Security Patterns for Physical Access Control
Systems

Eduardo B. Fernandez, Jose Ballesteros, Ana C. Desouza-Doucet,
and Maria M. Larrondo-Petrie

Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, Florida 33431, USA
ed@cse.fau.edu, jballes2@fau.edu, adoucet@bluefrogsolutions.com,
maria@cse.fau.edu

Abstract. Physical security has received increased attention after 9/11.
However, access control to physical units has not been explored much.
On the other hand, there is a rich literature on access control to informa-
tion. These two areas appear converging as seen by recent products and
studies. However, use of different notations and implementation details
make this convergence harder. We need to try to take this convergence
at a more abstract level first. Although introduced about 10 years ago,
security patterns have recently become accepted by industry and two
books on this topic have appeared recently. Security patterns for infor-
mation access control have appeared but now we extend this concept
to access for physical units. The unification of information and physical
access control is just beginning but the strong requirements of infrastruc-
ture protection will make this convergence to happen rapidly. Examining
existing systems, industry standards and government regulations, we de-
scribe, in the form of patterns, the core set of features a physical access
control system should have. The paper illustrates the structure and use
of these patterns.

Keywords: access control, intelligent buildings, physical access control,
security, software patterns.

1 Introduction

Homeland security has brought an added interest in control of access to buildings
and other physical structures. The need to protect assets in buildings and to con-
trol access to restricted areas such as airports, naval ports, government agencies,
and nuclear plants to name a few, created a great business opportunity for the
physical access control industry and a good amount of interest in the research
community. One of the results of this interest was the recognition that access
control to information and access control to physical locations have many com-
mon aspects. The most basic model of access control uses a tuple (s,0,t), subject,
object, access type. If we interpret s as a person (instead of an acting executing

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 2597 2007.
© IFIP International Federation for Information Processing 2007



260 E.B. Fernandez et al.

entity), o as a physical structure (instead of a computational resource), and t
as a physical access type (instead of resource access), we can make an analogy
where we can apply known results or approaches from information access control.
The unification of information and physical access control is just beginning but
the strong requirements for infrastructure protection will make this convergence
to happen rapidly. Another issue is the fact that there are standard network
protocols for building automation, e.g. BACnet [I], which are totally different
of the protocols used for manufacturing automation, e.g. DNP3 [2]. Both types
of protocols define security standards, which means that a building intended for
manufacturing would have two sets of incompatible security standards. We need
some way to abstract the security requirements of the complete system without
regard to specific standard details.

One way to achieve this unification is using a conceptual abstraction for the
definition of security requirements; we consider here the use of analysis and
security patterns for this purpose. A pattern is an encapsulated solution to a
recurrent problem in a given context [3][]. In particular, a security pattern
defines a solution to a security problem [5]. In general, the use of patterns has
been increasing in industry because of their potential to improve software quality.
Although introduced about 10 years ago, security patterns have only recently
become accepted by industry and Microsoft, IBM, and Sun have web pages on
this topic. Also, two books have appeared recently [5][6]. We have presented
several security patterns for access control to information, e.g. [7][8], and now
we extend this concept to the access of physical units. Standards and products
that deal with physical units use a set of common concepts that may appear
different due to a different notation; patterns make this commonality apparent.
Examining existing systems, industry standards, and government regulations,
we describe, in the form of patterns, the relationship and definition of a core set
of features a physical access control system should have. From these patterns, it
is possible to define more specific patterns that can be used to build systems in a
given protocol or to define new protocols. These patterns can also be combined
to make up complex systems.

We present here patterns for access control in physical units. While we cannot
be complete, we show three of them to illustrate their structure and possibilities:

— Alarm Monitoring. Defines a way to raise events in the system that might
require special attention, like the tampering of a door.

— Relays. Defines the interactions with electronically controlled switches.

— Access Control to Physical Structures. Applies authentication and autho-
rization (RBAC) to the control of access to physical units including alarm
monitoring, relays, and time schedules that can control when things will
happen.

