GART: The Gesture and Activity
Recognition Toolkit

Kent Lyons, Helene Brashear, Tracy Westeyn,
Jung Soo Kim, and Thad Starner

College of Computing and GVU Center
Georgia Institute of Technology
Atlanta, GA 30332-0280 USA
{kent ,brashear,turtle, jszzang, thad}@cc.gatech.edu

Abstract. The Gesture and Activity Recognition Toolit (GART) is
a user interface toolkit designed to enable the development of gesture-
based applications. GART provides an abstraction to machine learning
algorithms suitable for modeling and recognizing different types of
gestures. The toolkit also provides support for the data collection and
the training process. In this paper, we present GART and its machine
learning abstractions. Furthermore, we detail the components of the
toolkit and present two example gesture recognition applications.

Keywords: Gesture recognition, user interface toolkit.

1 Introduction

Gestures are a natural part of our everyday life. As we move about and interact
with the world we use body language and gestures to help us communicate, and
we perform gestures with physical artifacts around us. Using similar motions
to provide input to a computer is an interesting area for exploration. Gesture
systems allow a user to employ movements of her hand, arm or other parts of
her body to control computational objects.

While potentially a rich area for novel and natural interaction techniques,
building gesture recognition systems can be very difficult. In particular, a
programmer must be a good application developer, understand the issues
surrounding the design and implementation of user interface systems and be
knowledgeable about machine learning techniques. While there are high level
tools to support building user interface applications, there is relatively little
support for a programmer to build a gesture system. To create such an
application, a developer must build components to interact with sensors, provide
mechanisms to save and parse that data, build a system capable of interpreting
the sensor data as gestures, and finally interpret and utilize the results.

One of the most difficult challenges is turning the raw data into something
meaningful. For example, imagine a programmer who wants to add a small
gesture control system to his stylus—based application. How would he transform
the sequence of mouse events generated by the UI toolkit into gestures?

J. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2007, LNCS 4552, pp. 718-[727] 2007.
© Springer-Verlag Berlin Heidelberg 2007

GART: The Gesture and Activity Recognition Toolkit 719

Most likely, the programmer would use his domain knowledge to develop a
(complex) set of rules and heuristics to classify the stylus movement. As he
further developed the gesture system, this set of rules would likely become
increasing complex and unmanageable. A better solution would be to use some
machine learning techniques to classify the stylus gestures. Unfortunately doing
so requires extensive domain knowledge about machine learning algorithms.

In this paper we present the Gesture and Activity Recognition Toolkit
(GART), a user interface toolkit designed to abstract away many machine
learning details so an application programmer can build gesture recognition
based interfaces. Our goal is to allow the programmer access to powerful machine
learning techniques without requiring her to become an expert in machine
learning. In doing so we hope to bridge the gap between the state of the art
in machine learning and user interface development.

2 Related Work

Gestures are being used in a large variety of user interfaces. Gesture recognition
has been used for text input on many pen based systems. ParcTab’s Unistroke [§]
and Palm’s Graffiti are two early examples of gesture based text entry systems
for recognizing handwritten characters on PDAs. EdgeWrite is a more recent
gesture based text entry method that reduces the amount of dexterity needed
to create the gesture [I1]. In Shark2, Kristensson and Zhai explored adding
gesture recognition to soft keyboards [4]. The user enters text by drawing through
each key in the word on the soft keyboard and the system can recognize the
pattern formed by the trajectory of the stylus through each letter. Hinckley
et al. augmented a hand-held with several sensors to detect different types of
interaction with the device (recognizing when it is in position to take a voice
note, powering on when it is picked up, etc) [3]. Another use of gesture is as an
interaction technique for large wall or tabletop surfaces. Several systems utilize
hand (or finger) posture and gestures [BI2]. Grossman et al. also used multi-
finger gestures to interact with a 3D volumetric display [2].

