The TASM Toolset: Specification, Simulation, and
Formal Verification of Real-Time Systems
(Tool Paper)

Martin Ouimet and Kristina Lundqvist

Embedded Systems Laboratory
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA
{mouimet, kristina}@mit.edu

Abstract. In this paper, we describe the features of the Timed Abstract State Ma-
chine toolset. The toolset implements the features of the Timed Abstract State Ma-
chine (TASM) language, a specification language for reactive real-time systems.
The TASM language enables the specification of functional and non-functional
properties using a unified language. The toolset incorporates features to create
specifications, simulate specifications, and verify formal properties of specifica-
tions. Properties that can be verified using the toolset include completeness, con-
sistency, worst-case execution time, and best-case execution time. The toolset is
being developed as part of an architecture-based framework for embedded real-
time system engineering. We describe how the features of the toolset were used
successfully to model and analyze case studies from the aerospace and automotive
communities.

1 Introduction

The Timed Abstract State Machine (TASM) specification language is a specification
language for reactive real-time systems. The TASM language aims to capture the three
key aspects of real-time system behavior, namely, functional behavior, timing behavior
and resource consumption. TASM is based on the theory of Abstract State Machines
(ASM), a method for system design that can be applied at various levels of abstrac-
tion [1]. The TASM language has formal semantics, which makes its meaning pre-
cise and enables executable specifications. The time semantics of the language revolve
around the concept of durative actions.

The TASM toolset implements the features of the TASM language through three
main components - an editor, an analyzer, and a simulator. The toolset can be used dur-
ing the early phases of development to understand behavior before the system is built, or
it can be used throughout the development of the system to guide implementation. The
type of analysis that can be performed with the toolset include verifying completeness
and consistency of the specification [2]] and verifying timing properties of the specifi-
cation such as the absence of deadlocks and Worst-Case Execution Time (WCET). The
philosophy of the toolset is to reuse the state of the art in analytical engines to perform
formal verification. The TASM toolset integrates the UPPAAL tool suite [3] to verify

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 126 2007.
(© Springer-Verlag Berlin Heidelberg 2007

The TASM Toolset: Specification, Simulation, and Formal Verification 127

timing properties of TASM specifications and uses the SAT4J SAT Solver [4] to verify
completeness and consistency of TASM specifications [5]]. The TASM toolset serves as
the basis of a specification framework for real-time system engineering [6]).

2 The Timed Abstract State Machine (TASM) Language

The TASM language is based on the theory of Abstract State Machines (ASM), a
method for high-level system design [[I]]. In the ASM formalism, behavior is specified
as the computation steps of an abstract machine and the effect of the computation steps
on the global state. The TASM language extends the ASM language by providing con-
structs and semantics for time and resource consumption. In the TASM language, time
is attached to the steps of the abstract machine in such a way that a finite amount of time
elapses before the effect of the computation step is reflected on the global state. The se-
mantics of durative actions are used to reflect the reality that actions are typically not
instantaneous. In a similar fashion, resource consumption is attached to durative steps
to denote the resources used by the machine to complete the computation step. Listing[1]
shows a sample rule of a TASM machine from the production cell system describing
the action of the robot picking up a block from the press. The execution of the rule takes
between 1 and 3 time units to complete and consumes exactly 2000 units of power.

Listing 1. TASM Rule Describing the Robot Picking up a Block from the Press

R1l: Pickup from Press
{
t
power :

[1, 31;
2000;

if armbpos = atpress and armb = empty and press_block = available then

press_block := notavailable;
press = empty;
armb = loaded;

The TASM language also contains facilities for hierarchical composition, parallel
composition, and synchronization channels. In the TASM language, completeness is
defined as a machine having a rule enabled for all classes of inputs [3l]. Consistency is
defined as a machine having no more than one rule enabled for all classes of inputs [3].
Furthermore, because actions are durative in TASM, execution time refers to the time
that it takes to reach a certain reachable state from a start state. Worst-Case Execution
Time (WCET) is the maximum amount of time that the machine will take to reach a
state. Conversely, Best-Case Execution Time (BCET) is the minimum amount of time
between any two states.

3 The TASM Toolset

The TASM toolset uses literate and graphical facilities to edit, simulate, and verify
TASM specifications. The toolset includes facilities for creating and editing TASM

128 M. Ouimet and K. Lundqvist

specifications, through the TASM Editor. The editor enables the specification of func-
tional and non-functional behavior, with standard facilities for syntax highlighting and
syntax checking. By definition, TASM specifications are executable. The execution se-
mantics of the TASM language have been defined in [[7]. The TASM Simulator enables
the graphical visualization of the dynamic behavior expressed in the specification in a
step-by-step fashion. Because time and resources can be specified using intervals, that
is, using a lower bound and an upper bound, the simulation can use different semantics
for time durations and resource consumption. For example, a given simulation can use
the worst-case time (upper bound) for all steps, to visualize the system behavior under
the longest running times. Other options include best-case time, average-case time, and
using a time randomly selected within the specified interval. The same semantics can
be selected for the resource consumption behavior.

