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Abstract. In this paper we present the design of a scalable and secure
cryptographic service that can be adopted to support large-scale net-
worked systems, which may require strong authentication from a large
population of users. Since the users may not be able to adequately protect
their cryptographic credentials, our service leverages some better pro-
tected servers to help fulfill such authentication needs. Compared with
previous proposals, our service has the following features: (1) it incorpo-
rates a 3-factor authentication mechanism, which facilitates compromise
detection; (2) it supports immediate revocation of a cryptographic func-
tionality in question; (3) the damage due to the compromise of a server
is contained; (4) it is scalable and highly available.

Keywords: cryptographic service, scalability, security, compromise de-
tection, compromise confinement, availability.

1 Introduction

Large-scale networked systems, such as peer-to-peer and grid systems, must be
adequately protected; otherwise they may be abused or exploited to do more
harm than good — Distributed Denial-of-Service (DDoS) attacks are just an
example. An important aspect of secure large-scale networked systems is to en-
force strong authentication, which would require a large population of users to
utilize some cryptosystems such as digital signatures. Due to the very nature
of cryptography, assurance offered by such authentications perhaps cannot be
any better than security (or secrecy) of the corresponding cryptographic keys or
functionalities. This is because compromise of a cryptographic key would allow
the adversary to perfectly impersonate the victim user. The threat is amplified
by the fact that average users often do not have the expertise or skill to secure
their own computers, which may be justified by the fact that there have been
many botnets that consist of many compromised computers.

Our contributions. We present the design of a scalable and secure crypto-
graphic service that can be adopted to support large-scale networked systems,
which require strong authentication from a large population of users. Specifi-
cally, our approach leverages some better protected servers to help protect the
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users’ private signing keys and functionalities. Compared with a standard two-
party threshold digital signature system (i.e., a user’s private key is split into
two shares such as one is stored on the user’s machine and the other is stored on
a remote server) and previous proposals for a similar purpose, our service has
the following features:

* Tt incorporates a 3-factor authentication mechanism so that a signature may
be produced in a certain way when a request: (1) presents a valid password
(i.e., what you know); (2) is initiated from a party having access to the
user’s soft-token (i.e., what you have); (3) presents a valid fresh one-time
secret (i.e., whether you always have access to the soft-token). As a result,
the resulting service provides a compromise detection capability that may
be of independent value.

It supports a convenient key disabling that can be done using a standard
username/password authentication. This is useful, for instance, when a user’s
device is stolen on a business trip because the user can disable its private
key without having access to a backup of the content on its stolen device.
The damage due to the compromise of a server is confined to a subset of
the users subscribing to its service. Furthermore, the users associated with
a compromised server do not have to re-initialize their private keys, unless
they suspect that their own machines might have been compromised.

It is scalable due to its “decentralized” nature (i.e., each server may serve a
subset of users). It is highly available since a single server is enough to help
a user fulfill its task. While we do not explore the details of utilizing the
state machine approach [28] to securely replicate a server, it should not be
difficult to extend our solution to fulfill such replications. In particular, in
a related prior scheme we proposed [29], threshold cryptosystems have been
adopted to fulfill distributed password-based authentication and signing.

Related prior work. The simplest approach to securing cryptographic keys is
to let each user utilize some tamper-resistant hardware device. The industry has
started to provide machines equipped with Trusted Platform Module (TPM) as
specified by the Trusted Computing Group (www.trustedcomputinggroup.com).
However, there are many legacy computers that need be better protected, mean-
ing that alternate solutions are still useful.

One alternate approach to protecting cryptographic keys is to encrypt a key
with a password; this is indeed widely deployed in real-life systems. However, the
resulting security assurance is quite weak because, once a computer is compro-
mised, the adversary can obtain the cryptographic keys without even conducting
an off-line dictionary attack. Another approach is to let a user store its cryp-
tographic key in a remote server, and download the key from the server after
a password-based authentication [24]. This approach still allows the adversary,
who can compromise a user’s computer, to obtain the private key in question.
Moveover, the remote server has to be trusted.

Our scheme follows the paradigm of “cryptography as a service” [13]. (This
paradigm is different from the server-aided protocols [232], which were
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motivated to utilize a computationally powerful server to help a computationally
poor device conduct expensive cryptographic computations.) In particular, we
adopt as a starting point the proposal due to MacKenzie and Reiter [22], which
follows [TOUT6]. The basic idea common to [22ITOIT6] as well as a similar result
[9) is to split a private key into two shares such that one share (often called
“soft-token”) is stored on the user’s device, and the other is stored on a remote
server. These schemes have no single point of failure.

