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Abstract. We present two transforms to acquire chosen ciphertext se-
curity from tag based techniques. The first one requires the separability
of underlying primitives. By separability, informally, we mean the en-
cryption algorithm has special structures and can process the identity
and the message independently. Compared with generic transforms [g],
it significantly reduces the ciphertext size overhead with only marginal
computation cost. Compared with [I1], the only known technique which
directly achieves chosen ciphertext secure public key encryption from
separable identity based primitives, it only requires selective-Tag/ID se-
curity of underlying primitives. Our second transform is less efficient but
performs generically. Both transforms preserve the public verifiability of
underlying primitives, and can be extended to hierarchical identity based
encryption (HIBE) and threshold settings. As an independent interest,
we also investigate the security requirements of chameleon hash functions
to build strongly unforgeable one-time signatures.

1 Introduction

Indistinguishability against chosen ciphertext attack (CCA) is the standard se-
curity notion for public key encryption (PKE) schemes, which was established
in [TO2527IT7/4]. While it is comparatively easy in the random oracle model
[5], constructing a CCA-secure PKE is usually hard in the standard model. Up
to now, there are only a few methods known to solve the problem in the stan-
dard model: Naor-Yung paradigm [25/T7/28], universal hash proof [T5JT624],
and an approach from tag/identity based encryption (TBE/IBE) techniques
T2

Along the last trend, most recently, Boyen, Mei and Waters [I1] proposed
two efficient techniques, referred as the BMW IBE transform and the BMW key
encapsulation mechanism (KEM) transform, both of which achieve CCA-security
from separable IBEs. Here, by separability, informally, we mean the encryption
algorithm has special structures and can process the identity and the message
independently. Another direct construction of KEM from a separable TBE was
discovered by Kiltz [22].

Let’s review the rough idea of the BMW PKE transform, which is based on
separable IBEs. Write the encryption algorithm into two independent functions,
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fi(params,m,r) and fa(params,id,r), where params is the public system pa-
rameter, m is a plaintext, id is an arbitrary identity and r is the internal coin by
the encryption algorithm. The public key of the PKE is then params and the
secret key is msk, which is the master secret key of the according IBE. For en-
cryption, one computes u = f1(pk, m,r) then hashes u into an “identity” id by a
collision resistant (or injective) hash function. The ciphertext is then ¢ = (u, v},
where v = fo(pk,id,r). Adaptive chosen-ID security is required here because
the challenge identity is decided after the adversary selects the pair of chosen
plaintexts. For decryption on ¢ = (u, v), first reconstruct id from u, and decrypt
c using the IBE decryption algorithm under identity id. Intuitively, to attack
this PKE, an adversary may submit ¢’ which maybe regarded as a ciphertext
with different identity id’ for the underlying IBE, however, this will not provide
useful information to it, because of the semantic security of underlying IBEs.

Though the BMW PKE transform is very efficient in ciphertext size, the
range of its application is quite limited, because it demands adaptive chosen-
ID security. Additionally, note that the BMW PKE transform doesn’t give a
direct security reduction to that of the underlying IBE, since the simulator is
supposed to submit the challenge identity with the pair of chosen plaintexts to its
challenger, and the identity id is in fact determined by the challenge ciphertext.
One may find it difficult to prove the security of the resulting PKE scheme
sometimes, e.g., the BMW PKE transform + Gentry IBE [I8].

We note that selective-Tag/ID security suffices for the TBE/IBE to KEM
transform, because the challenge session key, thus the challenge identity, can
be chosen even before interacting with the adversary. For the time being, we
feel it no rush to build new KEMs, since BMW KEM [I1] and Kiltz KEM [22]
are already efficient enough for most applications requiring chosen ciphertext
security at hand. On the other hand, we argue that such KEMs may be not
publicly verifiable, thus may not fit into threshold settings in their original forms,
which forms another motivation of this work.