From a high level, the basics of using a machine learning algorithm for gesture
recognition is rather straightforward. To create a machine learning model, one
needs to collect a set of data and provide descriptive labels for it. This process
is then repeated many times for each gesture and then repeated again for all of
the different gestures to be recognized. The data is used by a machine learning
algorithm and is modeled via the “training” process. To use the recognition
system in an application, data is again collected. It is then sent through the
machine learning algorithms using the models trained above and the label of the
model most closely matching the data is returned as the recognized value.

While conceptually this is a rather simple process, in practice it is unfortu-
nately much more difficult. For example, there are many details in implementing
most machine learning algorithms (such as dealing with limited precision), many
of which may not be covered in machine learning texts. A developer might use
one a machine learning software package created to encapsulate a variety of

720 K. Lyons et al.

algorithms such as Weka [I] or Matlab. An early predecessor to this work, the
Georgia Tech Gesture Toolkit (GT?k), was designed in a similar vein [9]. It
was designed around Cambridge University’s speech recognition toolkit (CU-
HTK) [13] to facilitate building gesture based applications. Unfortunately, GT?k
requires the programmer to have extensive knowledge about the underlying
machine learning mechanisms and leaves several tasks such as the collection
and management of the data to the programmer.

3 GART

The Gesture and Activity Recognition Toolkit (GART) is a user interface
toolkit. It is designed to provide a high level interface to the machine learning
process facilitating the building of gesture recognition applications. The toolkit
consists of an abstract interface to the machine learning algorithms (training
and recognition), several example sensors and a library for samples.

To build a gesture based application using GART, the programmer first selects
the sensor she will use to capture information about the gesture. We currently
support three basic sensors in our toolkit: a mouse (or pointing device), a set of
Bluetooth accelerometers, and a camera sensor. Once a sensor is selected, the
programmer builds an application that can be used to collect training data. This
program can be either a special mode in the final application being built, or an
application tailored just for data collection. Finally, the programmer instantiates
the base classes from the toolkit (encapsulating the machine learning algorithms,
and library) and sets up the callbacks between them for data collection or
recognition. The remainder of the programmer’s coding effort can then be
devoted to building the actual application of interest and using the gesture
recognition results as desired.

3.1 Toolkit Architecture

The toolkit is composed of three main components: Sensors, Library, and
Machine Learning. Sensors collect data from hardware and may provide post—
processing. The Library stores the data and provides a portable format for
sharing data sets. The Machine Learning component encapsulates the training
and recognition algorithms. Data is passed from the sensor and machine learning
components to other objects through callbacks. The flow of data through the
system for data collection involves the above three toolkit components and the
application (Figure [[l). A sensor object collects data from the physical sensors
and distributes it. The sensor will likely send raw data to the application for
visualization as streaming video, graphs, or for other displays. The sensor also
bundles a set of data with its labeling information into a sample. The sample
is sent to the library where it stored for later use. Finally, the machine learning
component can pull data from the library and use it to train the models for
recognition. Figure [l shows the data flow for a recognition application. As
before, the sensor can send raw data to the application for visualization or user

GART: The Gesture and Activity Recognition Toolkit 721

Sample Machine Learning

sample (Recognition)

Library
{storage)

Sample

Data Classification

Application Machine Learning Application
{visuaization) {Training)

Fig. 1. Data collection Fig. 2. Gesture recognition

feedback. The sensor also sends samples to the machine learning component for
recognition, and recognition results are sent to the application.

Sensors. Sensors are components that interface with the hardware, collect
data, and may provide parsing or post—processing of the data. Sensors are also
designed around an event—based architecture that allows them to notify any
listeners of available data. The sensor architecture allows for both synchronous
or asynchronous reading of sensors.