Finally, we should mention that there are some interesting cryptographic con-
structs that aim to protect private keys. Notable results include forward-security
signatures [TI3T9], key-insulated signatures [I5] and intrusion-resilient signatures
[20]. The protections provided by these mechanisms are orthogonal to the pro-
tection provided by our approach. Nevertheless, they may be integrated together
for a better protection.

Outline. In Section [2 we briefly review some necessary cryptographic prelimi-
naries. In Section [3] we introduce the soft-token system model. In Section Hl we
present a building block, which is utilized in Section B to construct the full-
fledged service scheme. We conclude the paper in Section[G Due to space limita-
tion, the proofs of some theorems are deferred to the full version of the present

paper [30].

2 Cryptographic Preliminaries

Let k be the primary security parameter (e.g., k = 160), and X be a secondary
security parameter for public keys (e.g., A = 1024 means we use 1024-bit RSA
moduli). A function € : N — R™ is negligible if for any ¢ there exists k. such that
Vk > k. we have e(k) < 1/k°. Let H (with an additional subscript as needed)
be a hash function that, unless otherwise stated, is assumed to behave like a
random oracle [5] with range {0, 1}*.

Pseudorandom functions. A pseudorandom function (PRF) family {f,} pa-
rameterized by a secret value v has the following property [17]: It is computa-
tionally infeasible to distinguish f,, where v is uniformly chosen at random, from
a random function (with the same domain and range).

Message authentication codes. We assume the standard property of message
authentication codes (MACs): If the key a is unknown, then given multiple pairs
(ms, M AC,(m;)) where the m;’s may be adaptively chosen, it is computationally
infeasible to compute any pair (m, M AC,(m)) where m # m,;.

Public key cryptosystems. An public key cryptosystem £ is a triple (GEN,
E, D) of polynomial-time algorithms, where the first two are probabilistic. GEN,
taking as input 1%, outputs a key pair (pk, sk). E, taking as input a public key
pk and a message m, outputs an encryption ¢ for m. D, taking as input a
ciphertext ¢ and a private key sk, returns a message m when c is valid and
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L otherwise. We assume an encryption scheme that is secure against adaptive
chosen-ciphertext attack [26]. Basically, an attacker A is given pk and allowed
to query the decryption oracle. At some point A generates two equal length
strings Xy and X; and sends them to a test oracle, which chooses b €r {0,1}
and returns Y = Epi(X;). Then A continues querying the decryption oracle,
with the restriction that it cannot query the decryption of Y. Finally, A output
b'. We say A succeeds if b = b'. Practical schemes are available [6/12].

Digital signature schemes. A digital signature scheme Sisatriple (GEN, S, V)
of polynomial-time algorithms, where the first two are probabilistic. GEN, tak-
ing as input 1%, outputs a key pair (pk, sk). S, taking as input a message m and
a private key sk, outputs a signature o for m. V', taking as input a message m, a
public key pk, and a candidate signature o, returns b = 1 if ¢ is a valid signature
for m and b = 0 otherwise. We assume a signature scheme that is existentially
unforgeable under adaptive chose-message attack [I8]: a forger is given pk; it is
allowed to query a signature oracle on messages of its choice; it succeeds if it
outputs a valid signature for m that is not one of the messages signed before.

3 Model and Goals

System model. There are a set of users and a set of semi-trusted servers. As
in a standard Public Key Infrastructure (PKI), a server has a pair of public
and private keys, and so does a user. All the users and servers are probabilistic
polynomial-time algorithms. A user splits its private key into two shares after
a cryptographic transformation such that one share is stored on the user side
(perhaps being encrypted with a password) and the other is stored on a remote
server. A soft-token is a data structure a user stores. A soft-token (containing a
user-side key share) may be stateful, so we may denote by token(® the soft-token
after the 7*" transaction in which it is utilized.

A server has two interfaces: one for producing signatures and the other for
disabling private keys. The resulting signatures can be verified using the public
keys of the users, and thus can be used for authenticating the users in higher-
layer applications. In order for a user to produce a signature, the user conducts
an interaction with a server, which collaborates with the claimed user only when
the user successfully authenticates itself to the server (not to the higher-layer
application). In order for a user to disable its private key, the user needs to
succeed in a certain authentication operation. A server maintains a database
for recording relevant information that would allow the service provider to take
actions (e.g., gathering payment when the service is payment-based).