The pattern diagram of Figure 1 shows how these patterns relate to each
other and to related existing patterns. The patterns not explicitly described
here include:



Security Patterns for Physical Access Control Systems 261

Physical Fefrence
Structure Iomtor

enfbrced By

Alarm

Momtonng

switch
mstruction

raise alarms Role-Based
Arcess Control
authorizes
Arcess Control to
Phyzical Structures
times

authenticates Aathenticator

Fig. 1. Pattern diagram of physical access control patterns

— Physical Structure [9]. Defines the structure and use of physical sites such as
buildings, parking lots, and similar, as well as their divisions and compart-
ments.

— Scheduler. Provides timing information to control access.

— Role-Based Access Control [7]. Describes the standard RBAC model used
here to describe authorization to access a physical unit.

— Reference Monitor [5]. Enforces authorizations when a process requests ac-
cess to an object.

— Authenticator [I0]. Verifies that a subject is who it says it is.

Alarm Monitoring, Relays, Scheduler, and Physical Structure are composed to
form the Access Control to Physical Structures pattern. RBAC defines the type
of authorization rules used in the system, while the reference monitor indicates
an abstract pattern representing enforcement mechanisms. Authenticator is an
abstract pattern defining the requirements for authentication. We present these
patterns following the POSA template [3]. This template intends to provide
enough detail to be a guideline for a designer building a system that requires
this pattern. The set of patterns can also be used to define precise requirements
and to evaluate existing systems. The solutions are described by UML diagrams,
which although not strictly formal, are precise and unambiguous (UML has a
well-defined syntactic metamodel). Because each pattern must be reusable on
its own, there is some amount of redundancy between patterns. Each pattern is
relatively simple but it can be combined with others to build complex systems.

Section 2 describes some background. Section 3 presents first two patterns
that complement physical access (Alarm Monitoring and Relays). These pat-
terns are then combined with other patterns to define a composite pattern that



262 E.B. Fernandez et al.

describes the necessary elements of a physical access control system. Section 4
includes a short discussion and comparison to other approaches. We end with
some conclusions.

2 Background

Physical access control systems are widely used today and they can be imple-
mented with a wide range of technologies. The basic idea is that something
controls access to someplace; it could as simple as a key lock and as complex as
a face recognition device. Moreover, there are ways to detect and inform when
someone violates the access rules or tries to force the system. This simple defi-
nition leaves room for a great number of features and combinations in software
and hardware that vary from product to product. To understand access control,
we must understand the language of the industry. Terms like the ones discussed
in the patterns presented here are commonly used when discussing access control
systems. Other terms include:

— Access control panels. Serves as an interface to the readers and door locks.
Wiring in a network interconnects most of these panels.

— Electric door locks. Keep the doors locked and secure, and release the door
when a valid credential is used.

— Shunting of alarm devices. Means to bypass or ignore an alarm for a specified
period of time.

— Anti-pass back. Used to prevent tailgating (when one user enters with a valid
credential, and several people enter without using theirs).

As indicated earlier, a pattern describes a solution to a specific problem in
a given context. Patterns are abstractions of real systems, emphasizing best
practices and fundamental features, we found these patterns by analyzing real
systems or standards. A security pattern describes an abstraction of a security
mechanism able to avoid or mitigate some threats [5][6]. In addition to the two
mentioned books about security patterns, a variety of security patterns have
appeared in the literature [11]. It is common practice to describe the solution
encapsulated in a pattern using UML (Unified Modeling Language) diagrams.
UML is a standard for software development and its models are graphic and
intuitive and can be conveniently converted into code. In addition, as indicated
earlier, UML is a semi-formal language that provides a good amount of precision.
There have been attempts to further formalize patterns but their importance
comes not from an ability to prove security properties of the system but be-
cause of the fact that they are known to be good practices, based on experience.
In addition, since each pattern is rather simple, they can be used by practi-
tioners; many software developers know UML but are not able to use formal
methods.

Patterns are described using some type of template, consisting of a specific set
of sections with predefined meanings. We use here the so-called POSA template
[Bus96] which includes the following sections:



Security Patterns for Physical Access Control Systems 263

— A Name, that should be unique and precise.