Sketch of Our Ideas. Instead of a normal collision resistant hash function,
we use a collision resistant chameleon hash function to construct the identity
id. Interestingly, this simple modification achieves CCA-secure PKEs with public
verifiability, whose security can be reduced to underlying IBEs. Recall a collision
resistant chameleon hash function hashes a message x together with auxiliary
randomness w, such that with a trapdoor, one can efficiently find a collision on
(2',w’), such that (z,w) and (2’,w’) will be hashed to the same vale. While
without the trapdoor, it is computationally infeasible to do so.

In the new strategy, for setup, the simulator generates a pair of public/secret
keys (hk,td) for a chameleon hash function. The simulator then commits to an
identity id*, hashed from a dummy challenge ciphertext # with some randomness
7, and submits id* to its challenger, who generates the public key and returns
params to the simulator. The public key of PKE now consists of params and an
additional hash key hk. For correctly reconstructing the identity 7d, the random-
ness r for hash function should be also appended to the ciphertext. Later upon
receiving the real challenge ciphertext ¢ = (u*,v*) from the IBE challenger, it
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finds a collision (u*,r*) using td, i.e., both (u*,7*) and (@, 7) will be hashed to
id*. In this way, the simulator can embed its own challenge into the challenge
ciphertext for an IBE adversary, in other words, the security of the PKEs can
be reduced to the underlying IBEs. Note that the BMW PKE transform doesn’t
give such a direct security reduction, since the target id is in fact determined
by the challenge ciphertext itself. Alternatively, we can construct an adversary
against the chameleon hash. Because this time the simulator does not have the
trapdoor, while the challenge is partially determined according to the adversary,
the chameleon hash needs to be collision resistant.

Moreover, as a supplement to our initial idea, a similar observation as [22]
shows that a TBE scheme with selective-Tag and chosen ciphertext security
suffices for the job. Since TBE is a possibly weaker primitive than IBE where the
extract algorithm is not explicitly used, one may obtain efficient schemes using
corresponding transforms. In fact, the BMW PKE scheme, an IBE private key
is never generated, since it is more efficient to decrypt directly using the master
key. Instantiate the method with Kiltz TBE [22], we obtain a corresponding
PKE scheme with publicly verifiability and without pairings. Interestingly, all
constructions of IBE schemes in the standard model in fact satisfy separability.

We go on to show how to remove the limitation of separability by sacrificing
a little efficiency of above transform. Actually, a chameleon hash may also serve
as a one-time signature by hashing with online key generation and switching.
With similar idea of [13], one acquires a generic transform based on TBE/IBE
and chameleon hash functions.

Compared with the BMW PKE transform, our transforms result in a slightly
larger ciphertext overhead. We believe this is tolerable, since our requirement
of underlying primitive is much weaker. Both transforms preserve the public
verifiability of underlying primitives. Especially it transforms CPA-secure (¢+1)-
level HIBEs to CCA-secure ¢-level HIBEs. It is worth noting that the chosen
ciphertext security of resulting f-level HIBE can be reduced to the semantic
security of (¢+1)-level HIBEs similarly.

Finally, as an independent interest, we investigate the necessary security re-
quirements of building one-time strongly unforgeable signatures from chameleon
hash functions. Although this intuition hides behind a lot of work, but it has
not been formalized before.

Related Work. First CCA-secure construction of public key encryption, also
known as Naor-Yung paradigm, was due to [25/17], and further generalized by
Sahai [28], which is quite inefficient. Cramer and Shoup gave the first practical
CCA-secure public key encryption scheme [I5] in the standard model and later
generalized to universal hash proof system [I6]. These two approaches utilize
certain non-interactive proofs of “well-formness”. Apart from the above, Canetti,
Halevi and Katz [I3] presented a generic construction from weak IBEs, where no
such non-interactive proofs are needed. Boneh and Katz [10] further improved
the efficiency of [13]. The full version of [I3J10] appeared as [g].

The notion of identity based encryption was due to Shamir, whose origi-
nal intention was to simplify the management of public key certificates. Boneh
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and Franklin [9] defined the first formal security notion for identity based en-
cryption, namely indistinguishability against chosen-ID and chosen ciphertext
attack (IND-ID-CCA) and gave the first functional scheme based on pairings.
Independently, Cocks [14] proposed another identity based encryption based on
decisional quadratic residue assumption. Canetti, Halevi and Katz [12] defined
another useful security notion with weaker attack model, namely security against
selective-ID attack and chosen plaintext/ciphertext attack (IND-sID-CPA/CCA).
On the other hand, Gentry and Silverberg generated the notion of identity based
encryption to hierarchical identity based encryption (HIBE).

