Sliding Window Method for NTRU*

Mun-Kyu Lee'**, Jung Woo Kim?, Jeong Eun Song!, and Kunsoo Park?

! School of Computer Science and Engineering,
Inha University, Incheon 402-751, Korea
mklee@inha.ac.kr
2 School of Computer Science and Engineering,
Seoul National University, Seoul 151-742, Korea

Abstract. The NTRU cryptosystem is a ring-based public key system
using hard problems over lattices. There has been an extensive research
on efficient implementation of NTRU operations, including recent re-
sults such as Bailey et al.’s software implementation over a resource-
constrained device and Gaubatz et al.’s hardware implementation using
only 3,000 gates. In this paper, we present a new algorithm to improve
further the performance of NTRU. We speed up the encryption and de-
cryption operations of NTRU up to 32% using some temporary memory,
and if we can use precomputation, then the speed-up becomes up to 37%.
Our method is based on the observation that specific sub-operations are
repeated frequently in the underlying polynomial operations of NTRU.

1 Introduction

The NTRU cryptosystem [is a public key cryptosystem over polynomial rings,
whose security is based on hard problems over lattices. After the introduction
of NTRU encryption, a digital signature scheme using NTRU lattices, which
is called NTRUsign [2], was also proposed. Since Coppersmith and Shamir [3]
presented an attack against NTRU using lattice basis reduction algorithms, there
have been various attempts to break NTRUencrypt [4] and NTRUsign [5I0U7].
However, none of these attacks revealed any significant weakness in the lattice
problems used for NTRU [§].

On the other hand, there has been an extensive research on the efficient im-
plementation of NTRU. Hoffstein and Silverman [9IT0] proposed to use special
forms of polynomials to reduce the amount of computation in NTRU while pre-
serving its security, and Bailey et al. [T1] showed that NTRU can be efficiently
implemented over resource-constrained devices. Recently, Gaubatz, Kaps and
Sunar [T2] presented a hardware implementation of NTRU using no more than
3,000 gates, showing it is possible to use public key cryptography on sensor
nodes. Now NTRU is being considered for the IEEE P1363.1 standard [13].

* This work was supported by grant No.R01-2006-000-10957-0 from the Basic Research
Program of the Korea Science & Engineering Foundation.
** Corresponding author.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 432-442] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Sliding Window Method for NTRU 433

In this paper, we present a method to improve further the performance of
NTRU. We speed up the encryption and decryption operations of NTRU by 25
to 37%, based on the observation that specific patterns are repeated frequently
in a convolution operation, which is a dominant polynomial operation of NTRU.
Our contributions are as follows:

— We propose an efficient method to find such patterns, which resembles the
sliding window method for exponentiation. Hence we name our method a
sliding window method for NTRU. We show that our method is optimal in
the sense that it can find the maximum number of these patterns within a
given window size.

— We propose a new convolution algorithm that improves on the algorithm
given in [II]. According to our experiments, the new algorithm accelerates
the encryption and decryption operations of NTRU up to 32% using some
temporary memory. If we can use off-line precomputation, then the speed-up
becomes up to 37%.

2 Preliminaries

2.1 Convolution

Let Z be the set of integers. The polynomial ring over Z, denoted by Z[X], is
the set of all polynomials with coefficients in Z. We work in the quotient ring
R = Z[X]/(X™ —1). An element a € R can be written as a polynomial or a
vector,

a(X) =Yg aiX = [ag, a1, ..., an_1].

Then multiplication of @ € R and b € R can be represented as the convolution
product ¢, which is given by ¢(X) = a(X) x b(X) with

k N-1
Ch = Dm0 @ibk—i + 2l GiDN+E—i = 2oy j=k (mod N) 9ibi,

since X =1 mod (XN —1).

In principle, this operation requires N2 integer multiplications. However, for
a typical product used by NTRU, either a or b has small coefficients, so the
computation of a * b can be done very fast.

2.2 The NTRU Public-Key Cryptosystem

In this section, we briefly review the NTRU cryptosystem. While there are several
variants of NTRU, an improved version given in [OIT1] can be described as follows:

— NTRU has three public parameters (N, p, ¢), where ged(p,q) = 1 and p < g.

— Coeflicients of polynomials are reduced mod p or gq.

— The inverse of polynomial f mod ¢, denoted by f~! mod g, is defined as the
polynomial satisfying f * f~! = 1 mod g.

434 M.-K. Lee et al.

The working draft of IEEE P1363.1 standard [13] presents a few typical param-
eter sets for NTRU, one of which is (N, p, q) = (251,2,197).