— A thumbnail summary of the pattern (what problem does it solve?)

— An example of a situation where a solution is needed.

— The context where the pattern is valid or applicable.

— The general problem solved by the pattern.

— A solution section, describing the idea of the solution. This includes two
subsections, a Structure section describing a class diagram of the solution,
and a Dynamics section describing some typical use case sequences.

— The Implementation section provides hints in using the pattern. The exam-
ple resolved shows how the pattern can solve the problem of the example
presented earlier.

— The Known Uses section indicates some real uses of the pattern.

— The consequences indicate the advantages and disadvantages of using this
solution.

— The section on related patterns enumerate patterns which solve similar prob-
lems or are complementary to this pattern.

3 Patterns

3.1 Alarm Monitoring

Defines a way to raise events in the system that might require special attention,
such as someone tampering with a door.

Example. Building management wants to raise alarm events when someone
opens a door without using the right credentials or when someone tries to use a
card that was reported as lost.

Context. Physical environment with an access control system where we want
to be able to raise filtered alarm events and we want to differentiate between
alarms that are generated because of a physical violation of the system and
alarms generated because of a system rule violation.

Problem. In an Access control system, there are two types of alarms, physical
and logical. Many times we might want inform more than one subsystem that
a change of state happened in order to generate different types of configurable
actions that can vary. Physical alarm inputs are used to monitor various devices.
These alarms can be shunted. Logical alarms are used to monitor various system
rules. For example, a system may generate an alarm after three invalid tries to
get access with the same credentials.
The following forces will affect any solution:

— There are two types of alarms, physical and logical.
— Alarms can be ignored.
— Logical alarms have two possible states, reset and alarm.



264 E.B. Fernandez et al.

— Physical alarms have four possible states: reset, alarm, cut or short. The last
two states are known as trouble states, caused by faulty wiring or tampering.

— We may need to know what alarms have been set and when they were reset.

— We need a way to inform interested parties about a change of a state of an
alarm.

Solution. Have an alarm entity that describes the general concepts of an alarm
and use generalization to separate logical alarms from physical alarms and their
particular characteristics. Add information about the time the alarm occurred.
Use the Observer Pattern [4] to advise any interested party of a change of state
in an Alarm.

AlarmiTh server . — Alarm AlarmLog
-t;i:mtl R @———— datcTime: Iong
-description: string “ypebool

date L

pda -monitor;hool —statg:strm_g
+zetState(in state: string) -deviceld: mt
+getotate) -description: string
+sethonitored (in on: hool) +ogInfiin alarmr Alarm)
+Halonitored ()
+registerObserver()
+retro velbserver)
+mt:ifyObsen|'aIO

Fhysical larm
Logicalal
— E s -shunted:bool
-statestring={reset,alarmn} -state:string={reset, alarm, o, short}
-deviceld
+shunt(in time: long)

Fig. 2. Class Diagram for Alarm Monitoring

Structure Figure 2 shows a UML class diagram for the Alarm Monitoring pat-
tern. Abstract class Alarm indicates a general class for any type of alarm. The
PhysicalAlarm class and the LogicalAlarm class inherit the Alarm class. These
classes allow for alarms to be controlled and monitored. By implementing the
AlarmObserver interface any class (not shown here) interested on this alarm can
be added to the list of observers for the alarm and will be advised when a change
of state happens. Moreover, we log every alarm activity with a time stamp.

Dynamics. Figure 3 shows the main success scenario for the use case “activate
an alarm”. The request to set the alarm active is sent by an external actor that
detected the need to raise the alarm. The change of state is logged and only if the



Security Patterns for Physical Access Control Systems 265

=<gclor== PhysicalAlarm Alarmlo
I I |
1 1 1

setState"alarm®)

laginfalalarm)

> [menitar=true] natifyObservers()

Fig. 3. Sequence Diagram for Activating an Alarm

alarm is being monitored interested parties are advised of the change, otherwise
the alarm is ignored.