Boneh and Boyen proposed two efficient IBE schemes (referred as BB1 and
BB2) with selective-ID security [6]. They further generalized to adaptive chosen-
ID security [7], but the scheme is quite inefficient. Waters subsequently presented
the first practical IBE scheme [30]. Most recently, Gentry gave a more efficient
IBE scheme, which however, relies on a very strong assumption [I8].

Most recently, independently from our work, Abe, Cui, Imai and Kiltz [I] con-
sidered building tag-KEM [2] from special ID-Based KEMs (IBKEMs), called
partitioned IBKEMSs, which are essentially the same as separability. A tag-KEM
is more flexible in building secure hybrid encryptions, which differs slightly from
our goal of building PKEs, however. We remark that we are additionally inter-
ested in directly building PKEs, from black-box TBEs/IBEs using chameleon
hash functions.

Organizations. The rest of the paper will be arranged as follows: we give some
definitions in Section Bl then give our transforms and analyze their securities
in Section [}l and Section @l We explain applications of our results in Section
Finally in Section[6, we give detailed comparisons among some typical schemes.

2 Preliminary

In this section, we give some notations and definitions, then review some hard
problems related to pairings.

Notations. If z is a string, let |z| denotes its length, while if S is a set then
|S| denotes its size. If S is a set then s «— S denotes the operation of picking
an element s of S uniformly at random. We write z «— A(z,y,...) to indicate
that A is an algorithm with inputs (z,y,...) and an output z. Denote z||y as
the string concatenation of z and y. If k¥ € N, a function f(k) is negligible if
JkoeN,VEk >k f(k) <1/k® where ¢ > 0 is a constant.

2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms PKE =
(PKEkg, PKEenc, PKEdec). The randomized key generation algorithm taking a
security parameter k as the input, generates a public key pk and a corresponding
secret key sk, which is denoted as (pk, sk) «+ PKEkg(1¥). The randomized en-
cryption algorithm taking pk and a plaintext m taken from the message space as
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inputs, with internal coin flipping 7, outputs a ciphertext ¢, which is denoted as
¢ — PKEenc(pk, m,r), in brief ¢ « PKEenc(pk, m). The deterministic decryption
algorithm taking sk and a ciphertext ¢ as input, outputs the corresponding m, or
“1” (indicating invalid ciphertext), denoted as m «— PKEdec(sk, ¢). We require
a PKE scheme should satisfy the standard correctness requirement, namely for
all (pk, sk) « PKEkg(1*) and all m, PKEdec(sk, PKEenc(pk, m)) = m.

IND-CCA-Security. We say a public key encryption scheme is (e, ¢, T')-IND-CCA
secure, if the advantage of any adversary A with at most ¢ queries to a decryption
oracle DO, is at most € within time 7" in the following experiment.

Advindes % pr{(pk, sk) — PKEkg(1%); (mo,m1, ) — AP (pk);

b {0,1};c* « PKEenc(pk,myp); b’ « APC(c*,s) : b/ =b] —1/2

where DO returns the corresponding decryption result on a query on ciphertext
¢, whereas A is forbidden to query ¢* at DO. We say a PKE is IND-CCA-secure,
if for polynomially bounded ¢ and 7', € is negligible.

2.2 Tag Based Encryption

Informally, a tag based encryption (TBE) is a public key encryption scheme
where the encryption and the decryption operations take an additional “tag”
which is public binary string with proper length.