Our toolkit sensors support sending data to listeners in two formats: samples
and plain data. Samples are well defined sets of data that represents gestures. A
sample can also contain meta information such as gesture labels, a user name,
time stamps, notes, etc. Through a callback, sensors send samples to other toolkit
components for storage, training, or recognition. The toolkit has been designed
for extensibility particularly with respect to available sensors. Programmers
can generate new sensors by inheriting from the base sensor class. This class
provides event handling for interaction with the toolkit. The programmer can
then implement the sensor driver and any necessary post—processing. The toolkit
supports event based sensors as well as polled sensors and it streamlines data
passing through standard callbacks. Three sensors are provided with the toolkit:

— Mouse: The Mouse sensor provides an abstraction for using the mouse as the
input device for gestures The toolkit provides three implementations of the
mouse sensor. MouseDragDeltaSensor generates samples which are composed
of Az and Ay from the last mouse position. The MouseDragVectorSensor
generates sample which consists of the same information in polar coordinates
(0 and radius from the previous point). Finally, MouseMoveSensor is similar
to the vector drag sensor, but does not segment the data using mouse clicks.

— Camera: The Simplelmage sensor is a simple camera sensor which reads
input from a USB camera. The sensor provides post—processing that tracks
an object based on a color histogram. This sensor produces samples that are
composed of the (z,y) position of the object in the image over time.

722 K. Lyons et al.

— Accelerometers: Accelerometers are devices which measure static and
dynamic acceleration and can be used to detect motion. Our accelerometer
sensor interfaces with small wearable 3 axis Bluetooth accelerometers we
have created [10]. The accelerometer sensor provides synchronization of the
data from multiple sensors and generates a sample of Az, Ay, and Az
indicating changes in acceleration for each axis.

Library. The library component in the toolkit is responsible for storing and
organizing data. This component is not found in most machine learning libraries
but is a critical portion of a real application. The library is composed of a
collection of samples created by a data collection application. The machine
learning component then uses the library during training as the source of labeled
gestures. The library also provides methods to store samples in an XML file.

Machine Learning. The machine learning component provides the toolkit’s
abstraction for the machine learning algorithms and is used for modeling data
samples (training) and recognizing gesture samples. During training, it loads
samples from a given library, trains the models, and returns the results of
training. For recognition, the sensor sends samples to the machine learning object
which in turn sends a result to all of its listeners (the application). A result is
either the label of the classified gesture or any errors that might have occurred.
One of the main goals of the toolkit was to abstract away as many of the machine
learning aspects of gesture recognition as possible. We have also provided defaults
for much of the machine learning process. However, at the core of the system are
hidden Markov models (HMMs) which we currently use to model the gestures.
There has been much research supporting the use of HMMs to recognize time
series data such as speech, handwriting and gesture recognition. [7I6IT0].

The HMMs in GART are provided by CU-HTK [13]. Our HTK class wraps
this software which provides an extensive framework for training and using
hidden Markov models (HMMs), as well as a grammar based infrastructure.
GART provides the high level abstraction of our machine learning component
and integration into the rest of the toolkit. We also have an options object which
keeps track of the necessary machine learning configuration information such as
the list of gesture to be recognized, HMM topologies, and models generated by
the training process.

While the toolkit currently uses hidden Markov models for recognition, the ab-
straction of machine learning component allows for expansion. These expansions
could include other popular techniques such as neural networks, decision trees
or support vector machines. An excellent candidate for this expansion would be
the Weka machine learning library, which includes implementations for a variety
of different algorithms [I].

3.2 Code Samples

The basics of setting up a new application using the toolkit components described
above requires relatively little code. To set up a new gesture application the

GART: The Gesture and Activity Recognition Toolkit 723

programmer needs to create a set of options (using the defaults provided by
the toolkit) and a library object. The programmer then initializes the machine
learning component, HTK, with the options. Finally a new sensor is created.

Options myOpts=new GARTOptions();
Library myLib= myOpts.getLibrary();
HTK htk=new HTK(options);
Sensor=new MySensor() ;

For data collection, the programmer needs to connect the sensor to the library
so it can save the samples.

sensor.addSensorSamplelListener (library) ;

Finally for recognition, the programmer configures the sensor to send samples
to the HTK object for recognition. The recognition results are then sent back to
the application for use in the program.

sensor.addSensorSamplelListener (htk) ;
htk.addResultListener (myApplication);

The application may also want to listen to the sensor data to provide some user
feedback about the gesture as it is happening (such as a graph of the gesture).

sensor.addSensorDatalistener (myApplication);

Finally, the application may need to provide some configuration information
for the sensor on initialization and it may need to segment the data by calling
startSample() and stopSample() on the sensor.