Key Generation. Randomly choose polynomials F,g € R with small coeffi-
cients. Then compute f := 1+ pF and h := pf~! % g mod ¢, where mod ¢ means
that every coefficient in a polynomial is reduced mod ¢. The private key is the
polynomial f and the public key is the polynomial h.

Encryption. Let m be the polynomial representing a message. Then randomly
choose a polynomial r of degree N — 1 with small coefficients, and compute the
ciphertext e := r* h + m mod q.

Decryption. In order to decrypt e, first compute a := e * f mod ¢, choosing
the coefficients of a to satisfy A < a; < A + q. The value of A is fixed and
is determined by a simple formula depending on the other parameters. Then
recover the plaintext m as m := a mod p.

Why Decryption Works. The polynomial a satisfies

a=ex f modgq
= (rxh+m)=* f modq (since e =1 * h 4+ m)
=prxg+m=x fmodq (since h* f=pgx f~Lxf=pg)

Consider the last polynomial pr* g +m x f. By an appropriate choice of param-
eters, one can adjust its coefficients to lie in an interval of length less than g.
Hence we can recover

a=prxg+mx*f=prxg+mx(l+pF)

exactly, not merely modulo ¢. In other words, m = a mod p.

2.3 Fast Convolution

The most time consuming part of NTRU encryption is computation of the con-
volution product r(X) * h(X) mod ¢. Similarly, the most time consuming part
of NTRU decryption is computation of e(X) % f(X) mod ¢, and thus e(X)
F(X) mod g, since e(X) * f(X) = e(X) + pe(X) x FI(X).

Note that while the coefficients in polynomials h(X) and e(X) are almost
randomly distributed modulo ¢, we can control the forms of r(X) and F(X).
Thus, #(X) and F(X) are usually selected to have binary coefficients, i.e., 0 or 1,
so that coefficients may be computed without any multiplication. For example,
if (X)) is a binary polynomial with Hamming weight HW (r), i.e., with HW (r)
ones, computation of the product 7(X) % h(X) mod ¢ requires approximately
HW (r) x N operations, where each operation is an addition plus a reduction
modulo q. Therefore, if we can use (X) and F(X) with low Hamming weights,
the encryption and decryption procedures become very efficient. In [13], appro-
priate values for HW (r) and HW (F) are given according to the choice of public
parameters (N, p, q)EI

! Note that too small values of HW (r) and HW (F) may compromise security, since
the sizes of spaces for » and f become very small.

Sliding Window Method for NTRU 435

Algorithm 1. Fast Convolution Algorithm (reproduced from [I1])

Input: b an array of d locations for ‘1’ representing the polynomial a(X); ¢(X) the
polynomial; N the number of coefficients in a(X), ¢(X).
Output: ¢ the array where ¢(X) = a(X) * ¢(X).
1: for 0 < j < 2N do
tj —0
end for
for 0 < j<ddo
for 0 <k < N do
Liolj] < thtols] T Ck
end for
end for
for 0 <j < N do
tj < (tj + tj+n) mod ¢
: end for

-

[

Bailey et al. [I1] presents an efficient convolution algorithm under the assump-
tion that one of the two input polynomials has binary coefficients. Algorithm [
shows its simplified form, where ¢(X) € R is a general polynomial and a(X) € R
is a binary polynomial with HW (a) = d. That is, a(X) represents (X) and
F(X) in NTRU.

In Algorithm [line 6 repeats dN times and requires two additions each time,
i.e., one for the addition of ¢, and the other for the computation of index k+b[j].
On the other hand, line 10 repeats N times and it requires two additions and
one modular reduction each time. Therefore the total number of operations of
Algorithm [is exactly 2(d 4+ 1)N additions and N modular reductions.

3 Sliding Window Method for NTRU

The speed of a convolution operation, and thus the performance of NTRU en-
cryption and decryption, can be improved significantly if some memory is avail-
able. In this section, we show the motivation for our work, and give an improved
convolution algorithm, which we call the sliding window method for NTRU. The
new algorithm is based on the observation that for a binary polynomial a(X) € R
which is produced by randomly selecting HW (a) ones out of N possible posi-
tions, the distribution of ones has some desirable properties.