A TBE scheme consists of three algorithms TBE = (TBEkg, TBEenc, TBEdec).
The randomized key generation algorithm TBEkg, taking a security parameter k
as the input, outputs a public key pk and a corresponding secret key sk, denoted
as (pk, sk) « TBEkg(1*). The randomized encryption algorithm TBEenc taking
a public key pk, a tag t and a plaintext m taken from the message space as
inputs, with internal coin flipping r, outputs a ciphertext ¢, which is denoted
as ¢ «— TBEenc(pk,t,m,r), in brief ¢ «— TBEenc(pk,t,m). The deterministic
algorithm TBEdec taking a secret key sk, a tag t and a ciphertext ¢ as inputs,
outputs a plaintext m, or “1” indicating invalid ciphertext, which is denoted
m « TBEdec(sk,t,m). We require for all (pk,sk) « TBEkg(1*), all m and all
t, TBEdec(sk,t, TBEenc(pk,t,m)) = m.

Separability. A TBE is said to be sparable if the encryption algorithm can
be arranged in two parts, such that one part is uniquely determined by pk,
m and the random coin r, in brief u « fi(pk,m,r), and the other part is
uniquely determined by the pk, ¢ and r, in brief v « fo(pk,t,r). The ciphertext
is ¢ = (u,v).

IND-sTag-CCA-Security. We consider a weak security called indistinguishability
against selective-tag and chosen ciphertext attack IND-sTag-CCA. Namely, the
tag to be used in the challenge is chosen before the key generation phase. Again,



328 R. Zhang

the scheme is (e, q,T)-IND-sTag-CCA-secure if any adversary A with at most ¢
queries to a decryption oracle DO, has advantage at most € within time 7" in the
following experiment.

Advi;%_fgt?j'cca def r[(t*, s0) — A(1%); (pk, sk) « TBEkg(1%);
(m07m17 81) — ADo(pk% 50);

b {0,1};¢* « TBEenc(pk,t*,mp); b’ — APC(c*,51): b/ =b] —1/2

where DO returns the corresponding decryption result on a query of a ciphertext
¢ under tag t, whereas A is forbidden to query any ciphertext under tag t* at
DO. We say a TBE is IND-sTag-CCA-secure, if for polynomially bounded ¢ and
T, € is negligible.

2.3 Identity Based Encryption

An identity based encryption (IBE) can be regarded as a special tag based en-
cryption equipped with an additional extraction algorithm, with inputs a master
secret key and an tag, outputs a secret key that is capable to decrypt ciphertext
corresponding to this tag.

An IBE scheme consists of four algorithms JBE = (IBEkg, IBEext, IBEenc,
IBEdec). The randomized key generation algorithm IBEkg, taking a security pa-
rameter k as the input, outputs a public parameter params and a master se-
cret key msk, denoted as (params, msk) <+ TBEkg(1%). The extract algorithm,
possibly randomized, takes inputs of params, msk and an identity id, outputs
a secret key sk;q for id, denoted as sk;q < |IBEext(params, msk,id), in brief
skiq — |BEext(msk,id). The randomized encryption algorithm TBEenc takes
params, an identity id and a plaintext m taken from the message space as
inputs, with internal coin flipping r, outputs a ciphertext ¢, which is denoted
as ¢ < IBEenc(params,id, m,r), in brief ¢ < IBEenc(params,id, m). The deter-
ministic algorithm IBEdec takes a secret key sk;q, an identity id and a ciphertext
c as inputs, outputs a plaintext m, or a special symbol “1” which is denoted
m « |BEdec(sk;q,id, c). We require for all (params, msk) «— IBEkg(1%), sk;q «—
IBEext(msk, id) and all m, we have IBEdec(sk;q, id, IBEenc(params,id,m)) = m.

Separability. An IBE is said to be sparable if the encryption algorithm can be
arranged in two parts, such that one part is uniquely determined by params,
m and the random coin r, in brief u «— fi(params,m,r), and the other part is
uniquely determined by the params, id and r, in brief v «— fao(params,id,r).
The ciphertext is ¢ = (u,v).

IND-sID-CPA-Security. We consider security of indistinguishability against
selective-ID and chosen plaintext attack (IND-sID-CPA). We say an identity based
encryption is (e, q,T)-IND-sID-CPA-secure if the advantage of any adversary A
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is at most €, with access ¢ times to an extraction oracle £O within time T in
the following experiment.

