
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 53–58, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Practical Methods for Adapting Services
Using Enterprise Service Bus*

Hyun Jung La, Jeong Seop Bae, Soo Ho Chang, and Soo Dong Kim

Department of Computer Science
Soongsil University, Seoul, Korea

511 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743
{hjla, jsbae, shchang}@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. In service-oriented computing (SOC), services are designed not just
for a dedicated client but for a family of potential clients. For services to be ge-
neric and serviceable to different clients, service variability among the clients
must be analyzed and modeled into service components. Enterprise Service Bus
(ESB) is an architectural framework for service integration, but it does not pro-
vide effective adaptation mechanisms. Hence, it is desirable to devise tech-
niques to adapt services on ESB for specific service requests. In this paper, we
identify four types of service variability, and we present methods to adapt ser-
vices provided on ESB. These methods can be practically applied in designing
highly adaptable services on ESB.

1 Introduction

In service-oriented computing (SOC), services are designed not just for a dedicated
client, but for a family of potential clients. A key problem in developing such com-
mon services is to model the variability embedded in common features, and to be able
to adapt common services for specific service requests [1][2]. Another case requiring
service adaption is when there is a partial matching between available services and
services expected by clients. That is, an available service can potentially fulfill the
service expected by a client, but they do not match in full [3]. Hence, identifying
types of variability which may occur on services and how service variability can be
modeled into adaptable services are two essential prerequisites to designing highly
reusable and applicable services.

Enterprise Service Bus (ESB) is an architectural framework to integrate heteroge-
neous services and applications in distributed network [4]. It provides the integration
functionality through transformation, communication, and routing. Beyond this, how-
ever, ESB does not provide methods for service adaptation. Hence, it is desirable to
devise techniques to adapt services on ESB for specific service requests.

In this paper, we first identify four types of variability which may occur on ser-
vices. Then, we present adaptation methods for services on ESB; Workflow Mediator,
Service Binder, Interface Transformer, and Logic Broker. Each method is presented

* This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant

funded by the Korea government (R01-2005-000-11215-0 (2007)).

54 H.J. La et al.

with its overall scheme and a specific adaptation algorithm based on ESB specifica-
tion. These methods can be practically applied in designing highly adaptable services
on ESB.

2 Related Works

Sam’s work proposes a customization framework for dynamic Web services [5].
Based on the comparison to syntactic/semantic aspects and to the constraint on input
and output, it suggests a matchmaking process and conflict resolution mechanism for
service adaptation. However, this work deals with only interface adaptation. Jiang’s
work proposes a categorization of variation points and introduces a pattern-based ap-
proach for managing the variation points [6]. However, instructions for identifying
variability and adaptation are not included. Herault’s work proposes an approach to
mediating and executing operations on ESB [7]. It explains how mediation can be
achieved on ESB. However, how they mediation is performed is not given in enough
details. Schmidt’s work addresses a mediation model on ESB, which reconfigures the
links between bus service providers and requesters to create dynamic alternations to
routing and to modify their behaviors [8]. It treats interface mediations and policy
mediations. However, practical adaptation mechanisms for these are not given.

From our survey, we observe that current research works treat service adaptation at
conceptual level rather than design level, and adaptation methods on ESB treat only
interface and logic variability. In this paper, we treat four types of service variability
and suggest design-level practical methods for adapting services on ESB.

3 Types of Service Variability

In this section, we identify four places where service variability may occur [9].

Workflow Variability. A business process consists of a sequence of activities, i.e. unit
services [10], and this sequence is called a workflow. For a given business process, the
workflow may slightly vary, depending on different service clients. That is, some unit
services in a workflow may be optional, and there can be more than one execution
path for the given workflow.

Composition Variability. Services are discovered at runtime, and there may be more
than one unit service which fulfills the required functionality. In this case, variation
occurs on binding the right services. That is, for each specific request, one of the can-
didate unit services must be composed.

Interface Variability. Variability on interfaces occurs when the interfaces of unit ser-
vices do not match to the interfaces of published services. Even if the functionality of
a unit service is met by the functionality of a registered service, the signatures of in-
terface and the semantics may not fully match. This should be modeled during service
engineering, and the mismatch should be resolved by some interface adaptation
mechanism.

 Practical Methods for Adapting Services Using Enterprise Service Bus 55

Logic Variability. Service component includes operations for providing service func-
tionality. There may be minor variation on the business logic or algorithm for the ser-
vice component. This micro-level logic variability should be modeled into a service
component, so that it can be tailored for each invocation.

4 Adaptation Managers for Services on EBS

In SOC, service clients do not have access to the internal details of services, and
hence adaptation of a service is performed by an external software agent, which we
call it adaptation manager. We propose a general scheme of designing ESB-based
adaptation mangers which can be used in resolving all four types of variability.