Adversary. We consider an adversary who may have control over the network.
The adversary may compromise certain resources including a user’s soft-token,
a user’s password, and a server’s private key. The adversary may break into a
user’s device when the client software is active; this explains why we consider
an adversary that is strictly more powerful than the adversary considered in
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previous soft-token systems. We assume that the integrity of the server (e.g.,
the database) is guaranteed, even if an adversary can compromise the server’s
private key. This also models the situation where a semi-trusted server may be
honest in performing the protocol, but curious about the users’ private keys.

Goals. Recall that k is the primary security parameter. A cryptographic service
should have the following properties:

* Abuse prevention. Consider a fixed pair of (user, server), where the user
possesses a soft-token token and a password pwd. Denote by ADV(R) the
type of adversary who succeeds in capturing the resource elements of R C
{token, server,pwd}. When we say that an adversary ADY has access to
token we mean that token is always available to ADV; when we say that
ADYV has access to 'token® we mean that ADY does not have access to
token™ but perhaps has access to token'?) for 0 < j < i. Specifically,

1. An adversary of type ADV{server, pwd} can only forge signatures that
are valid with respect to the user’s public key with a negligible proba-
bility in k.

2. An adversary of type ADV{token, server} can forge signatures that are
valid with respect to the user’s public key only when the adversary suc-
ceeds in off-line dictionary guessing the user’s password.

3. An adversary of type ADV{token} can forge signatures that are valid
with respect to the user’s public key with probability negligibly more
than ¢/|D| after g invocations of the server, where D is the dictionary
from which the user’s password is randomly drawn.

4. An adversary of type ADV{token, pwd} can output — with only a prob-
ability negligible in £ — signatures that are valid with respect to the
user’s public key after the user’s private key is disabled.

5. An adversary of type ADV{token™, pwd} can output — with only a
probability negligible in k& — signatures that are valid with respect to
the user’s public key after the user finishes the i*" transaction and before
the user initiates the (i 4+ 1)*" transaction.

Compromise detection. The system itself can detect the compromise that an
adversary has succeeded in impersonating the user for producing signatures.
Immediate revocation. A user can request a server to disable its private key
by executing a standard username/password authentication.

Compromise confinement. The impact due to the compromise of a server is
contained to a subset of the users subscribing to its service. Moreover, these
users do not have to re-initialize their private keys.

Scalability. The system can serve a large population of users.

High availability. The system is highly available, even if some servers are
under DDoS attacks.

4 Building Block: A Single Server Soft-Token Scheme

In this section we present a building block, which is extended from a scheme pre-
sented in [22] and will be incorporated into our full-fledged scheme in Section [E
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Suppose the server’s public data (e.g., public key) are available to the users, and
consider a fixed pair of (user, server). The user runs the initialization process
to generate a soft-token token(9) using its public and secret data as well as the
server’s public data. In the i*" transaction (i = 1,2, ---), the user, who has access
to token("~1) that is generated in the (i — 1)** transaction or in the initialization
process when ¢ = 1, signs a message by interacting with the server. The server
collaborates with the claimed user only when the user presents the password
and the state information 1 chosen by the server in the last transaction. At the
end of the i*" transaction, the user obtains the signature, generates a new token
token'? using the cryptographic state information ¥ chosen by the server, and
erases token""1). The server tracks the changes of the ¥’s in its database.

Denote a user’s public key by pkyser = (e, N) and private key by Skyser =
(d,N,¢(N)), where ed = 1 mod ¢(N), N is the product of two large prime
numbers, and ¢ is the Euler totient function. In the standard encode-then-sign
paradigm, the signature sig on message m is S(q n ¢(n)) (M) = (7, 5), where r €r
{0, 1}!emrad 5 = (encode(m,r))? mod N for some encoding function encode. A
signature (r,s) can be verified by checking if s¢ = encode(m,r) mod N. The
function encode could be either deterministic (e.g., lenpeq = 0 in the case of
hash-and-sign [I4]) or probabilistic (e.g., PSS [7]), these types of signatures
were proven secure against adaptive chosen-message attacks in the random or-
acle model. The basic idea for splitting the private key d is to let d; + dy =
d mod ¢(N). The scheme has the following components.