Advijng;ifi‘q’a © pr((id*, so) — A(1%): (params, msk) — IBEkg(1¥);
(mo, m1, s1) «— AP (params, so); b« {0,1};
¢* « IBEenc(params,id*,my); b’ «— AFO(c*, s1) 1 b/ = b] — 1/2

where £O returns the corresponding secret key on a query on identity id, whereas
A is forbidden to query id* at £EO. We say an IBE is IND-sID-CPA-Secure, if for
polynomially bounded ¢ and T, € is negligible.

2.4 Digital Signature

A signature scheme consists of three algorithms 8§ = (G, S, V). The randomized
key generation algorithm G takes a security parameter k, and generates signing
key sigk and verification key vk. The possibly randomized signing algorithm
S takes as inputs sigk and m € {0,1}*, where m is a message, and outputs a
signature o. The deterministic verification algorithm V takes as inputs vk, m and
o, and outputs a symbol 3 € {accept,reject}, denoted as § < V(vk, m, o). We
require that for all (sighk,vk) < G(1%), all m € {0,1}*, V(vk, m,S(sigk,m)) =
accept.

(Strong) Unforgeability. We consider strong unforgeability against adaptive
chosen message attack sUF-CMA [3]. Let 8 = (G,S,V) be a signature scheme.
Let A and k be an adversary and a security parameter, respectively.

Denote {(o;,m;)},. as the set contains all ¢s pairs of queries and replies
between A and SO, where SO is a signing oracle which for a given message m,
returns a corresponding signature o. The success probability of A is defined as

Sucssft‘fma(k') o Pr[(vk, sigk) « Gen(1%); (6%, m*) — A5 (vk)
:V(vk,m*,c*) = accept A (6%, m™) ¢ {(0:,mi) }4.]

We say 8 is (t,¢)-sUF-CMA secure if for any A in time bound ¢, A’s success
probability is at most e. Especially, we say that 8 is sUF-CMA secure if € is
negligible.

2.5 Collision Resistant Chameleon Hash Function

A collision resistant chameleon hash function consists of three algorithms
CMH = (CMkg, CMhash, CMswch). The randomized key generation algorithm
CMkg taking a security parameter k as the input, outputs a hash key hk and
a trapdoor td, denoted as (hk,td) «— CMkg(1¥). The randomized hashing algo-
rithm takes inputs a public key hk, an auxiliary random coin w drawn from space
R and a value x € {0,1}*, outputs a binary string y of fixed length [, denoted as
y < CMhash(hk, z, w). The switch algorithm CMswch takes inputs the trapdoor
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td, a pair of messages x,z’, the corresponding auxiliary random coin w, outputs
a pair of (2/,w’) with 2’ # z, such that CMhash(hk, z,w) = CMhash(hk,2’, w’),
denoted as 1’ «— CMswch(td, z,w, z"). Finally, for all z, 2’ — {0,1}* and w € R,
we require w’ « CMswch(td, z,w, 2") is uniformly distributed in R and we call
this property the uniformness of a chameleon hash function. We next give two
flavors of security requirements for a chameleon hash, namely collision resistance
(CR) and oracle collision resistance (OCR).

Collision Resistance. We say a chameleon hash function is (e, 7% )-collision
resistant (CR) if any adversary A without access to the trapdoor td, the success
probability of finding collisions is at most €y within time 7" in the following
experiment.

Succeyrge, A o Pr[(hk,td) — CMkg(1%); 2 — A(hk);
w «— R;y « CMhash(hk, z,w); (', w') — A(hk, z,w)
: (2, w') # (z,w) Ay = CMhash(hk, 2’ w'")]

We say a chameleon hash function is collision resistant, if for polynomially
bounded T}, €3 is negligible.

Oracle Collision Resistance. We say a chameleon hash function is (ey, T )-
oracle collision resistant (OCR) if any adversary A without access to the trap-
door td, the success probability of finding a pair of collisions is at most e within
time T in the following experiment.