To implement adaptation managers on ESB, we define two kinds of components; lis-
tener and adaptor. As shown in Figure 1, a listener with «Listener» stereotype listens
and intercepts service requests made by clients. And, it determines the required adapta-
tion for each invocation, and invokes appropriate adaptors. The adaptors actually per-
form the requested adaptation over service components through end-points of ESB.
Figure 1, shows four types of adaptors, which are denoted with «adaptor» stereotype.

«Listener»
Invocation
Listener #n

BPEL
Engine

Service
Component #1

«Listener»
Invocation
Listener #1

…
«Listener»
Invocation
Listener #2

Service
Component #2

Service
Component #n

«adaptor»
Workflow
Mediator

«adaptor»
Service
Binder

«adaptor»
Interface

Transformer

«adaptor»
Logic

Broker

(1) Request Invocation

(3) Resolve
variability

(4) Invoked adapted components

(2) Listen to
Invocation

End
point

Enterprise Service Bus

End
point

End
point

Adaptation Manager

…
Client

Program

Fig. 1. Adaptation Manager deployed on ESB

4.1 Workflow Mediator for Workflow Variability

Workflow Mediator is to adapt the workflow of services, and it is implemented with
Mediator pattern. When modeling workflow variability, variation points of workflow
type and their relevant variants are identified and stored in the workflow repository.

Service
Requested

Unit
Service a

Unit
Service b

Workflow
Repository

«Workflow
Mediator»

Look Up
Workflow Variability

Workflow Variants

«Service
Component»Unit

Service c
«Service

Component»

«Service
Component»

1st invocation

2nd invocation

3rd invocation

Path #2

Path
#1

Fig. 2. Pattern of Workflow Mediator

56 H.J. La et al.

As shown in Figure 2, the workflow mediator analyzes service requirements using
user’s preference and context information, determines an appropriate workflow vari-
ant from the repository, and makes a series of invocations over the participating ser-
vice components by using the rule repository.

We define two adaptation methods for workflow mediators as shown in Figure 3;
determineWorkflow() and conctroServicelInvocation(). The determineWorkflow()
method is to select the most appropriate workflow from the repository based on the
service requirements. This operation returns a path of the BPEL specification which
will be executed. The conctroServicelInvocation() method is to execute the workflow
by invoking appropriate service components.

public String determineWorkflow(MessageExchange exchange) throws MessagingException {

String BPELPath; // path of the BPEL documents
Message sourceMsg = getSourceMsg(exchange); // to get source invocation message
Vector workflowVariant = getWorkflowVariants(exchange); // to get candidate workflows

// to get a particular workflow among candidate workflow based on the condition
for (int i = 0 ; i < workflowVariant.size() ; i++) {

if (compare (workfowVariant[i], condition) == true) {
BPELPath = workflowVariant[i].path;
return BPELPath;

}
}

}

public void controlServiceInvocation(MessageExchange exchange) throws MessagingException {

Message sourceMsg = getSourceMsg(exchange); // to get source invocation message
Vector serviceComp = getServiceComponents (exchange); // to get the service components
Rule rule = getRule (exchange) // to get the rule for the exchange

// to invoke a service component by comparing when the service component is invoked
for (int i = 0 ; i < serviceComp.size() ; i++) {

if (compare (serviceComp[i].case, rule.case) == true) CallComponents (serviceComp[i]
}

}

Fig. 3. Algorithm of Workflow Mediator

4.2 Service Binder for Composition Variability

Service Binder is to adapt the service compositions, and it is implemented with dy-
namic selection pattern. When modeling composition variability, variation points of
composition type and their variants are identified and stored in composition repository.

Unit Service

Composition
Repository

«Service
Binder»

Preference Service Interface #2

Service Interface #1

Look Up Selections

Fig. 4. Pattern of Service Binder

 Practical Methods for Adapting Services Using Enterprise Service Bus 57

public String determineInterface (MessageExchange exchange) throw MessageException{

Message sourceMsg= getSourceMsg(exchange); // to get source invocation message
Vector endPoints = getEndPoint(exchange); // to get possible end points
Rule rule = getRule (exchange); //to get selection rule for the exchange
String targetEndPoint; //to save a target end point

// to get an appropriate end point
for (int i=0;i<endPoints.size(); i++) {

if (compare(endPoints[i].case, rule.case) == true)
targetEndPoint = (String)endPoint[i];

}
}

public void bindInterface (Endpoint ed) throw MessageException{
if (comparingInterface(sInvc, ed) == match) call(ed); // adaptation is not needed.
else call(interfaceMediator, sourceMsg) // in order to adapt interface mismatch

}

Fig. 5. Algorithm of Service Binder

Figure 4 shows the relationship among the service binder, unit services, composition
repository and WSDL service interfaces.