Implementation. There are many ways to create alarms in a physical access
control system. For example, when a card reader is installed on a door, an
alarm contact is usually installed as well. The alarm point is used to monitor
whether the door was forced or held for too long after a valid access was granted.
Logical Alarms can be generated for maximum tries with invalid credential,
invalid credential and communication errors. The call to change the state of
an alarm could in turn generate other actions when observers are notified, like
displaying a message, activating a siren, etc.

Example Resolved. Every time someone opens a door without proper per-
mission an alarm can be created and if a person uses a lost badge the system
can generate a logical alarm.

Known Uses. Many commercial Access Control systems have the concept
of logical and physical alarms that generate some actions when the states are
changed.

Consequences. Advantages include: We can only pay attention to the alarms
we are interested in.

— Every alarm change of state is logged, and interested parties are advised.

— This model provides the basic structure for supporting alarms in an access
control system.

— We make a distinction between logical and physical alarms, which supports
the creation of any alarm independently of the existing hardware.

A disadvantage is: The pattern may create overhead for systems that only care
about logging the alarm.



266 E.B. Fernandez et al.

Related Patterns. This pattern is based on the Observer Pattern [4]. The
Access Control for Physical Structures [9] complements this pattern by adding
the concept of Zones that control Alarms.

3.2 Relays

This pattern defines the interactions with electronically controlled switches.

Example. Building management wants to be able to open the main gate for
visitors that do not have credentials. Moreover, doors should be opened when
someone presents valid credentials.

Context. Physical environment with an access control system where we want
to be able turn on/off devices; and lock/unlock doors.

Relay
descrplion : string
FonTime : long
I-state - bool
-timer
+onindefinite])
+offi )
+oniomantariy()
+stariTimen()

AN
I |

AuxRelay DoorRelay

Fdeviceld © int -doarld ; int

Fig. 4. Class Diagram for Relays

Problem. A relay is an electronically controlled switch. Similar to a light switch
on the wall being used to turn on or off a light, a relay can be used to turn on
or off other devices. Relays are used to activate the electric door lock, or to
activate a variety of other items such as: bells, sirens, turn lights on and off, trip
a digital dialer and many other uses. Typically, one relay is used to control the
electric strike of doors. The others, usually called auxiliary relays, can be used
as needed. When a relay is activated or deactivated, the device wired to it is
turned on or off.
The following forces will affect the solution:

— We need to distinguish between door relays and auxiliary relays.
— Relays can be activated and deactivated.



Security Patterns for Physical Access Control Systems 267

— Relays can be activated indefinitely or for a defined period of time.
— Relays have two possible states: on and off.

Solution. Have a relay entity that describes the general concepts of a relay
and use generalization to separate door relays from auxiliary relays and their
particular characteristics.

Structure. Figure 4 shows a UML class diagram for the Relays pattern. Abstract
class Relay indicates a general class for any type of relay. The DoorRelay class
and the AuxRelay class inherit the Relay class. These classes allow for relays to
be controlled.

Dynamics. The sequence diagram is trivial. The request to set the relay active
is sent by an external actor. The relay is activated for the previously defined
“on time.” If the relay was already active the timer is restarted. Once the timer
expires the relay is turned off.

Implementation Relays could be activated or deactivated by a variety of
events. An alarm input, a valid credential, an egress button being pushed, or
a time event, can all activate a relay.

Example Resolved. Doors that have relays defined can be opened when a
valid credential is presented. Also the main gate can be assigned an auxiliary
relay that can be activated at will.

Known Uses. Many commercial Access Control systems have the concept of
relay management and distinction between door and aux relays.

Consequences. Advantages include:

— We can distinguish between auxiliary and door relays.

— We can activate relays for a predefined amount of time.

— This model provides the basic structure for supporting relays in an access
control system.

A disadvantage is:

— We might want the same kind of functionality for devices that are not exactly
door or aux relays.

Related Patterns. The Access Control for Physical Structures [9] complements
this pattern by adding the concept of Zones that control Relays.

3.3 Access Control to Physical Structures

Applies authentication and authorization to the control of access to physical
units including alarm monitoring, relays, and time schedules that can control
when things will happen.