SuccEiae, 4 o Pr[(hk,td) — CMkg(1%);Z — {0,1}*;% «— R;

y < CMhash(hk,z, w); x — A(hk,y); w — CMswch(td, Z, w, );
(@', w') — A(hk,z,w) : (z',w") # (z,w) Ay = CMhash(hk, 2, w")|

We say a chameleon hash function is oracle collision resistant, if for polynomially
bounded T%, €3 is negligible.

Discussions. Oracle collision resistance has not been formally discussed before.
However, it seems a very natural definition for chameleon hash functions, since
it considers a collision cannot be found even after the adversary gets some hint
from a switch oracle. Simultaneously, compared with the game defining collision
resistance, the adversary seems to have quite limit power in choosing its target,
since it is required to find collisions on a specified random hash value. At present,
we don’t know whether there are implications or separations between the above
two notions. However, there are practical implementations of such chameleon
hash functions provably secure under proper assumptions. We provide such an
example here: A chameleon hash by combining Pedersen commitment with a
normal collision resistant hash function appeared in [23], and it has been proven
to be collision resistant under the discrete log assumption [23]. But one can
easily come with a proof that it is also oracle collusion resistant under one-more
discrete log assumption [26], which is equivalent to discrete log assumption in
the generic group model [29]. We omit the details here.
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Chameleon Hash as One-Time Signature. A strongly existentially un-
forgeable [3] one-time signature can be derived from an oracle collision resistant
chameleon hash function. For key generation, run (hk,td) « CMkg(1%), select
random (Z,w) from corresponding spaces and compute y = CMhash(hk, z, ).
The verification key is vk = (hk,y) and the signing key is sigk = (td, z,w). For
signing, on message m, compute s < CMswch(td, z,w, m), the signature on m
is s. The correctness of the construction is easily verified.

To see strong unforgeability, a forger, given vk, will try to output (m’, s’), such
that (m/,s’) # (m,s), where s is the signature on m chosen by the forger, and
(m/, s’) a valid message/signature pair under vk. Then if y = CMhash(hk, m’, s’),
a collision occurs for (m,s), which is against the assumption of oracle collision
resistance. We then conclude the above signature scheme is strongly existentially
unforgeable against (exactly one-time) adaptive chosen message attack.

2.6 Hard Problems

Let Gy and G2 be two multiplicative cyclic groups of prime order p and g be a
generator of Gi. A bilinear map e : G; x G; — Gy satisfies the following prop-
erties: (i) Bilinearity: For all z,y € Gy and a,b € Z, e(x%,y®) = e(x,y)?. (ii)
Non-degeneracy: e(g, g) # 1. (iii) Computability: There is an efficient algorithm
to compute e(x,y) for any z,y € G;. We review some hard problems related
to bilinear maps: the decision bilinear Diffie-Hellman (DBDH) problem, the de-
cision bilinear Diffie-Hellman inversion (DBDHI) problem, the decision linear
(DLIN) problem and the decision augmented bilinear Diffie-Hellman exponent
(DABDHE) problem. We say an assumption holds, if the advantage € of any
probabilistic polynomial bounded algorithm is negligible for the corresponding
problem.

DBDH Problem. We say that the DBDH problem is (¢, T')-hard in (G1, G2), if
given 5-tuple (g, g%, g°, g¢,w) € (G1)* x Gy as input, any randomized algorithm
A with running time at most 7', distinguishes the BDH-tuple from a random
tuple with advantage at most e.

def . .
AdvE®R, 4 = |[PrlA(g, 9% 6% 9% e(g,9)™) = 0] — Pr[A(g, g% ¢°, g°, w) = 0|

DBDHI Problem. We say that the DBDHI problem is (e,q,T)-hard in
(G1,Gy), if given (q + 2)-tuple (g,gr,g“’Q,...,grq,w) € (G1)?*! x G, where
x € Z, as input, any randomized algorithm 4 with running time at most 7',
decides whether w = e(g, g)'/* with advantage at most e.

def z  x? z? T z  x? z?
AdvE™ = | Pr[A(g, 9%, 9" o g™ e(g, 9)"/)=0] —Pr[A(g. ¢, g° s " sw)=0]]