GART was developed using the Java JDK 5.0 from Sun Microsystems. It has
been tested in the Linux, Mac OS X, and Windows environments. The core
GART system requires CU-HTK, free software that may be used to develop
applications, but not sold as part of a system.

4 Sample Applications

We have built several different gesture recognition applications using our toolkit.
Our first set of applications demonstrate the capabilities of each sensor in the
toolkit, and here we will discuss the WritingPad application. Virtual Hopscotch
is more fully featured and was built by a student in our lab that had no direct
experience with the development of GART.

The WritingPad is an application that uses our mouse sensor. It allows a user
to draw a gesture with a mouse (or stylus) and have it recognized by the system.
To create a gesture, the user depresses the mouse button, draws the intended
shape, and releases the mouse button. This simple system uses the toolkit to
recognize a few different handwritten characters and some basic shapes.

The application is composed of three objects. The first object is the main Writ-
ingPad application which initializes the program, instantiates the needed GART
objects (MouseDragVectorSensor, Library, Options and and HTK) and connects
these for training as described in Section This object also creates the
main application window and populates it with the UI components (Figure [3)).

724 K. Lyons et al.

At the top is an area for the programmer to control the toolkit parameters needed
to create new gestures. In a more fully featured application, this functionality
would either be in a separate program or hidden in a debug mode. On the
left is an area used to label new gestures. Next, there is a button to save
the library of samples and another button to train the model. Finally at the
top right, there is a toggle button that changes the application state between
data collection and recognition modes. The change in modes is accomplished
by calling a method in the main WritingPad object which alters the sensor
and result callbacks as described above (Section B2)). In recognition mode, this
object receives the results from the machine learning component and opens a
dialog box with the label of the recognized gesture (Figure [3)). A more realistic
application would act upon the gesture to perform some other action. Finally,
the majority of the application window is filled with a CoordinateArea, a custom
widget that displays on-screen user feedback. This application demonstrates the
basic components needed to use mouse gestures.

The Virtual Hopscotch application is a gesture based game inspired by the
traditional children’s game, Hopscotch. This game was developed over the course
of a weekend by a student in our lab who had no prior experience with the
toolkit. We gave him instructions to create a game using two accelerometers and
our applications that demonstrate the use of the different sensors. From there,
he designed and implemented the game.

The Virtual Hopscotch game consists of a scrolling screen with squares
displayed to indicate how to hop (Figure[]). The player wears our accelerometers
on her ankles and follows the game making different steps or jumps (right foot
hop, left foot hop, and jump with both feet). As the squares scrolls into the
central rectangle, the application starts sampling and the player performs her
hop gesture. If the gesture is recognized as correct, the square changes color as
it scrolls off the screen and the player wins points. Figure Fl show the game in
action. The blue square in the center is the indication that the player should
stomp on her left foot. The two squares just starting to show at the top of the
screen are the next move to be made, in this case jumping with both feet.

For Writing pad, the majority of application code (approximately 300 lines) is
devoted to the user interface. In contrast, only a few dozen lines are devoted to

[Writing Pad o' B

Gesture name: | [saveusrary | | TRAINSYsTEM Recognition Mode S]

Leve: JE [netoan many | [saveunany | [toawsisten | | Recagmiiontiode | | swp |

Tiesi 1715
Comect 0/ 15

Tbrary hias been saved. Models have been trained. JPaying.