268 E.B. Fernandez et al.
PhysicalAlarm
Fshuribed : bool
—state © string = {resed, atarm, cut, short}
devicald
+shuntfin time - long)
Alarmlog
clateTime - lang [ | LogicalAlarm
type  bool —
st - saing siate © sing = [resel, atam)
devicald - int
Folescription : string
Hoglnfoin alamn : Akam) acthvate rlay
StanTime 1
LdayOiWaek ivi Rulay
LatopTime m -description : string
A b — canconral  [STTME - g
. sipice - siring —Liimer
~cantains vopdate]) monitar : bool [+ordndetinite]}
fraelStalefin state | sting) walfi}
1 rroetSiate]) +orblomentariby()
+can change montor state  [FsetMoniiored(inon: bool) | .can conlrol +stantTimer()
. +izMonitoned )
—— +registerobserver() ,_ &
id - int removeObserver] )
n rnalify Observers) AuxRelay DoarRelay
-has access whan 1 deviceld | int coord | int
~Allew access when
1 ~door sirike
Zone l.
Rola location|D 1.4
. | rolelD description
description + Aurhonzation nile .« | geogC Door
-------- T pe doorlD
Authorize(locaton|D)| state {open, close} direction {in, out} -
i presence {present, absent} state {open, Close}
: d d {yes. noj
WMember of : enter
- leave close
RoleRight measureStay Time detectPresence
accessType legVisit (userlD) measureOpenTime
. condition openDoor(doorlD) displayMessage(message)
closeDoondooriD)
User checkRights(roleld, locationD openAllDoors
useriD addAuthorization(role, zone) closell Doors -
name numberOfPecplelnTheZone ZomsliseciLog
word (dateTime
requesticcess| [ L&:‘D
authenticate — I [doarlsed
Simple Composite W
Toginiol)
+islserin()
numCfUnits
[UserAccessLog | [Authenticatoninfo |
‘ ::: Authenticats With password A
location|D
loginfe{locationiD) changePassword

Fig. 5. Class Diagram for Access Control to Physical Structures

Example. Building management wants to put in place an access control system
to control access to certain zones and to control who can access the zones. They
need to deny all access to certain zones after 5pm. They want to generate alarms
when someone tries to access a zone for which they do not have permission and
start monitoring alarms for all the exterior doors at 8pm. Moreover, they want
to turn on the main door light at 7pm.

Context. Physical environment with access control system where we need to
control access and turn on/off devices based on time constrains.



Security Patterns for Physical Access Control Systems 269

Problem. We need a way to enforce business rules in an access control system
that take effect at a given time and day of the week. For example, a user may
have different access needs on different days, as in the following example: 08:30
- 17:00 Mon Wed Fri Standard Hours 08:30 - 19:00 Tue Thur Stays Late 2 Days
a Week 08:00 - 12:00 half a day on Saturday

The following forces affect the solution:

— We need a way to automatically cancel access for everyone to some areas of
a building at given time and day of the week. Some users might have access
to some areas only during a time range of the day.

— We need to provide a way to automatically activate devices based on the
time and day of the week.

— We need a way to represent a day of the week and time.

— This pattern expands the Access Control to Physical Structures Pattern [9].
Therefore all the forces presented in that pattern are present in this pattern
as well.

— We need to restrict access to some users depending on the identity or other
characteristics of the visitor.

— The boundaries of the unit of access must be clearly defined.

— There is a variety of users such as employees, contractors, repairpersons, etc.,
that require access to different parts of a building.

— Since some units will be normally closed, it is necessary to create policies
and plans in case of an emergency, such as earthquake or fire.

— We may need to keep track of who entered each unit and when.

Solution. Define the structure of an access control system using an RBAC pat-
tern [7]. Integrate the Alarms Monitoring and Relays patterns and introduce the
concept of a time schedule to control when things can/must happen. Time Sched-
ules have two uses; one is to control access times and the other is to configure
automatic actions.

