3, 0〉} and
P〈1,1〉 = {〈1, 1〉, 〈0, 1〉, 〈2, 1〉, 〈3, 1〉} with the leaders 〈1, 0〉 and 〈1, 1〉 in the suit.
The members of each partition are scattered into the all suits and organizes a
K2. So the PG3(2, 1) has 2 K2 graphs each of 4 nodes (Property 1).

S0
00 01• •

�

�

�

��
�

�
�

��

�
�

�
��

�
�

�
�

��

�
�

�
�

��

��
K2

��
K2

S3
30

31
•
•
�

�

�

�

S1
10

11
•
•

�

�

�

�

S2 20 21
• •

�

�

�

�

�
�

�
�

��

�
�

�
�

��

�
�

�
��

�
�

�
�

��

K1
00 01• •

�

�

�

��
�

�
�

��

�
�

�
��

�
�

�
�

��

�
�

�
�

��

��
K2

��
K2

K1
30

31
•
•
�

�

�

�

K1
10

11
•
•

�

�

�

�

K1 20 21
• •

�

�

�

�

�
�

�
�

��

�
�

�
�

��

�
�

�
��

�
�

�
�

��

(a) PG3(2, 1) (b) SK3(2, 1)

Fig. 1. (a) The PG3(2, 1) graph for the partitioning when p1 = 2 and k1 = 1, and (b)
the SK3(2, 1) produced from the PG

We derive a semi-complete (SK) graph from a PG graph as described below.
Then the obtained SK graph has the property presented next.

Definition 2. An SKn(p1, k1) graph is obtained from the PGn(p1, k1) graph if
we configure the 2k1 leaders in each suit into the Kk1 graph, where n = p1 + k1.

Property 2. The SKn(p1, k1) has 2p1 Kk1 graphs (Definition 2), that are con-
nected to each other by 2k1 Kp1 graphs (Property 1).

Example 2. The SK3(2, 1) shown in Fig. 1(b) is obtained from the PG3(2, 1)
(shown in Fig. 1(a)) by connecting the nodes in every suit with each other to
produce, in this case, a K1. So the SK3(2, 1) has 4 K1 (i.e., 2p1 Kk1) graphs
connected with each other by 2 K2 (i.e., 2k1 Kp1) graphs.

When n is large, the Kk1 and Kp1 may be too large to achieve short wires in
organizing an SKB form the SK. To cope with this problem, we exploit a recursive
SK graph. Let SK0

n(p0, k0) = Kn (p0 = 0, k0 = n) and pi + ki = ni = ki−1

The SKB: A Semi-Completely-Connected Bus for On-Chip Systems 407

(1 ≤ i ≤ r), where
∑r

i=1 pi + kr = n. Then we produce an r-level recursive
SK graph, SKr

n(p1, . . . , pr, kr), from the Kn by the recursive partitioning of each
ki−1-bit space to obtain an SK1

ni
(pi, ki) (i.e., SKni(pi, ki)) as follows:

Definition 3. An SKr
n(p1, . . . , pr, kr) is produced if we transform each Kki−1 in

the SKi−1
n (p1, . . . , pi−1, ki−1) to an SK1

ni
(pi, ki) to obtain the SKi

n(p1, . . . , pi, ki),
for i from 1 to r.

Example 3. We transform the initial K4 into SK1
n(p1, k1) = SK1

4(1, 3) (see Fig.
2(a)), and next obtain SK2

n(p1, p2, k1) = SK2
4(1, 1, 2) (see Fig. 2(b)) by converting

each Kk1 = K3 in SK1
4(1, 3) to SK1

n2
(p2, k2) = SK1

3(1, 2) (p2 + k2 = n2 = k1).

K3

K3

•

•

��

��

��

��

�
��

�
��

�
��

�
��

�
�

��

�
�

���
�
��

�
�
��•

•

����

����

	
	

		

	
	

		
��

��
•

•

�
�

��

�
�

��
��

��

•

•

����

����

��

��
•

•

��

��

•

•

•

•

•

•

��

��

��

��

�
��

�
��

�
��

�
��

�
�

�� �
�

��

�
�
�� �

�
�������

�����
�����

�����
�����

�����
�����

�����
SK1

3(1, 2)

SK1
3(1, 2)

• •

• •
�

��
�

��
�
��
�

�
��
�

�
�

�
��

�
�

��

�
�

�
��

•

•
•

•

���

���

�
�
�����•

•

•

•

���

���

�
�

�����
�

�
�

�
��

�
�

��

�
�

�
�

�
��

�
�

�
��

• •

• •�
��

�
��

�
�

��
�

��

(a) SK1
4(1, 3) (b) SK2

4(1, 1, 2)

Fig. 2. (a) The SK1
4(1, 3) produced from K4 and (b) the SK2

4(1, 1, 2) obtained from
SK1

4(1, 3)

The number of links and the diameter of SKr
n are equal to 2n−1 ∑r+1

i=1 (2pi − 1)
(where pr+1 = kr) and r + 1, respectively. Since the number of links in the Kn

graph is O(22n−1), SKr
n reduces the number by the factor of O(2pi/2n).