Fig. 3. The WritingPad application show- Fig.4. The Virtual Hopscotch game
ing the recognition of the “right” gesture based on accelerometer sensors

GART: The Gesture and Activity Recognition Toolkit 725

gesture recognition. Similarly, Virtual Hopscotch has a total of 878 lines of code
and again, most of which are associated with the user interface. Additional code
was also created to manage the game infrastructure. Of the six classes created,
three are for maintaining game state. The other three have direct correspondence
to the WritingPad example. There is one class for the application proper, one
for the main window and one for the game visualization.

5 Discussion

Throughout the development of GART, we have attempted to provide a simple
interface to gesture recognition algorithms. We have distilled the complex process
of implementing machine learning algorithms down the essence of collecting
data, providing a method to train the models, and obtaining recognition results.
Another important feature of the toolkit is the components that support data
acquisition with the sensors, sample management in the library, and simple
callbacks to route the data. These are components required to build gesture
recognition applications often not provided by other systems. Together, these
components enable a programmer to focus on application development instead
of the gesture recognition system.

We have also designed the toolkit to be flexible and extensible. This aspect
is most visible in the sensors. We have created several sensors that all have
the same interface to an application and the rest of the toolkit. A developer
can swap mouse sensors (which provide different types of post—processing) by
changing only a few lines of code. Changing to a dramatically different type
of sensor requires minimal modifications. In building the Virtual Hopscotch
game, our developer started with a mouse sensor and used mouse based gestures
to understand the issues with data segmentation and to facilitate application
development. After creating the basics of the game, he then switched to the
accelerometer sensor. While we currently have only one implementation of a
machine learning back-end (the CU-HTK), our interface would remain the same
if we had different underlying algorithms.

While we have abstracted away many of the underlying machine learning
concepts, there are still some issues the developer needs to consider. Two such
issues are data segmentation and sensor selection. Data segmentation involves
denoting the start and stop of a gesture. This process can occur as an internal
function of the sensor or as a result of signals from the application. Application
signals can be from either user actions such as a button press or from the
application structure itself. The MouseDragSensor uses internal functions to
segment its data. The mouse pressed event starts the collection of a sample, and
the mouse released function completes the sample and sends it to its listeners.
Our camera sensor uses a signal generated by a button press in the application
to segment its data. In Virtual Hopscotch, the application uses timing events
corresponding to when the proper user interface elements are displayed on-screen
to segment the accelerometer data.

726 K. Lyons et al.

In addition to segmentation, a key component in designing a gesture-based
application is choosing the appropriate data to sense. This process includes
selecting a physical sensor that can sense the intended activities as well as
selecting the right post—processing to turn the raw data into samples. The data
from one sensor can be interpreted in many ways. Cameras, for example, have
a myriad of algorithms devoted to the classification of image content. For an
application that uses mouse gestures, change in location (Ax, Ay) is likely a
more appropriate feature vector than absolute position (z,y). By using relative
position, the same gesture can be composed in different locations.

We have designed GART to be extensible and much of our future work will be
expanding the toolkit in various ways. We are interested in building an example
“sensor fusion” module to provide infrastructure for easily combining multiple
sensors of different types (i.e. cameras and accelerometers). We would also like to
abstract out the data post—processing to allow greater code reuse between similar
sensors. As previously mentioned, the machine learning back end is designed
to be modular and to allow different algorithms to “plug in”. Finally, we are
interested in extending the toolkit to make use of continuous gesture recognition.
Right now each gesture must be segmented by the user, the application, or using
some knowledge about the sensor itself. While quite powerful, other applications
would be enabled by adding a continuous recognition capability.

6 Conclusions

Our goal in creating GART was to provide a toolkit to simplify the development
process involved in creating gesture-based applications. We have created a
high-level abstraction of the machine learning process whereby the application
developer selects a sensor and collects example gestures to use for training
models. To use the gestures in an application, the programmer connects the
same sensor to the recognition portion of our toolkit which in turn sends back
classified gestures. The machine learning algorithms, associated configuration
parameters and data management mechanisms are provided by the toolkit.