Token initialization. Suppose H; : {0,1}* — {0,1}* and f : {0,1}* —
{0,1}*F*. The inputs are the server’s public encryption key pkserver, the user’s
password pwd, the user’s public key pkyser = (e, N) and private key skyser =
(d, N, ¢(N)). The initialization proceeds as follows.

uid = wusername
v €r {0,1}"
a cr {0,1}F

b = Hi(pwd)

d1 = f(v,pwd)

d = d—dy mod (N)

T = Epkeerper ({a,b,uid, d2, N))
ct =0

st €r {0,1}"
token = (ct,st,v,a,T, e, N, pkserver)

The user chooses its own wid, a unique and memorizable string such as its
email address. The soft-token is token = (ct, st,v,a, T, e, N, pkserver), where ct
is an incremental counter indicating the serial number of a transaction (which
is used for simplifying the description), st is the state information that will be
chosen by the server (for the time being of ¢t = 0, it is just a placeholder). All
the other values, including b, d, di, da, ¢(N), and pwd, are erased.
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Server database. The server maintains a database of "= (7, uid, count, ¥, m,r),
where wid is obtained after receiving the first service request, and count is
an incremental counter (with initialized value zero). Each record of the data-
base represents a transaction corresponding to 7 = Epy..,....({a, b, uid, da, N)).
The database has two operations: append(7, uid, count,d, m,r) for appending a
record (7, uid, count, ¥, m,r) to the database, and last(r, uid, count,d, m,r) for
returning either the record (7, wid, count, ¥, m,r) corresponding to the last trans-
action corresponding to 7 or NULL (meaning that the token corresponding to 7
has never been used before).

Signing protocol. The client software prompts the user to enter the pass-
word pwd, to get the to-be-signed message m as well as the soft-token token =
(ct, st,v,a,7,e, N, pkserver). The protocol is depicted in Fig. [l

USER SERVER
token = (ct, st,v,a,7,e, N, pkserver)
B = Hi(pwd), pr €r {0,1}"
P2 €R {07 1})\7 P3 €R {07 1}k
r €r {0, l}lenwd
Y= EpkseT'ue'r (<m7 Ty 67 st, p1, p2, p3>)
0= MAC({v,T))

(v, 7,9)

abort IF 7 has been disabled
(a,b,uid,d2, N) = Dsp,eppe, (T)
abort IF MAC,((y,7)) #6

T = last(r, uid, count, ¥’ ,m’,r")
<m, T, 67 st, p1, p2, p3> = DSkserver (7)
abort IF B # b

abort IF 7 # NULL A st # ¢’
o = (encode(m, 7))?? mod N
Yer{0,1}F, 0=9dp
n=0® p2, ¢ =MACy({(0,n))
count = count + 1

append(7, uid, count, ¥, m,r)

abort IF M AC,,((0,n)) # ¢

and o =1 ® p2 and d1 = f(v, pwd)
s = o - (encode(m, r))™ mod N
abort IF s® # encode(m,r)
st=0@p1,ct=ct+1
token' = (ct, st,v,a,7,e, N, pkserver)
erase (3, di, p1, p2, p3, 0, n, o, ¥, token

Fig. 1. Building block: a single-server scheme with stateful soft-tokens
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Let us briefly explain the functions of the protocol elements:

* [ is a value showing that the user knows the password pwd.

* p1 and py are two one-time pads chosen by the user, and will be used by
the server to encrypt the state information ¥ and the partial signature o
(produced using the partial private key d2), respectively.

ps is a one-time message authentication key that allows the user to detect
compromise of token because the adversary could tamper with 6 while keep-
ing 7 intact.

* 1 is a lenyeq-bit random string used in the encoding function.

* 4 is the encryption of m, r, 3, st, p1, p2, and ps.

6 and ¢ are message authentication codes computed using a and ps, re-
spectively. (Note that both § and ¢ are not for preventing abuses, but for
detecting attacks.)

Key disabling protocol. In order to disable its private key, the user authenti-
cates itself to the server by conducting a standard username/password authenti-
cation protocol corresponding to uid/pwd. The server will query its database to
get b = Hy(pwd) from (a,b,uid,ds, NY = Dy, .. (T), where 7 corresponds to
uid. Any secure password protocol (e.g., [SIATTI2T]) can be used for this purpose.

4.1 Discussions

On 3-factor authentication. Previous key-split schemes (such as [22]) em-
ploy a 2-factor authentication mechanism based on a password and a soft-token.
Whereas, we employ a 3-factor authentication mechanism so that a signature is
produced when a request (i) presents a valid password (i.e., what you know), (ii)
is initiated from a party having access to the user’s soft-token (i.e., what you
have), and (iii) presents a valid fresh one-time secret (i.e., whether you always
have access to the soft-token). The last factor helps achieve the newly introduced
compromise detection and the enhanced abuse prevention (see Section 2.