3 The Semi-Completely-Connected Bus: SKB

This section describes the structure, layout, routing, and dynamic clustering of
the SKB. The effect of the clustering as applied to a memory hierarchy is also
analyzed. For space, the description of recursive SKBs is omitted.

3.1 Structure of the SKB

The SKBn is organized from the SKn and is laid out as follows. The number of
buses in SKBn equals one per node and the diameter equals 1 (bus step).

Definition 4. The SKBn(p1, k1) is obtained if we replace all links incident to a
node of the SKn(p1, k1) by a single bus for the node, for all nodes in the SKn.

Definition 5. We arrange the nodes of the SKBn(p1, k1) into a 2p1 ×2k1 array
and put node 〈s, �〉 at the position with array index (s, �).

408 M. Takesue

Example 4. The layout of SKB6(3, 3) is shown in Fig. 3. The BSK has 64 buses.
The two-digit integer s� in the node box stands for the node address 〈s, �〉. Each
node has two sets of ports; one set for vertical lines, and the other for horizontal
lines. For space, only even-numbered ports are shown. The bus for node 〈s, �〉
consists of a horizontal line along row s and a vertical line along column �; the
diamond () at the cross point of the horizontal line and the stub to node 〈s, �〉
shows that the node is the owner of the bus. The bus of node, for instance, 〈2, 3〉
runs along row 2 and column 3 as shown by the bold line.

S0

S1

S2

S3

S4

S5

S6

S7

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

Fig. 3. The layout of SKB6(3, 3)

Let the unit length of the bus be equal to the distance between the adjacent
nodes on the SKBn layout, and the bus length be defined as the maximum of
the distances for a signal to traverse for all buses. Then the routing distance
is largest when the source and target are located at, for instance, the top-left
and bottom-right corners of the array, respectively. Then the bus length of the
SKBn(p1, k1) equals 2p1 + 2k1 , that reduces to 2

√
2n when p1 = k1.

The SKB: A Semi-Completely-Connected Bus for On-Chip Systems 409

3.2 Routing on the SKB

Let S-ports and L-ports of a node be the ports for choosing one of the suits and
leaders, respectively, so are connected to the vertical and horizontal lines of the
buses. Then S-port i of node 〈s, �〉 is connected to the bus of node 〈i, �〉, and
L-port j to the bus of node 〈s, j〉 (see Fig. 3). Moreover, the bus of node 〈s, �〉 is
connected to nodes 〈s, ∗k1〉 via the horizontal line. So the routing on the SKB is
performed in the following way, and its diameter is given by the next theorem.

Definition 6. To send a packet to the target node 〈st, �t〉, the source node 〈s, �〉
puts the packet on its S-port st if s �= st, or on its L-port �t otherwise.

Theorem 1. The diameter of SKBn(p1, k1) is equal to one bus step.

Proof. When s �= st, the S-port st of source 〈s, �〉 is connected to the bus of node
〈st, �〉 and that bus is connected with the target 〈st, �t〉. Otherwise, the L-port
�t of source 〈s, �〉 is connected to the bus of the target 〈s, �t〉 = 〈st, �t〉. In both
cases, the packet is sent from the source to the target in 1 bus-step.

Example 5. Assume the source node 〈2, 3〉 and the target node 〈7, 6〉 in Fig. 3.
Then the source 〈2, 3〉 puts the packet on S-port 7. The port is connected to the
bus of node 〈7, 3〉, and the bus is connected with the target 〈7, 6〉. When the
target is 〈2, 7〉 for the same source, it sends the packet via L-port 7 connected
to the target’s bus. In both cases, the packet reaches the target in 1 bus-step.

3.3 Dynamic Clustering on the SKB

Suppose that a CMP consists of on-chip processing nodes and off-chip memory,
and that the node has a processor, a level-1 (L1) cache, and a level-2 (L2) cache.
Dynamic clustering of memory requests refers to the dynamic partitioning only
of the nodes requesting for a specific memory block. So the size of a cluster is
no more than the partition size 2p1 .