By using such a design, we allow a developer the ability to create gesture
recognition systems without first needing to become experts in machine learning
techniques. Furthermore, by encapsulating the gesture recognition, we reduce
the burden of managing all of the associated data and models to build a gesture
recognition system. Our intention is that GART will provide a platform to allow
further exploration of gesture recognition as an interaction technique.

Acknowledgments

We want to give special thanks to Nirmal Patel for building the Virtual
Hopscotch game. This material is supported, in part, by the Electronics and
Telecommunications Research Institute (ETRI).

GART: The Gesture and Activity Recognition Toolkit 727

References

10.

11.

12.

13.

. Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H., Trigg,

L.: Weka - a machine learning workbench for data mining. In: Maimon, O., Rokach,
L. (eds.): The Data Mining and Knowledge Discovery Handbook, pp. 1305-1314.
Springer, Heidelberg (2005)

. Grossman, T., Wigdor, D., Balakrishnan, R.: Multi-finger gestural interaction

with 3d volumetric displays. In: UIST ’04: Proceedings of the 17th annual ACM
symposium on User interface software and technology, pp. 61-70. ACM Press, New
York (2004)

. Hinckley, K., Pierce, J., Sinclair, M., Horvitz, E.: Sensing techniques for mobile

interaction. In: UIST ’00: Proceedings of the 13th annual ACM symposium on
User interface software and technology, pp. 91-100. ACM Press, New York (2000)

. Kristensson, P.O., Zhai, S.: Shark2: a large vocabulary shorthand writing system

for pen-based computers. In: UIST ’04: Proceedings of the 17th annual ACM
symposium on User interface software and technology, pp. 43-52. ACM Press,
New York (2004)

. Malik, S., Ranjan, A., Balakrishnan, R.: Interacting with large displays from a

distance with vision-tracked multi-finger gestural input. In: UIST ’05: Proceedings
of the 18th annual ACM symposium on User interface software and technology,
pp. 43-52. ACM Press, New York (2005)

. Starner, T., Weaver, J., Pentland, A.: Real-time American Sign Language

recognition using desk and wearable computer-based video. IEEE Transactions
Pattern Analysis and Machine Intelligence, 20(12) (December 1998)

. Vogler, C., Metaxas, D.: ASL recognition based on a coupling between HMMSs and

3D motion analysis. In: ICCV, Bombay (1998)

. Want, R., Schilit, B.N.,; Adams, N.I., Gold, R., Petersen, K., Goldberg, D., Ellis,

J.R., Weiser, M.: An overview of the PARCTAB ubiquitous computing experiment.
IEEE Personal Communications 2(6), 28-33 (1995)

. Westeyn, T., Brashear, H., Atrash, A., Starner, T..: Georgia tech gesture

toolkit: supporting experiments in gesture recognition. In: Proceedings of the 5th
International Conference on Multimodal Interfaces (ICMI 2003), pp. 85-92. ACM
(November 5-7, 2003)

Westeyn, T., Vadas, K., Bian, X., Starner, T., Abowd, G.D.: Recognizing mimicked
autistic self-stimulatory behaviors using hmms. In: ISWC 2005, pp. 164-169. IEEE
Computer Society, Washington (2005)

Wobbrock, J.O., Myers, B.A., Kembel, J.A.: Edgewrite: a stylus-based text
entry method designed for high accuracy and stability of motion. In: UIST ’03:
Proceedings of the 16th annual ACM symposium on User interface software and
technology, pp. 61-70. ACM Press, New York (2003)

Wu, M., Balakrishnan, R.: Multi-finger and whole hand gestural interaction
techniques for multi-user tabletop displays. In: UIST ’03: Proceedings of the 16th
annual ACM symposium on User interface software and technology, pp. 193-202.
ACM Press, New York (2003)

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Moore, G., Odell,
J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK
Version 3.3) Cambridge University Engineering Department (2005)

	Introduction
	Related Work
	GART
	Toolkit Architecture
	Code Samples

	Sample Applications
	Discussion
	Conclusions