On atomicity of the transactions. We assumed that atomicity of the trans-
actions is ensured. This may be problematic when, for example, the servers are
under a DDoS attack. This issue is addressed via another layer of assurance for
synchronization in Section

On light-weight key disabling. Allowing a user to disable its private key via a
standard username/password authentication has the advantage that a user does
not have to resort to its soft-token, which may not be available (e.g., when the
user’s device is stolen). Although this convenience seemingly gives an adversary
the chance to impose denial-of-service attack (i.e., the adversary can request the
server to disable the user’s private key), we argue that there are no sever conse-
quences. First, suppose an adversary does not know a user’s token or password.
Then, the adversary can conduct an on-line dictionary attack against the user’s
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password. This is sever if the on-line dictionary attack can be launched auto-
matically by a software program. Fortunately, there exist some effective methods
(e.g., [25]) to force the adversary to conduct a manual on-line dictionary attack,
which may be unlikely. Second, suppose an adversary knows a user’s token but
not password. Then, it is seemingly more attractive for the adversary to manage
to get the user’s password so that it can produce signatures (rather than disable
the user’s private key). Moreover, the user might also have to disable its private
key once the user realized that its soft-token has been compromised. Third, sup-
pose an adversary knows a user’s password but not token. Then, the adversary
can always disable the user’s private key. This may not be seen as a drawback
because the user has to disable its private key once the user realized that its
password has been compromised. Fourth, suppose an adversary knows a user’s
token and password. Then, the adversary is already able to produce signatures
by contacting the server, which is perhaps more attractive than to conduct a
denial-of-service attack by disabling the victim user’s private key.

4.2 Analysis

Our scheme does not incur any significant extra complexity, when compared
with the starting-point scheme in [22]. Specifically, a soft-token keeps some state
information (e.g., 160 bits), and a server keeps some state information linear to
the number of users (which can be easily mitigated by letting the server use a
pseudorandom function). Moreover, no extra exponentiations are imposed on a
user or a server. Below we analyze the security properties.

Proposition 1. The single server scheme implements some of the requirements
specified in Section [3 (the others will be fulfilled in the full-fledged scheme via
another layer of protection).

* Abuse prevention. This is analyzed in Theorems [IH3.

* Compromise detection. Suppose atomicity of the transactions and integrity
of the server are guaranteed. Lack of synchronization means that either an
adversary had succeeded in itmpersonating the user, or the token had been
tampered with.

* Immediate revocation. This is true since the request for disabling a private
key is authenticated by pwd, whereas uid is also remembered by the user.

In order to prove the abuse prevention, we introduce the following formal security
model. Denote D-RSA[E, D] the real-world single-server signing system based on
an encryption scheme & for the server and dictionary ID. An adversary is given
(e, N) where ((e, N), (d, N,¢(N))) «— GENgsa(1*), the public data generated
in the initialization procedure, and certain secret data of the user and/or server
(depending on the type of the adversary). The goal of the adversary is to forge
RSA signatures with respect to (e, N). The adversary is allowed to have the
following types of oracle queries:

1. start(m) — This results in a user to initiate the protocol. The oracle may
execute according to the protocol, maintain state as appropriate (i.e., there
is an implicit notion of sessions), and return (v, 7, 96).
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2. serve(y, 7,8) — This represents the receipt of a message ostensively from the
user. The oracle may execute according to the protocol to return (0,1, ¢).

3. finish(0,n, ¢) — This represents the receipt of a response ostensively from the
server. The oracle may execute according to the protocol to return a valid
signature.

An adversary of type ADV{server,pwd}, ADV{token,server}, or
ADV{token} succeeds in breaking the scheme if it can output a valid sig-
nature (r,s) on message m and there was no start(m) query. An adversary
of type ADV{token,pwd} succeeds in breaking the scheme if it can output a
valid signature (r, s) on message m and there was no serve(vy, 7, 6) query, where
(m, %, %, %, %, %, %) = Dg._ (7). An adversary of type ADV{ token) pwd}
succeeds in breaking the scheme if it can output a valid signature (r,s) on
message m after the user finishes the i*" transaction and before the user ini-
tiates the (i + 1) transaction, and there was no serve(y, 7, 8) query such that
<m7 Ky ok kK K, *> = Dsksemer (’7)

Denote by gyser the number of start(-) queries to the user, gseryer the number
of serve(-,-,-) queries to the server. Let g, and gy be the number of queries to
the random oracles h and f, respectively. Let g, be the number of other oracle
queries not counted above. Let ¢ = (Quser, server, @h, 4f: ¢o). We also denote by
lg] = Quser + @server + qn + qf + o as the total number of oracle queries.