3.1 Basic Idea

We begin by examining the structure of a convolution operation. Note that
multiplication of @ € R and ¢ € R can be represented as the convolution product
te R:

ok N-1 _ o
e =D 40 QiCk—i T D ipy1 GiCN4h—i = Zi+j§k (mod N) ®iCj-

436 M.-K. Lee et al.

Because t € R can also be written as a vector, this operation can be rewritten
as the following matrix form:

ap AaAN—-1 aAN—-2 " G2 Q1 Co

ay ap anN—1 - asaz C1

t(X) = a(X) * c(X) = a2 ai Qg - Qa4 Q3 C2
AN-1 AN-2 AN-3 - A1 Qo CN-1

We can observe that each row in the above N x N matrix is produced by rotating
the previous row to right by one position.

Now we give a small example with a binary polynomial a(X) = X + X2 +
X° 4+ X6+ X%+ X9 with N = 10,d = 6. For simplicity, we will write a binary
polynomial as a bit string throughout this section. Thus a(X) will be written as
0110011011. Then a(X) * ¢(X) can be written as

0110110011 co
1011011001 c1
1101101100 c2
0110110110 c3
0011011011 c4
1001101101 Ccs
1100110110 Co
0110011011 cr
1011001101 cs
1101100110 Cy

Hence ty will be computed as tg = ¢1 + ¢2 + ¢4 + ¢5 + cg + ¢g, which requires
six additions A Among these additions, now we concentrate on the term ¢ + cs.
We can see that this term also occurs in the computation of t3 and t7. This is
because the pattern ‘11’ is repeated three times in the binary representation of
a(X). To be more precise, ¢; + ¢ in the computation of tg,¢s,t7 corresponds
to 113, 114, 115 in a(X) = 011;001150113, respectively. Since the term c¢; + ¢
occurs three times, we can compute this term only once, store it in a look-up
table, and reuse it when it is required, which can reduce the number of additions
by two. This reduction can also be applied to other terms related to the pattern
‘11°. For example, the term co + ¢3 occurs in the computation of ¢1,t4 and tg,
the term c3 + ¢4 in t9, t5 and tg, the term ¢4 + ¢5 in t3, 1 and tg, and so on. Thus
the overall savings by the pattern ‘11’ becomes 2 x N = 20.

Note that the above idea can be applied to other patterns such as ‘101°, 1001,
‘1117, etc., if only we can find these patterns in the binary representation of the
polynomial so that these patterns may not share ‘1’s. The following lemma shows
a general rule for the relation between pattern occurrences and the amount of
computation.

2 For the sake of convenience in explanation, we do not consider the cost for index
computation and reduction mod ¢ here.

Sliding Window Method for NTRU 437

Lemma 1. If a pattern containing n ‘1’s, occurs m times in the binary
representation of a polynomial with N coefficients, then we can reduce the num-
ber of integer additions by N(m — 1)(n — 1) at the cost of memory to store N
intermediate integers.

Proof. Tt is straightforward since the number of integer additions related to such
a pattern is reduced to N(m +n — 1) from Nmn. O

Therefore, patterns py,po,...,p; can be used to reduce the number of integer

additions by l
N i (mi = 1)(ni — 1), (1)

where p; contains n; ‘1’s and it occurs m; times. (Note that either a pattern
with a single ‘1’ or a pattern that occurs just once does not introduce any speed-
up.) Thus a method to maximize () is crucial for fast NTRU computation. For
example, for a string 01101101100, using a pattern ‘11’ such that 01101101100
will provide more saving than using ‘101’ such that 01101101100.

3.2 Finding Patterns

In this subsection, we present an efficient pattern-finding algorithm and analyze
its performance. Our algorithm is based on the following facts, which will be
justified throughout this subsection:

— It is sufficient to consider only the patterns that have a few (or no) zeros
between two ones, i.e., ‘117, ‘101°, ‘1001’, and so on.

— There is an efficient greedy method to find such patterns, i.e., we just scan the
given bit string once, marking the positions of pattern occurrences. Actually,
we can show this approach is optimal.

Now we examine the first claim. Lemma 2l gives a clue to the question, “which
pattern do we have to try to find?” First, the distance between two bit positions
is defined as the difference of their indices. For example, in a string 1001, the
distance between two ‘1’s is 3.

Lemma 2. Consider a task that chooses a bit according to a distribution where
the probability that 1 is selected is p. We repeat this task independently to choose
coefficients of a binary polynomial. Let Z be the distance between two neighboring
occurrences of 1’s. Then Pr[Z > d] = (1 —p)?.

Proof. First, fix a specific nonzero position. Since we assume the independence
between coefficients, we can see that Pr[Z = t] = (1 — p)'~!p. Therefore, we
obtain

e’} i —p)?
Priz >d =2 {0-p)pt= 100 =1 -p) .