Structure. Figure ] shows a UML class diagram for the Access Control to Phys-
ical Structures pattern. We can see how the Alarms Monitoring pattern can be
integrated so that Zones can control Alarms. We also use the Relays pattern
so that each door has its own Door Relay and the Aux Relays can be used
to turn on/off devices. Zones can control Relays.

We introduce a TimeSchedule class that consists of a few time intervals. A
Time Interval consists of a start time, a stop time, and selected day of the
week. When the system clock activates a Time Schedule, it can automatically
perform some actions. Relays can be turned on and off, alarm zones can be
activated or deactivated, and doors can be unlocked. To control access times,
roles are combined with Time Schedule to determine both where and when a
user can gain access to zones and we also need to be able to assign a Time
Schedule for the entire zone that applies to all users.



270 E.B. Fernandez et al.

= e = R I e e | Py

»f Authenteate(persen) i

LeginfcgcationiD) |
ok

Getiushonzatonpersen. deoriD)

it gocd time] £ H :
M[ good time) ».\5 [H good tma) 2 :
St gt (ralbiD, lasaseniDh

|-
authonzed ‘—*H

Log\isajusenD)

ot} D Loginfol)

Fig. 6. Sequence Diagram for Entering a Zone

Dynamics. Figure [0l shows a main success scenario for the use case “enter a
zone”. When the control is passed to the zone, the Zone and the Role will
consider their Time Schedules before authorizing a person. Also when the Zone
opens or closes a door, the Door calls its Relay to perform the action. Other use
cases include: “zone access denied by zone time schedule”, “role access denied by
time schedule”, and “activate alarm by role access denied”; they are not shown
for conciseness.

Implementation. Accesscontrol systems use centralized processing, distributed
processing, or hybrid arrangement. The system architecture should be taken
into consideration when designing an access control system, since it can have a
significant effect upon operation during a catastrophic system failure.

Centralized Processing. In computer dependent processing systems, all events
are gathered by the field panels, and are then sent to the computer for processing.
For example if a credential is presented at a door, the door sends the credentials
to the central computer or processor. The computer checks the credential against
its programming and determines if it is allowed through that door at that time.
If valid the computer sends a command back to the panel to release the door.
In these systems if the computer goes down, or if communications between the
panel and computer is lost, the system can no longer function, to verify proper
access, and to process alarms.

Distributed Processing. In distributed processing systems the database is
loaded to the field panel. All decisions are made at the field panel and are passed



Security Patterns for Physical Access Control Systems 271

to the computer or logging printer for storage. In these systems if communica-
tions is lost, access control continues uninhibited. Furthermore, the events can
sometimes be stored in the panels, and can be sent up to the computer once
communications is restored. Due to their architecture, systems which employ
distributed processing generally offer better reliability, and faster response than
systems that rely on central computers for all decision making.

Example Resolved. Building management can configure time schedules and
assign them to Zones and Roles, that a way a Zone could have a time schedule
from 8-5pm. Moreover, time schedules can be assigned to Relays and Alarms so
that they can be activated and monitored respectively when the system clock
activates these time schedules.

Known Uses. Many commercial or institutional buildings control access to
restricted units using the concepts presented here. This model corresponds to an
architecture that is seen in commercial products, such as: Secure Perfect, Picture
Perfect and Diamond II. BACnet is a standard that includes access control to
buildings and incorporates RBAC, zones, and schedules [12].

Consequences. They are a combination of the previous patterns.

Related Patterns. This pattern is a combination of the RBAC (or another
suitable authorization model [7]), the Physical Structures pattern, the Access
Control for Physical Structures pattern, the Alarm Monitoring pattern, and the
Relays pattern.

4 Related Work and Discussion

There is a considerable amount of work on the security of SCADA (Supervisory
Control and Data Acquisition) networks, e.g. [I3][2]. However, that type of se-
curity is not applicable to physical protection, SCADA security applies only to
the information functions of these networks. Building security appears as a ne-
glected area, the only analysis of this problem come from industry white papers,
e.g. [I4], which emphasizes the need for the convergence of physical and logical
security. Some documents about BACnet discuss its rationale, which has some
close aspects to our work, they use RBAC and try to derive conceptual models
of their protocols but they are tied to some implementation details. R.Martin’s
book [15] has a detailed building security system used as an example of applying
object-oriented methods, but he does not use patterns.