The TASM Analyzer is the component of the TASM toolset that performs analysis of
specifications. The analyzer can be used to verify basic properties of TASM specifica-
tions such as consistency and completeness [2]. In the TASM language, completeness
ensures that for all classes of monitored variable values, a rule will be enabled. Consis-
tency ensures that for all classes of monitored variable values, one and only one rule is
enabled. In other words, verifying consistency means verifying that the rules of a given
machine are mutually exclusive. Both completeness and consistency are verified at the
machine specification level. The analysis of completeness and consistency is achieved
by translating machine rule guard expressions into a boolean formula in conjunctive
normal form [5]. The boolean formula can then be verified for satisfiability using a
SAT solver. The TASM toolset uses the SAT4J solver, an open source SAT solver [4]].
The completeness and consistency problem is formulated in such a way that an incom-
plete or inconsistent specification leads to a satisfiable boolean formula. Formulating
the problem this way ensures that the SAT solver can automatically generate a coun-
terexample if the specification is inconsistent or incomplete.

The TASM analyzer is also used to verify execution time of TASM specifications.
The execution time is verified by mapping TASM specifications to the timed automata
formalism of UPPAAL. The UPPAAL tool suite is used in conjunction with an approach
we call iterative bounded liveness, to verifty BCET and WCET. The approach uses the
bounded liveness temporal logic pattern in an iterative fashion to converge to an
upper bound and to a lower bound from an initial time obtained through reachability
analysis. For TASM specifications, execution times are bounded. Since the reachability
problem is decidable for timed automata, verifying the execution times of TASM spec-
ifications is guaranteed to converge. The toolset is available, free of charge, from the
TASM web site (http://esl.mit.edu/tasm).

4 Case Studies

The TASM language and toolset have been used to model and analyze three case studies.
The toolset has been used to model an Electronic Throttle Controller (ETC) and to ana-
lyze the completeness and consistency of the mode switching logic of the controller [8].
The production cell, partially illustrated in Listing [Tl was modeled and analyzed in the

The TASM Toolset: Specification, Simulation, and Formal Verification 129

toolset. The production cell was analyzed to measure the minimum amount of time for
the system to process 5 blocks. Using the model and BCET analysis, the optimal solu-
tion to process 5 blocks was automatically derived. The toolset was also used to model
the Timeliner System, a scripting environment currently in use on the international space
station. The model was used to analyze the WCET of one pass of the Timeliner system.
The Timeliner system shares processor usage with other tasks using a fixed timeslice
scenario. The execution time was analyzed to ensure that the assigned timeslice is ad-
equate but not overly estimated, to ensure optimal processor usage. Future case studies
will include a modular redundant avionics system, modeled and analyzed to understand
the end-to-end latency of the system.

5 Conclusion and Future Work

The toolset and language have been used successfully to model and analyze embedded
real-time systems as found in the avionics and automotive communities. Using spec-
ifications expressed in the TASM language, the toolset can verify properties of spec-
ifications such as completeness and consistency. The analysis is performed by trans-
lating the specification and using existing solvers. For completeness and consistency,
this is achieved through a translation to boolean formulas and using the SAT4J SAT
solver to automatically verify the property. Furthermore, the execution times of specifi-
cations can be analyzed using a translation of TASM specifications to UPPAAL’s timed
automata.

Future work on the toolset will investigate the use of theorem provers to verify prop-
erties of the models that cannot be handled because of state explosion problems. Fur-
thermore, the toolset will be used to generate test cases based on TASM specifications.
This will most likely be achieved by reusing the translation to boolean formulas and the
translation to timed automata and using established algorithms to to generate test cases.

References

1. Borger, E.: The Origins and the Development of the ASM Method for High Level System
Design and Analysis. Journal of Computer Science, vol. 8(5) (2001)

2. Heimdahl, M.P.E., Leveson, N.G.: Completeness and Consistency in Hierarchical State-Based
Requirements. Software Engineering 22(6), 363-377 (1996)

3. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In: Bernardo, M., Corradini,
F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS, vol. 3185, Springer,
Heidelberg (2004)

4. Leberre, D.: SAT4J: A Satisfiability Library for Java. presentation available from
http://satdj.objectweb.com

5. Ouimet, M., Lundqvist, K.: Automated Verification of Completeness and Consistency of Ab-
stract State Machine Specifications using a SAT Solver. In: Proceedings of the 3rd Interna-
tional Workshop on Model-Based Testing (MBT ’07), Satellite Workshop of ETAPS *07 (April
2007)

6. Ouimet, M., Lundqvist, K.: The Hi-Five Framework and the Timed Abstract State Machine
Language. In: Proceedings of the 27th IEEE Real-Time Systems Symposium - Work in
Progress Session, December 2006, IEEE Computer Society Press, Los Alamitos (2006)

http://sat4j.objectweb.com

130 M. Ouimet and K. Lundqvist

7. Ouimet, M., Lundqvist, K.: The Timed Abstract State Machine Language: An Executable
Specification Language for Reactive Real-Time Systems. In: Proceedings of the 15th Interna-
tional Conference on Real-Time and Network Systems (RTNS *07) (March (2007)

8. Ouimet, M., Berteau, G., Lundqvist, K.: Modeling an Electronic Throttle Controller using
the Timed Abstract State Machine Language and Toolset. In: Kiihne, T. (ed.) MoDELS 2006.
LNCS, vol. 4364, Springer, Heidelberg (2007)

	Introduction
	The Timed Abstract State Machine (TASM) Language
	The TASM Toolset
	Case Studies
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