Let Ms denote the off-chip shared memory unit consisting of memory blocks
Bs∗ whose addresses s∗ equal s in the upper p1 bits. We associate unit Ms with
suit Ss. When no copy of a memory block Btα ∈ Mt is in the L2 cache of a node
〈s, �〉, we produce a set of dynamic clusters for block Btα, partitioning with suit
St in the following way.

Definition 7. In the dynamic clustering of the requests for a memory block Btα,
a node 〈s, �〉 sends the request to the L2 cache of leader 〈t, �〉 in suit St.

The L2 cache of leader 〈t, �〉 returns the copy of block Btα if it has the copy.
Otherwise, it produces a single request for the sake of the requests for block Btα

received in the cluster and sends it to unit Mt, crossing the chip boundary. The
next theorem shows the effect of dynamic clustering.

Theorem 2. The traffic to leaders for clustering memory requests reduces to at
most 1/2p1 of the traffic to the per-cluster units in the static clusters.

410 M. Takesue

Proof. Assume that the memory requests are uniformly distributed to all mem-
ory units. Then in the static clusters, the requests not satisfied in the L2 cache
concentrate on a single per-cluster unit. On the other hand, with the dynamic
clusters, the request is sent to one of the 2p1 leaders depending on the address
of requested memory block, so that the traffic to one leader reduces to one 2p1th
of the traffic to the per-cluster unit.

When a miss occurs on block Btα in the L2 cache of node 〈s, �〉, the copy of
Btα may be in some L2 caches in partition P� = 〈∗, �〉 and suit St = 〈t, ∗〉. To
reuse the copy by an L2-L2 direct transfer, all L2 caches in P� snoop all memory
requests issued in P�, while the L2 caches in St snoop the requests for the blocks
in Mt. The clustering is performed only if P� and St have no copy of block Btα.

Example 6. Suppose in Fig. 3 that a miss on a memory block in unit M0 (asso-
ciated with S0) occurs in the L2 cache of node 〈2, 3〉. Then the node puts the
memory request on the bus of node 〈0, 3〉, that is snooped by the all L2 caches
in partition P3 and suit S0. When no copy is found in those L2 caches, the
clustering is performed with the L2 cache of leader 〈0, 3〉.

4 Evaluation

This section shows the results of evaluation on the 64-node SKB, comparing
with the representative network, the 64-node hypercube.

4.1 Environments

We evaluate the SKB (denoted by SKB) and hypercube (Hyp) by a cycle-accurate
simulator. They have the link- or bus-width of 1 byte, and perform wormhole
routing. Hyp has simultaneously bidirectional links of which delay is fixed equal
to one clock to use Hyp as the reference network. Let SKBd denote the SKB whose
bus delay equals d clocks. We denote the SKB with dynamic and static clustering
by appending D and S after the network notation, such as SKB4D and SKB2S.

Processing nodes simultaneously send 13-byte packets (header: 9 bytes, data:
4 bytes) to the individual target nodes chosen randomly in each node. The packet
issue-rate in each node is varied from 1 packet per 1k clocks up to the rate at
which the network’s bandwidth saturates; the rate is fixed in one simulation run.

We simulate the 64-node networks; for SKB, we use SKB6(3, 3), so the cluster
size equals 8. In the dynamic clustering, the leader produces a packet every time
it receives the same number of packets as the cluster size and sends the produced
packet to the target. We implement static clustering by fixing the leader to a
specific node in each cluster independent of the target nodes.

We measure the total number of clocks required for sending 2048 packets per
node to the targets and calculate the network’s bandwidth relative to the Hyp’s.
We also calculate the average network delay from the source to the target.

The SKB: A Semi-Completely-Connected Bus for On-Chip Systems 411

4.2 Results

The bandwidth and network delay of SKBd (with no clustering) are shown in
Fig. 4, where the bus cycle time d is varied from 1 to 4, and 8. The bandwidth
of SKBd equals about 0.97, 0.53, 0.36, 0.28, and 0.14 respectively when d is equal
to 1, 2, 3, 4, and 8, relative to the hypercube’s. The network delay is then
equal to about 18, 32, 45, 62, and 140 clocks respectively when the network
are not saturated; the delay in Hyp equals about 24 clocks. Thus SKB1 and Hyp
have almost the same performance. The performance of SKBd decreases almost
proportional to d.