We say an adversary (g, €)-breaks D-RSA if it makes ¢ oracle queries (of the
respective types and to the respective oracles) and succeeds with probability at
least €. In the following, “~” means equality within negligible factors.

We say an attacker A (g, e)-breaks £ if the attacker makes ¢ queries to the
decryption oracle and 2 - Pr[A succeeds| — 1 > &, which implies Pr[A outputs
0]b = 0] — Pr[A outputs 0|b = 1] > . Note that if £ uses random oracles, the
oracles may be queried by the attacker along with the encryption oracle.

We say a forger (g, ¢e)-breaks a signature scheme if it makes ¢ queries and
succeeds with probability at least €. Note that if S uses random oracles, the
oracles may be queried by the forger along with the signature oracle.

Now we present the theorems for the abuse prevention property of the single-
server signing protocol. Theorem [l are extended from [22] and their proofs are
deferred to the full version of the present paper [30] (due to space limitation).

Theorem 1. Suppose {f,} is a pseudorandom function family. If an adversary
F of type ADV{server,pwd} can (q,e)-break D-RSA[E, D] system, then there
exists a forger F* able to (quser,€’)-break the underlying RSA signature scheme,
where e’ = €.

Theorem 2. Let Hy and f be random oracles. If F of type ADV{token, server}
can (q,€)-break D-RSA[E, D] system, there exists a forger F* able to (quser,€')-

break the underlying RSA signature scheme, where &’ ~¢ — IDI

Theorem 3. Suppose Hi has a negligible probability of collision over D. If an
adversary A of type ADV{token} can (q,e)-break the D-RSA[E, D] system for
€ = qSTﬁi” + ¢, then there exists either a forger F* able to (quser,c’)-break
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the underlying RSA signature scheme for & = g’, or an attacker A* able to

(2¢server,€”)-break & for " ~ 2(1+1§user).

Theorem 4. Suppose the underlying RSA signature scheme is deterministic. If
an adversary A of type ADV{token, pwd} can (q,<)-break the D-RSA[E, D] sys-
tem, then there exists either a forger F* able to (qserver,€')-break the underlying
RSA signature scheme for e = 3, or an attacker A* able to (2qscrver,€”) -break
E fore" ~ 2(1+qum).

Theorem 5. Suppose the underlying RSA signature scheme is deterministic. If
an adversary A of type ADV{ token™ pwd} can (q,e)-break the D-RSA[E, D]
system, then there exists either a forger F* able to (qserver,€’)-break the un-
derlying RSA signature scheme for & ~ _ ¢ | or an attacker A* able to

2quser
(2¢server,€”)-break € for & S
Proof. (sketch) Suppose there exists i, 1 < i < gyser, such that A outputs a valid
signature for a new message with probability at least e after the user finishes the
ith transaction and before the user initiates the (i + 1) transaction. Consider
an algorithm F** that is the same as F* in Theorem 4, except that:

* Let 7 be the encryption of 0-string of appropriate length, the first ¢ — 1 ’s
be the encryptions of normal messages, and the i*" v be the encryption of
0-string of appropriate length.

* A token is sent to A only when it issues a get() query, which is not allowed
for the i*" token generated by the user in the i*" transaction. Also, A can
maintain the consistency between the user side and the server side by issuing
a coordinate(token) query.

Given the simulation generated by F**, if Pr[A succeeds] > 3, then it is clear
that there exists F* able to (¢server, €’ )-break the underlying RSA signature
scheme, where &' ~ ; otherwise, there exists A* able to (2¢server,€”)-
break &, where &”

Consider an algorlthm .A** that is given a public key pk’. Now, A** ¢
perfectly simulate the real-world system as follows. It generates the pair of pubhc
and private keys on behalf of the user. It need have access to the decryption
oracle, but at most 2¢sever times. Note that A is given a newly generated token
only when it issues a get() query, and that no get() query is allowed after the user
finishes the #*" transaction and before the user initiates the (i + 1) transaction.
Therefore, A succeeds in forging with probability at least €.

Now comnsider the same simulation, except that 7 is the encryption of 0-string
of appropriate length, the first ¢ — 1 7’s are the encryptions of normal messages,
and the i*" + is the encryption of 0-string of appropriate length. This simulation
is equivalent to the simulation of 7**. Therefore, Pr[A succeeds] < 3.