According to [I3], binary polynomials F'(X) and r(X) are randomly selected
such that dF and dr coeflicients are equal to 1, respectively, and the remain-
ing coefficients equal to 0. While this situation is not exactly the same as the

438 M.-K. Lee et al.

assumption in Lemma [the approximation p =~ dF/N or p ~ dr/N shows a
similar behavior to a real distribution, as shown in Table[Il Although the values
given in this table are experimental results according to the method of [I3], they
are almost the same as the values estimated from Pr[Z = d] = (1 — p)?~!p,

where p = dF/N =dr/N.

Table 1. Distribution of distances d between two neighboring 1’s in F'(X) and r(X)

parameter set (N,dFF =dr) d=1d=2d=3d=4d=5d=6
ees251epb (251,48) 0.191 0.156 0.126 0.101 0.083 0.066
ees347ep2 (347,66) 0.191 0.155 0.125 0.102 0.082 0.067
ees397epl (397,74) 0.186 0.152 0.124 0.101 0.082 0.067
ees491epl (491,91) 0.186 0.152 0.123 0.101 0.082 0.067
eesb87epl (587,108) 0.184 0.151 0.123 0.101 0.082 0.067
ees787epl (787,140) 0.177 0.147 0.120 0.099 0.081 0.067

Lemma [2land Table[Ilshow that for practical parameter sets given in [I3], the
distance between two neighboring 1’s is less than or equal to 5 with probability
about 2/3. Thus we can expect that patterns such as ‘11°, ‘101’, ‘1001°, ‘10001’
and ‘100001’ should cover a fairly large portion of F(X) and r(X), and provide
considerable speed-up. We define these patterns as simple patterns with length
2 through 6, respectivelyﬁ

Now what we have to do is to develop an efficient method that finds the
patterns ‘11°, *101’, ‘1001°, and so on. We define the window size w, and find
only the simple patterns that have up to w — 2 zeros between two ones. Hence
there could be separated ones that cannot be paired with neighboring ones. For
notational convenience, let py be a separated ‘1’, and let p; = ‘11°, po = ‘101,
p3 = ‘10017, and so on.

We use a greedy algorithm that scans the input bit string from right to left
just once. Algorithm [l shows this algorithm. The reason why we start from right
can be found in the behavior of Algorithm [I] that we use as a basis for our new
convolution algorithm. That is, if we examine the construction of a specific ¢;,
we can see that the coefficients ¢, accumulated to ¢; are scanned from higher
degrees to lower degrees, except one wrap-around at cy_j.

We call our method a sliding window method for NTRU, since its bit-scanning
behavior resembles that of the well-known sliding window method for exponen-
tiation. The only differences are that there should be only up to two ‘1’s in a
single window, and the scanning is done in the opposite direction. It is easy to
see that Algorithm [2 requires exactly N bit comparisons regardless of w, and
the arrays bg, b1, ..., b, 1 cover all positions of ‘1’s in z.

3 We need not consider patterns containing more than two ‘1’s, since these patterns
occur too rare. For example, for a fixed position of ‘1’, the probability that the next
two bits are all ‘1’s, i.e., the probability that it makes a pattern ‘111’ is p? ~ 0.037
for N = 251,d = 48.

Sliding Window Method for NTRU 439

Algorithm 2. Finding Simple Patterns with Window Size < w
Input: z a binary string; N length of x; w window size.
Output: by an array representing the positions for separated ‘1’s; b; ...b,—1 arrays
representing the positions for pi,...,pw—1, respectively.
1. 1+ N—-1
2: while 7 > 0 do
3: if z; =1 then

4 if p; =xi—;...x; for some j in {1,2,...,w — 1}, then
5 append i to b;

6: i—i—(G+1)

7 else

8 append i to bg

9: L— 1 —w

10: end if

11: else

12: t—1—1

13: end if

14: end while

The following example illustrates our method for w =4, N = 28:
100001 1001000100101010110001. (2)
The arrays by through bs will be as follows:
bo = [27,5,0],b1 = [23], by = [20], b3 = [16,9]. (3)

Theorem 1. Algorithm[2is an optimal algorithm to find the mazimum number
of simple patterns with length < w in a bit string.