Network delay [clock]

1200

1000

800

600

400

200

Relative bandwidth

0 0.2 0.4 0.6 0.8 1.0
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦

◦

◦

◦
SKB1

� � � � � ���
�
�

�

�

�
SKB2

� � � � �
�
�
�

�

�

�

�
SKB3

• • • • ••
•
•

•
•

•

•
SKB4

× ××××
×
××
×
×

×

×

×

×
SKB8

Fig. 4. Performance of SKBd relative to Hyp

Network delay [clock]

1200

1000

800

600

400

200

Relative bandwidth

0 1.0 2.0 3.0 4.0 5.0
◦◦ ◦ ◦ ◦ ◦

◦
◦
◦
◦

◦

◦

◦
SKB1D

�� � � ���
�
��

�
�
�

�
�
�
SKB2D

�� � � �
�
�
�

�

�

�

�

�
�
�

SKB3D

•• • ••••
•

•
•
•
•
•
•
•
•

SKB4D

×× ×××
×
×

×

×
×

×

×

×

×
SKB8D

⊗⊗ ⊗
⊗

⊗

⊗

⊗

⊗

⊗SKB1S

Fig. 5. Performance of SKBdD and SKB1S relative to Hyp

412 M. Takesue

The dynamic clustering is effective to improve the performance of SKB as
shown in Fig. 5. The relative bandwidth increases to about 4.57, 2.58, 1.89,
1.43, and 0.71 for SKB1 to SKB4, and SKB8, respectively; then the network delay
decreases to 17, 30, 41, 55, and 117 clocks. This is because the packets issued in
each cluster are sent to one of 8 leaders depending on the target address so that
no traffic congestion on a specific leader occurs, though one extra-packet per 8
received packets is produced in each leader and is sent to the target.

On the other hand, static clustering SKB1S is not effective when the request
rate is high: SKB1S decreases the SKB1’s bandwidth of 0.97 to about 0.61 due to
the traffic contention on the fixed leaders.

5 Related Work

One approach to NoCs is to achieve a topology with an easy layout and short
wires, such as the tree and mesh. SPIN [7] adopts a fat-tree [8], where each node
has four children and four parents to increase the bandwidth. A 2-dimensional
torus is used to reduce the network delay of the mesh [9]. Octagon [10] exploits a
recursive ring, where one recursive level is an extended ring of 8 nodes with extra
links between the nodes located at the opposite locations on the ring. The hier-
archical bus network [11] is also attractive since it reduces local communication
overhead but also allows us to use snooping cache protocols.

An alternative is the interconnect-centric approach [5,6]. In [6], interconnects
consist of wires with varying latency, bandwidth, and energy characteristics, and
are mapped on appropriate interconnects for cache coherence operations. In [5],
transmission line technology [4] is exploited to access level-2 on-chip caches. Our
SKB study was partially stimulated by the results in [4,5].

To reduce memory traffic, the commercial multiprocessors (MPs), STiNG [12]
and SGI Origin [13], adopt clusters connected to each other by the ring and
the fat bristled hypercube, respectively. A research CMP, Hydra [14], has 4
processors and exploits two buses to interconnect their L1 and L2 caches, while
another CMP, Piranha [15], uses a crossbar between the L1 and L2 caches for 8
processors. But no concept of dynamic clustering is found in those MPs.

The partitioning based on an extended Hamming code [16] is used to organize
the networks [17,18]. However, no SK graph is derived from this partitioning.

6 Conclusions

We presented the topology, structure, routing, and dynamic clustering of the
SKB to alleviate the long-wire and pin-neck problems against high-performance
NoCs. The SKB is a bus-based semi-complete (SK) network, and the SK graph
is derived from the relationship between the suits of leaders and the partitions
produced with the all suits in a simple partitioning.

The 2n-node SK graph, SKn(p, k) (p+k = n), consists of 2p number of 2k-node
complete graphs, Kk’s. Each node in a Kk is connected to the nodes scattered in
the other Kk graphs in such a way that those nodes together organize a complete

The SKB: A Semi-Completely-Connected Bus for On-Chip Systems 413

graph Kp. The 2n-node SKB, SKBn, is obtained from the SKn by replacing the
links incident to a node by a single bus for the node.

We laid out the nodes of the SKBn on the 2p × 2k array. Then the buses
have very regular wiring patterns and the maximum length of O(

√
2n); it is

expected that the delay of this rather long wire is alleviated by the transmission
line technology or fat and sparse wires.

We evaluated the SKB6 by a cycle-accurate simulator. The results show that
relative to the bandwidth of the hypercube with the link delay of 1 clock, the
SKB’s bandwidth is about 0.97, 0.53, 0.36, 0.28, and 0.14 when the bus delay
equals 1, 2, 3, 4, and 8 clocks, respectively. The bandwidths increase to about
4.57, 2.58, 1.89, 1.43, and 0.71 when the dynamic clustering is exploited.