Some work attempts to find ways to control location information of people, e.g.
[16]. A model of that type can be made more precise by specifying more closely
the location information, as we can do with our patterns. [I7] proposes a formal
model for the release of information about user location in a smart building while
respecting privacy constraints. Our approach can be used to define location of



272 E.B. Fernandez et al.

sensors and for interpreting information about user location. By defining more
closely the location of a user, her privacy can be protected more precisely. Our
finer location definition comes from the fact that we use the Composite pattern
[4], a recursive structure that can have any levels of containment. This approach
can also be combined with approaches that use geometric models of location [I8]
by providing an anchor or context for the location information.

There is also much work on context-dependent security, e.g. [19][20], where
access to services or resources depends on the location of the user. It is clear
that our model can make contexts more specific by defining them in relation to
zones or access points (gates). Context models are usually applied in wireless
environments, a user could prove wirelessly that he is in front of a gate and that
gate could be opened remotely. In the literature, the rights considered are about
information, e.g. to a list of nearby restaurants, our approach can unify both
types of accesses.

Emergency situations are very important for physical access, in the case of
fire all doors should be opened, in the case of an attack as the recent one at
Virginia Tech, all doors could be closed. Our model handles these cases very
well, all the doors are just instances of a class Door and we can have operations
such as ’open all doors’ or ’close all doors’, that apply to all the objects of that
class.

As indicated earlier, the presented model is semi-formal. It can be made more
formal by adding Object Constraint Language (OCL) constraints [2I]. OCL can
be used to add formal annotations to a UML model. Another possibility is the
use of the template notation of [22]. In that way, we can at least define more
precise requirements and maybe prove properties of some sections of the system.

5 Conclusions

We have described using patterns the basic features and concepts that any mod-
ern Physical Access Control system must have. As indicated, these patterns
can guide the design of physical access control systems or they can be used to
evaluate current products of this type. Other possibilities include the dynamic
restriction of the locations where a suspicious user could go or reconfiguration of
exits in case of emergencies. They can also be used in conjunction with privacy-
oriented models. Another next step is a pattern that could be more event-driven
in a way that any subsystem that generates events could be hooked dynamically.
Our Access Control system could be one of the subsystems as well as a video
system, a metal detector, a drug detector, and so forth.

The contributions of this paper include a constructive semi-formal model of
access control to physical structures and a set of patterns, which can be used
on their own to build other models. This model also illustrates composition of
features by composing patterns. Our future work will include combining this
model with identity management patterns [23], with context-based models, and
with traditional RBAC models (users could have their access to information
and to physical locations defined by the same model). Further formalization is



Security Patterns for Physical Access Control Systems 273

another aspect we are considering. Finally, physical accesses may involve not just
entering a zone but may include physical removal of specific objects identified
by RFID devices.

References

10.

11.

12.

13.

14.

15.

16.

. SSPC135/LSS-WG: Physical access control with BACnet (October 2006),

http://www.bacnet.org/bibliography/bac-10-06.pdf

. Majdalawieh, M., Parisi-Presicce, F., Wijesekera, D.: Dnpsec: A security framework

for dnp3 in SCADA systems. In: Internat. Joint Conf. on Computer Information
and Systems Sciences and Engineering, Bridgeport, CT (December 10-20, 2005)
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, vol. 1. Wiley, Chichester
(1996)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, Mass (1994)
Schumacher, M., Fernandez, E.B., Hybertson, D., Buschmann, F., Sommerlad, P.:
Security Patterns: Integrating security and systems engineering. J. Wiley & Sons,
Chichester (2006)

Steel, C., Nagappan, R., Lai, R.: Core Security Patterns: Best Strategies for J2EE,
Web Services, and Identity Management. Prentice Hall, Upper Saddle River, New
Jersey (2005)