Proof. Note that if there is an interval containing w — 1 or more consecutive
zeros, then there cannot be any simple pattern with length < w that overlaps
this interval. Therefore these zero intervals partition the input string z into
many segments, and the distance of two neighboring ones that belong to a same
segment should always be less than w— 1. Now we only have to show that within
a single segment, the greedy algorithm is optimal, which is straightforward since
we can find k simple patterns in a segment with 2k or 2k + 1 ones. O

We remark that although Algorithm [Pl is an optimal algorithm for a linear bit
string, we may find one more simple pattern by merging the first and last ‘1’s
in the string if we can deal with a circular string.

3.3 New Convolution Algorithm

If the positions for simple patterns are given by Algorithm [2 then Algorithm
can be used to accelerate a convolution operation. Algorithm [B] can be viewed
as an improved version of Algorithm [I], and it is a sliding window method using

440 M.-K. Lee et al.

Algorithm 3. Sliding Window Method for Fast Convolution

Input: bo,...,by—1, where b; is an array of d; positions of p; from the polynomial
a(X); ¢(X) the polynomial; N the number of coefficients in a(X), ¢(X); w window
size.

Output: ¢ the array where ¢(X) = a(X) * ¢(X).

1: for0<j<w-—1do

20 N g

3: end for

4: for 1 <i<w-—1do

5 for 0 <j< N do

6: Tilj] < ¢j + ¢t

7 end for

8: end for

9: for 0 < j < 2N do

10: tj —0

11: end for

12: for 0 < j < do do

13: for 0 <k < N do

14: thtboli) < htboli] T Ck
15: end for
16: end for

17: for 1 <i<w—1do
18: for 0 <j < d; do

19: for 0 <k < N do

20: trtnils) < trnil) + TilK]
21: end for

22: end for

23: end for

24: for 0 < j < N do
25: tj — (t; + tj4+~n) mod g
26: end for

precomputation tables. Lines 1 through 8 is the precomputation stage, and it
requires 2(w — 1)N + (w — 1) integer additions including index computation. On
the other hand, lines 9 through 26 is the convolution stage which requires 2(dg +
di+- -+ -+dy—1+1)N additions and N modular reductions. Thus the total amount
of computation of AlgorithmBlis 2(do+d1+- - -+ dw—1 +w)N + (w—1) additions
and N modular reductions, and the total amount of temporary memory for the
precomputation table is N(w — 1) integers. Recall that Algorithm [requires
2(d+1)N additions and N modular reductions. Since do+dy + -+ dy—1 + w is
much smaller than d + 1, we can expect a significant speed-up by Algorithm [3
For example, if we use parameters N = 251,d = dF = dr = 48, then d + 1 =49
and dop +dy + -+ -+ dy—1 +w = 42.399, 38.802, 36.748, 35.707, 35.171, 35.050 for
w = 2,3,4,5,6,7, respectively, according to our experiment. We also see that
large values for w are not so attractive since their amount of computation is
almost the same as that of smaller w, while the amount of required memory is
almost proportional to w. Hence we decide to fix w = 5.

Sliding Window Method for NTRU 441

4 Experimental Results

Now we present our experimental results for w = 5 with various parameter sets
given in [13]. Table 2 shows the performance of NTRU encryption and decryp-
tion operations over a Pentium IV 3.0GHz CPU with 1.0GB RAM. We used
C language and Microsoft Visual Studio .NET 1.0 environment. The third and
fourth columns of this table represent the required time to perform an encryption
and a decryption, respectively, using the original convolution algorithm (Algo-
rithm [I]). The fifth and seventh columns represent the required time when we
use the improved algorithm. We can see that the new algorithm accelerates these
operations by 25 to 32%. Note that this result is consistent with the values that
we can estimate from the analysis given in Section assuming a convolution
operation consumes most of the computation time for encryption or decryption.
That is, for w = 5, the gain is estimated as (49 — 35.707)/49 ~ 27.13%.

Note that in some situation, the sender might know the identity of the
recipient in advance, or she might send messages frequently to the same re-
cipient. In this case, information related to the recipient’s public key can be
preprocessed. By setting a(X) « r(X) and ¢(X) <« h(X), the values T;[j]
in Algorithm [can be precomputed, i.e., lines 1 through 8 can be performed
off-line. In this case, T;[j]’s are not any more in a temporary memory, but they
should be stored in a precomputation table. By this precomputation, we can
further reduce the amount of on-line computation, which is given in the sixth
column of Table Pl Now the performance gain over Algorithm [l becomes 33 to
37%. These values are also consistent with the estimation from Section B3] i.e.,
(49 — 35.707+5 — 1)/49 ~ 35.29%.