A standard hybrid argument shows that A** can (2¢server, § )-break &€, which
means that there exists A* able to (2¢server, 4q;w )-break &. O
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5 Full-Fledged Scheme

Now we present the full-fledged scheme, which is built on top of the building-
block discussed in the previous section. The basic idea underlying the scheme
is the following. In order to achieve compromise confinement, we augment b =
Hy(pwd) to b = Hq(c, pwd), where ¢ is a cryptographic secret used to ensure that
b = Hi(c, pwd) itself does not leak any significant information of a password pwd.
A drawback of this approach is that a user cannot disable its private key using a
standard username/password authentication mechanism. Nevertheless, this can
be resolved by letting a user choose two passwords, one for generating signatures
and the other for disabling its key. Specifically, this can be done by further
augmenting 7 = Ep, ..., ((a, b, uid, d2, N)) to 7 = Epg, ..., ((a, b, 0%, uid, da, N))
such that b = Hy(c, pwd) and b* = Hy (), where password pwd is for generating
signatures, and password 7 is for disabling the key.

Special care is also taken to address atomicity and availability issues. Sup-
pose a server server; cannot finish a transaction within a certain time interval.
Then, it is reasonable to allow the user to contact another server. This flexibility
complicates the facilitation of transaction atomicity. We resolve this issue by
incorporating a simple “commit/rollback” mechanism. Moreover, a commit or
rollback request should be authenticated. This can be done by augmenting v =
Epkyerper (M1, B, 8t p1, p2, p3)) t0 v = Epp,,,., ((m,7, B8, st, p1, p2, p3, pa, ps5)),
where ps = Hs(p}) is used for committing a transaction and ps = Hs(pk) is
used for rollbacking a transaction. The scheme has the following components.

Token initialization. Suppose H; : {0,1}* — {0,1}*, Hy, H3 : {0,1}F —
{0,1}*, and f : {0,1}* — {0,1}** are appropriate hash and pseudorandom
functions, respectively. A user chooses two passwords — pwd for generating sig-
natures and 7 for disabling the private key, and a pair of public and private keys
(pkuser = (&, N); skyser = (d, N, ®(N))). A user chooses n servers as its service
providers, and each server has a public key pkserper,i, Where 1 < ¢ < n. The
initialization process proceeds as follows.

wid = username

vi €r{0,1}*,1<i<n

a; er{0,1}F, 1<i<n

ci er{0,1}F, 1<i<n

b; = Hi(c,pwd),1<i<n

b* = Hs(m)

di, = f(vi,pwd),1<i<n

dz,z‘ = d—dlyi mod (ZS(N),].SZSTL

Ti = Epkseme,r.i«aiv bs, b", uid, da,i, N>)7 1<i<n
ct; = 0,1<i<n

sti  €r{0,1}*,1<i<n
token; = (cts, sti, vi, i, Ciy Tiy €, N, Dkserveryi), 1 <i<n

The user keeps n soft-tokens on its device and erases all the other values.

Server databases. Each server, server; for 1 < ¢ < n, maintains a database
of 1; = (7,uid, count,¥, m,r), where uid is obtained after receiving the first
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service request, count is an incremental counter (with initialized value zero)
maintained by the server. Each record of the database represents a transac-
tion with respect to 7 = Epg,,....,. ((a, b, 0%, uid, d2, N')), There are two types of
operations regarding the database. First, append(7, uid, count, ¥, m,r) appends
(7, uid, count, ¥, m,r) into the database. Second, last(r,uid, count, ¥, m,r) re-
turns either (7, wuid, count, ¥, m,r) corresponding to the last transaction and 7,
or NULL (meaning that the token corresponding to 7 has never been used before).

Signing protocol. The protocol is depicted in Figure 2l The user first sends
a request to a (randomly chosen) server. If the transaction can not be finished
within certain time, the user contacts another server. Note that such a switching
process can be made transparent to the user.

USER SERVER,, ..., SERVER,

token; = (ctj;, st;,vj,a;,7j, €, N, pkserver,j), 1 < j<mn
trial = ¢
REPEAT if a transaction cannot be finished within time A
choose ¢ € {1,2,--- ,n} — trial according to a policy (e.g., random)
trial = trial U {i}
user provides token; and v = Epk,,,.c,..; (M, 70, Bi, Stiy p1,i, P2,i5 P3,i5 Pa,is P5,0))
The server executes as follows:
IF st; matches the last “committed” transaction, run the single server protocol
IF st; matches the last “pending” transaction,
change its status as “committed” and execute as specified;
ELSE reject the request and inform “user compromised.”