Fernandez, E.B., Pan, R.: A pattern language for security models. In: Procs,
of PLoP (2001), http://hillside.net/plop/plop2001/accepted submissions/
accepted-papers.html

Priebe, T., Fernandez, E.B., Mehlau, J.I., Pernul, G.: A pattern system for access
control. In: Procs. of the 18th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, Sitges, Spain, pp. 235-249 (July 2004)

. Desouza-Doucet, A.: Controlling access to physical locations, M.S. Thesis, dept. of

computer science and eng., Florida Atlantic University (April 2006)

Fernandez, E.B., Sinibaldi, J.C.: More patterns for operating system access control.
In: Proc. of the 8th Furopean conference on Pattern Languages of Programs, pp.
381-398 (2003), http://hillside.net/europlop

Fernandez, E.B.: Security patterns (keynote talk and paper). In: Procs. of the Eigth
International Symposium on System and Information Security - SSI2006, Sao Jose
dos Campos, Brazil (November 08-10, 2006)

Ritter, D., Isler, B., Mundt, H., Treado, S.: Access control in bacnet. BACnet today
(supplement to ASHRAE Journal) B26-B32 (November 2006)

Chandia, R., Gonzalez, J., Kilpatrick, T., Papa, M., Shenoi, S.: Security strate-
gies for SCADA networks. In: Procs. First Annual IFIP WG 11.10 International
Conference on Critical Infrastructure Protection,

Bridging the great divide: The convergence of physical and logical security (August
2006), Imprivata(http://www. imprivata.com)

Martin, R.: In Designing Object-Oriented C+-+ Applications Using the Booch
Method (Chapter 6). Prentice-Hall, Englewood Cliffs (1995)

Hengartner, U., Steenkiste, P.: Implementing access control to people location in-
formation. In: Procs. of the ACM Symposium on Access Control Models and Tech-
nologies (SACMAT’04), ACM Press, New York (2004)


http://www.bacnet.org/bibliography/bac-10-06.pdf
http://hillside.net/plop/plop2001/accepted_submissions/accepted-papers.html
http://hillside.net/plop/plop2001/accepted_submissions/accepted-papers.html
http://hillside.net/europlop
http://www.imprivata.com

274

17.

18.

19.

20.

21.

22.

23.

E.B. Fernandez et al.

Boyer, J., Tan, K., Gunter, C.: Privacy-sensitive location information systems in
smart buildings. In: Procs. of the 3rd Int. Conf. on Security for Pervasive Comput-
ing, York, England (April 2006)

Atluri, V., Shin, H.: Efficient enforcement of security policies based on tracking
of mobile users. In: 20th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (July 2006)

Corradi, A., Montanari, R., Tibaldi, D.: Context-based access control manage-
ment in ubiquitous environments. In: Proceedings of the Third IEEE International
Symposium on Network Computing and Applications (NCA’04), IEEE Computer
Society Press, Boston, MA (August 30 - September 01, 2004)

Huldenbosch, R., Salden, A., Bargh, M.S., Ebben, P.W.G., Reitsma, J.: Context-
sensitive access control. In: Procs. of SACMAT (2005) 111-119 (2005)

Warmer, J., Kleppe, A.: The Object Constraint Language, 2nd edn. Addison-
Wesley, Reading (2003)

Ray, 1., Li, N., Kim, D., France, R.: Using parameterized UML to specify and
compose access control models. In: Proceedings of the Sixth IFIP WG 11.5 Con-
ference on Integrity and Control in Information Systems. Lausanne, Switzerland
(November 2003)

Delessy, N., Fernandez, E.B., Larrondo-Petrie, M.: A pattern language for identity
management. In: Delessy, N. (ed.) Accepted for the 2nd TARIA Int. Multiconference
on Computing in the Global Information Technology (ICCGI 2007), Guadeloupe,
French Caribbean (March 4-9, 2007)



	Security Patterns for Physical Access ControlSystems
	Introduction
	Background
	Patterns
	Alarm Monitoring
	Relays
	Access Control to Physical Structures

	Related Work and Discussion
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