We define two methods for service binder; determineInterface(), and bindInter-
face(). The determineInterface() method is to select an interface variant in the reposi-
tory based on user preferences, characteristics of services, and other context, and to
generate a service endpoint type which is specific to the interface variant. The bind-
Interface() method is to bind the specified WSDL interface to the unit service. If in-
terface mismatch occurs, it should be resolved with Interface Transformer.

4.3 Interface Transformer for Interface Variability

Interface Transformer is to adapt interfaces, and it is placed between unit services and
service providers. When modeling interface variability, variation points of interfaces
and relevant interface variants are identified and stored in the Interface Transform
Repository. Each transformation method takes a service invocation of the interface
specified by a unit service, transforms it into the published interface which eventually
maps to the interface of a service component. It analyzes the service innovation, de-
termines a transformation method, performs the transformation, and generates a new
service invocation of a published interface.

4.4 Logic Broker for Logic Variability

Logic adaptor is a kind of adaption manager use the plugin method with profiles since
the method makes the variable logics more decoupled [2]. When modeling logic vari-
ability, client profiles and objects which implement algorithms are identified and
stored in Client Profile and Logic Object Repository.

Message listener recognizes the invocation from Web service client to the service in-
terface written in WSDL. The listener invokes the variability analyzer so that the vari-
ability analyzer finds out corresponding adaptation types. Then, the listener invokes the
service component with the object path through object finder so that the service compo-
nent can use the logic object. For the logic variants of unknown and newly added unit
services, new algorithm object should be deployed on the object container.

58 H.J. La et al.

5 Conclusion

A key problem in developing reusable services in SOC is to identify the common fea-
tures among potential clients and to model them into service components. In addition,
variability within a common feature should also be modeled. Moreover, partial
matching between available services and requested services should be identified can
resolved. ESB provides an architectural framework for service integration, without
providing practical adaptation mechanisms.

In this paper, we identified four types of variability which could occur on services.
By extending software adaptation techniques and utilizing the key features of ESB,
we presented practical methods to adapt services on ESB. Each method was presented
with its overall scheme and a specific adaptation algorithm based on ESB specifica-
tion. By using the methods, services with high adaptability and applicability on ESB
can be effectively developed.

References

[1] Kim, S., Her, J., Chang, S.: A Theoretical Foundation of Variability in Component-Based
Development. Information and Software Technology (IST) 47, 663–673 (2005)

[2] Chang, S.H., Kim, S.D.: A Systematic Approach to Service-Oriented Analysis and De-
sign. In: the proceedings of the 8th International Conference on Product Focused Soft-
ware Development and Process Improvement (PROFES) (to Appear)

[3] Min, H., Choi, S., Kim, S.: Using Smart Connectors to Resolve Partial Matching Prob-
lems in COTS Component Acquisition. In: Crnković, I., Stafford, J.A., Schmidt, H.W.,
Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 40–47. Springer, Heidelberg (2004)

[4] Chappell, D.A.: Enterprise Service Bus, O’Reilly (2004)
[5] Sam, Y., Boucelma, O., Hacid, M.: Web Services Customization: A Composition-based

Approach. In: ICWE’06. proceedings of the International Conference on Web Engineer-
ing, IEEE Computer Society Press, Los Alamitos (2006)

[6] Jiang, J., Ruokonen, A., Syata, T.: Pattern-base Variability Management in Web Service
Development. In: ECOWS ’05. proceedings of the Third European conference on Web
Services, IEEE Computer Society Press, Los Alamitos (2005)

[7] Herault, C., Thomas, G., Lalanda, P.: Meditation and Enterprise Service Bus A position
paper. In: the proceedings of the First International Workshop on Mediation in Semantic
Web Services (MEDIATE 2005), pp.1-14 (2005)

[8] Schmidt, M.T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service Bus:
Making Service-oriented Architecture Real. IBM Systems Journal 4(4), 781–797 (2005)

[9] Chang, S.H., La, H.J., Kim, S. D.: A Comprehensive Approach to Service Adaptation,
IEEE International Conference on Service-Oriented Computing and Applications (SOCA)
(to Appear)

[10] OMG Business Process Management Initiative, Business Process Modeling Notation
(BPMN) Version 1.0, OMG Final Adopted Specification (February 6, 2006)

	Introduction
	Related Works
	Types of Service Variability
	Adaptation Managers for Services on EBS
	Workflow Mediator for Workflow Variability
	Service Binder for Composition Variability
	Interface Transformer for Interface Variability
	Logic Broker for Logic Variability

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