UNTIL there is a successful transaction using token;
a=MAC,, ;(“commit”, 7;, p} ;)
token; is updated

(“commit”, 1y, p1 ;, )

jth server commits the transaction
trial = trial — {j}
FOR each i € trial
a=MAC,, ,(“rollback”, 1;, p5 ;)

(“rollback” , i, ps i, )

i*" server rollbacks the transaction

Fig. 2. The full-fledged scheme

Key disabling protocol. In order to disable its private key, the user authen-
ticates itself to each of the n servers by proving that it knows the password 7
corresponding to uid. This process is the same as in the underlying single server
protocol, and can be made automatic via an appropriate software design (for
ease of deployment).
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5.1 Analysis and Discussion

Since transaction atomicity plays an important role in our system, we must show
that it has no significant security consequence if atomicity is violated.

Proposition 2. Suppose there is no system crash resulting in the loss of sys-
tem state information. Suppose a server keeps a database of state information
(1, wid, count, ¥, m,r). Then there is no denial-of-service attack because of an
out-of-synchronization between a user and a server.

Proof. Recall that a server classifies transactions into two categories: “commit-
ted” and “pending”. Note that a successfully rollbacked transaction is treated as
a “committed” one, but corresponding to the last successfully committed trans-
action. This is so because that a rollbacked transaction can be viewed as one
where no actions have been taken whatsoever. So, when a user sends a request
with certain state information 1, there are three cases.

* 19 matches the state information corresponding to a “committed” transaction
T. There are further two cases.

1. 7 is the last “committed” transaction. The This is the normal case and
the protocol proceeds as specified.

2. T is not the last “committed” transaction. The server simply rejects this
request. In this case, the server could inform the user, perhaps via an
out-of-band channel, that the user side might have been compromised.
This is so because in our design a user updates its state information
before sending a commitment request.

* 19 matches the state information corresponding to a “pending” transaction
T. There are further two cases.

1. 7 is the last “pending” transaction. This means that the server did
not commit the transaction yet. Then the server can simply accept the
request and change the “pending” transaction into a “committed” one.

2. 7T is not the last “committed” transaction. This is impossible, because
our design ensures that whenever a server accepts a request (and sends
new state information to a user), it always treat the last transaction as
committed.

* 1) matches no state information in the server database at all. The server
simply rejects the request. In this case, the server could inform the user,
perhaps via an out-of-band channel, that the user side might have been
compromised. This is so because in our design we let a server choose the
state information.

]

The above proposition implies that we can treat all transactions as atomic. Now
we are ready to look at the properties of the full-fledged scheme. We claim
that the full-fledged scheme implements all of the goals specified in Section
Informally, we observe the following:

* Abuse prevention. This can be formally analyzed by extending the theorems
in the underlying single server scheme.



158 S. Xu and R. Sandhu

* Compromise detection. Suppose atomicity of the transactions and integrity of
the server are guaranteed. Lack of synchronization means either an adversary
had successfully impersonated the user, or the token had been tampered
with. In either case, the user needs to disable its private key.
Immediate revocation. This is true since the request for disabling a private
key is authenticated by 7w, whereas uid is also remembered by the user.
Compromise confinement. Once it is known that a server has been compro-
mised, only the users who suspects that their tokens have been compromised
need to re-initialize their keys, whereas the others just need to erase their
tokens corresponding to the compromised server (i.e., no need to re-initialize
their private keys). We notice that when a user knows that its password for
disabling its private key, namely 7, may have been compromised (e.g., due
to the compromise of a server), the user can, if desired, execute an appro-
priate password-change protocol (e.g., the one associated with the adopted
password authentication scheme) to update 7 to some 7’. Such a process
would be much more light-weight than a process for updating private keys.
Note, however, that the password update process is not necessary from the
perspective of the security of the user’s signature scheme.
Scalability. The system is scalable because the servers are decentralized,
namely that the servers are operated by possibly many service providers.
* High availability. The system is highly available since a single server is suffi-
cient for the users to generate signatures.

6 Conclusion and Future Work

We presented a scalable and secure cryptographic service, which has the following
features: (1) it incorporates a 3-factor authentication mechanism; (2) it supports
immediate revocation of a cryptographic key or functionality in question; (3) the
damage due to the compromise of a server is contained; (4) it is scalable and
highly available.
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