Table 2. Timings for various NTRU operations with w = 5 (usec)

parameter set (N, p, q,dF = dr) Using Alg.[Il Using Alg.
Enc. Dec. Enc.1 Enc.2 Dec. Memory'
ees25lep6 (251,2,197,48) 1043 1045 766 683 783 1004
ees347ep2 (347,2,269,66) 1937 2001 1380 1260 1392 1388
ees397epl (397,2,307,74) 2510 2523 1783 1604 1796 1588
eesd91epl (491,2,367,91) 3760 3796 2649 2530 2650 1964
eesb87epl (587,2,439,108) 5327 5379 3685 3517 3742 2348
ees787epl (787,2,587,140) 9343 9419 6420 6107 6408 3148

fNumber of integers to be stored, i.e., N(w — 1)

5 Discussion

We proposed a method to speed up NTRU operations by reusing sub-operations
that appear frequently. Our experiments show that several kilobytes of memory
is sufficient to accelerate NTRU encryption and decryption by 25 to 37%.

The IEEE draft standard [I3] proposes to use two classes of polynomials
for » or F. The first one is to use binary polynomials with predefined Ham-
ming weight, which is explained in Section The second one is to use a

442 M.-K. Lee et al.

product-form polynomial, i.e., » = ry * 19 + r3 or F' = Fy x Fy + F3, where
r1,T9,73, F1, Fo, F3 are binary polynomials with much smaller Hamming weight
than those of r and F' in the first class. We remark that our sliding window
method is applied only to the first case, and it is evaluated to be still slower by
about 20-30% than the second case without the window method, according to
our analysis. Therefore, it could be an interesting research topic to improve the
convolution algorithm for product-form polynomials.

We performed the above experiments and comparison on a Pentium IV proces-
sor. However, note that speed-ups are more critical on resource-constrained devices
such as a Mica-Z mote with ATmegal28 microcontroller. Therefore, implementa-
tion over such devices is necessary for complete analysis of our algorithm.

References

1. Hoffstein, J., Pipher, J., Silverman, J.: NTRU: A ring-based public key cryptosys-
tem. In: Algorithmic Number Theory — ANTS III. Volume 1423 of LNCS., Springer
(1998) 267288

2. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J., Whyte, W.:
NTRUSIGN: Digital signatures using the NTRU lattice. In: CT-RSA 2003. Volume
2612 of LNCS., Springer (2003) 122-140

3. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Eurocrypt 97. Volume
1233 of LNCS., Springer (1997) 52-61

4. Howgrave-Graham, N.; Nguyen, P., Pointcheval, D., Proos, J., Silverman,
J., Singer, A., Whyte, W.: The impact of decryption failures on the security
of NTRU encryption. In: Crypto 2003. Volume 2729 of LNCS., Springer (2003)
226-246

5. Gentry, C., Jonsson, J., Stern, J., Szydlo, M.: Cryptanalysis of the NTRU signature
scheme (NSS) from Eurocrypt 2001. In: Asiacrypt 2001. Volume 2248 of LNCS.,
Springer (2001) 1-20

6. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Eurocrypt 2002. Volume 2332 of LNCS., Springer (2002) 299-320

7. Nguyen, P., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU
signatures. In: Eurocrypt 2006. Volume 4004 of LNCS., Springer (2006) 271-288

8. Gama, N., Howgrave-Graham, N., Nguyen, P.: Symplectic lattice reduction and
NTRU. In: Eurocrypt 2006. Volume 4004 of LNCS., Springer (2006) 233-253

9. Hoffstein, J., Silverman, J.: Optimizations for NTRU. In: Proceedings of Public-
Key Cryptography and Computational Number Theory. (2000)

10. Hoffstein, J., Silverman, J.: Random small Hamming weight products with appli-
cations to cryptography. Discrete Applied Mathematics 130 (2003) 37-49

11. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in
constrained devices. In: Cryptographic Hardware and Embedded Systems — CHES
2001. Volume 2162 of LNCS., Springer (2001) 262272

12. Gaubatz, G., Kaps, J.P., Sunar, B.: Public key cryptography in sensor networks-
revisited. In: ESAS 2004. Volume 3313 of LNCS., Springer (2004) 2-18

13. IEEE P1363.1/D8: Draft standard for public-key cryptographic techniques based
on hard problems over lattices (2006)

	Introduction
	Preliminaries
	Convolution
	The NTRU Public-Key Cryptosystem
	Fast Convolution

	Sliding Window Method for NTRU
	Basic Idea
	Finding Patterns
	New Convolution Algorithm

	Experimental Results
	Discussion