We are designing an on-chip cache hierarchy and its coherence protocol so
that we can evaluate the effects of dynamic clustering of memory requests.

References

1. Matzke, D.: Will Physical Scalability Sabotage Performance Gains. IEEE Com-
puter 30, 37–39 (1997)

2. Magen, N., Kolodny, A., Weiser, U., Shamir, N.: Interconnect-Power Dissipation
in a Microprocessor. In: Proc. of System Level Interconnect Prediction, pp. 7–13
(2004)

3. Huh, J., Burger, D., Keckler, S.W.: Exploring the Design Space of Future CMPs.
In: Proc. Int. Conf. on Parallel Architectures and Compilation Techniques, pp.
199–210 (2001)

4. Chang, R.T., Talwalkar, N., Patrick, C.P., Wong, S.S.: Near Speed-of-Light Signal-
ing Over On-Chip Electrical Interconnects. IEEE Jour. on Solid-State Circuits 38,
834–838 (2003)

5. Beckmann, B.M., Wood, D.A.: TLC: Transmission Line Caches. In: Proc. Int.
Symp. on Microarchitecture, pp. 43–54 (2003)

6. Cheng, L., et al.: Interconnect-Aware Coherence Protocol for Chip Multiprocessors.
In: Proc. 33rd Int. Symp. on Computer Architecture, pp. 339–350 (2006)

7. Guerrier, P., Greiner, A.: A Generic Architecture for On-Chip Packet-Switched
Interconnections. In: Proc. Design and Test in Europe (DATE), pp. 250–256 (2000)

8. Leiserson, C.E.: Fat-Trees: Universal Networks for Hardware-Efficient Supercom-
puting. IEEE Trans. on Computer C-34, 892–901 (1985)

9. Dally, W.J., Towles, B.: Route Packets, Not Wires: On-Chip Interconnection Net-
works. In: Proc. Design Automation Conf. (DAC), pp. 683–689 (2001)

10. Karim, F., et al.: An Interconnect Architecture for Networking Systems on Chips.
IEEE Micro 22, 36–45 (2002)

11. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnection in Multi-Core Architec-
tures: Understanding Mechanisms, Overhead and Scaling. In: Proc. 32nd Int.
Symp. on Computer Architectures, pp. 408–419 (2005)

12. Lovett, T., Clapp, R.: STiNG: A ccNUMA Computer System for the Commercial
Marketplace. In: Proc. 23th Int. Symp. on Computer Architectures, pp. 308–317
(1996)

13. Laudon, J., Lenoski, D.: The SGI Origin: A ccNUMA Highly Scalable Server. In:
Proc. 24th Int. Symp. on Computer Architectures, pp. 241–251 (1997)

414 M. Takesue

14. Olukotun, K., et al.: The Case for a Single Chip Multiprocessor. In: Proc. 7th
Int. Conf. on Architectural Support for Programming Languages and Operating
Systems, pp. 2–11 (1996)

15. Barroso, L.A., et al.: Piranha: A Scalable Architecture Based on Single-Chip Mul-
tiprocessors. In: Proc. 27th Int. Symp. on Computer Architectures, pp. 282–293
(2000)

16. Takesue, M.: Ψ -Cubes: Recursive Bused Fat-Hypercubes for Multilevel Snoopy
Caches. In: Proc. Int. Symp. on Parallel Architectures, Algorithms, and Networks
(I-SPAN), pp. 62–67 (1999)

17. Takesue, M.: DC-Mesh: A Contracted High-Dimensional Mesh for Dynamic Clus-
tering. In: Jin, H., Gao, G.R., Xu, Z., Chen, H. (eds.) NPC 2004. LNCS, vol. 3222,
pp. 382–389. Springer, Heidelberg (2004)

18. Takesue, M.: The Psi-Cube: A Bus-Based Cube-Type Network for High-
Performance On-Chip Networks. In: Proc 2005 Int. Conf. on Parallel Processing
(ICPP) Workshops, pp. 539–546 (2005) (For the full version, see Parallel Comput-
ing, vol. 32, pp. 852–869, Elsevier B. V (2006))

	The SKB: A Semi-Completely-Connected Bus for On-Chip Systems
	Introduction
	Semi-Complete Graphs
	The Semi-Completely-Connected Bus: SKB
	Structure of the SKB
	Routing on the SKB
	Dynamic Clustering on the SKB

	Evaluation
	Environments
	Results

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