DLIN Problem. We say that the DLIN problem is (¢, T)-hard in Gy, if given
6-tuple (g1,92, 91", 952, 2,w) € (G1)° as input, where (r1,73) € (Z,)?, any ran-
domized algorithm A with running time at most T, decides whether w = 2" 772
with advantage at most e.

def
AdVg;t;d;\ é |PY[A(91,92, g? ) 9523 Z, Zﬁ+r2) :O] - Pr[A(glag2a g? ) 9523 Z, 'LU) :OH
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It is believed that DLIN problem is hard even in a bilinear group pair where
pairing is efficiently computable and its security can be proven in the generic
group model.

DABDHE Problem. We say that the DABDHE problem is (e, ¢, T)-hard in
(G1,Gy), if given (¢+4)-tuple (g1, g2, 97, -, gfq,gfq”, w) € (G1)7*3 x Go, where
x € Z, as input, any randomized algorithm 4 with running time at most 7',
decides whether w = e(g1, g2)?*! with advantage at most e.

def 2d+2

AdV?Galb,?(j}hge,A = ‘Pr[A(glag%gafa "'79310(1391 36(91392)

zat1

) = 0]

*PT[A(glag%g:fa'“agirqagl ,’U)) :0”

3 Separable TBE/IBE to PKE Transforms

3.1 The Transforms

We give Transform T1 that achieves chosen ciphertext security from separable
tag based primitives in Figure[Il then analyze its security in Theorem [

Theorem 1. The public key encryption acquired via T1 is (e + ep,q, T + T +
O(qk))-IND-CCA-secure assuming the separable tag based encryption is (e,q,T)-
IND-sTag-CCA-secure and the collision resistant chameleon hash function is
(e7¢, Th)-collision resistant.

Proof. We show how to build an adversary B breaks either the TBE or the
chameleon hash by interacting with a PKE adversary. Denote (u*, v*,r5) as the
challenge ciphertext for A. We distinguish two types of adversaries:

Type 1: For any valid decryption query <u(i), v(i),réi)>, where 1 <1 < ¢, there
is (u(i),rg),t(")) # (u*,r5,t*), where t() = CMhash(hk‘,u("),rg)) and t* =
CMhash(hk,u*,13). We construct an adversary that breaks the TBE.

Type 2: There is at least one valid decryption query (u(®, rél) DY = (u* s )
for some 1 < ¢ < q. We construct an adversary that breaks the collision
resistance of chameleon hash.

Type 1 Adversary: Define B as follows:

Setup: B runs (hk,td) «— CMkg(1¥). Let v/ = fi(pk,m’,7}), where m' is
a dummy message and rj is random coin for TBEenc. B computes t* =
CMhash(hk,u’, %), where % is an auxiliary random coin for chameleon hash.
B then submits t* to its own challenger as the tag to be challenged. After
receiving public key pk’ from its challenger, B sets pk = (pk’, hk) and sends
pk as the public key to a PKE adversary A.
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PKEkg(1%): PKEenc(pk, m): PKEdec(sk, ¢):
(pk', sk’) — TBEkg(1¥)  pk = (pk’, hk) c = (u,v,m2)
hk « CMkg(1*) r— R t « CMhash(hk, u,r2)
pk «— (pk’, hk) ra < Ra m «— TBEdec(sk, t, u||v)
sk «— sk’ u — fi(pk’,m,r1) return m
return (pk, sk) t < CMhash(hk,u,r2)

v« fo(pk',t, 1)

¢ — (u,v,132)

return c
T The trapdoor for chameleon hash function can be erased since it is not used
elsewhere. R1 and Rs are corresponding spaces of random coins for TBEenc
and CMhash.

Fig. 1. The Separable TBE to PKE Transform

Encryption Query: When B receives from .4 a pair of plaintexts (mg,m1)
that A wants to be challenged on, B forwards (mg, m1) to its own challenge
oracle. After receiving its challenge ciphertext (u*,v*) (under tag t*), B
computes r5 «— CMswch(td, ', vy, u*). B then sends ¢* = (u*,v*,r}) to A as
the challenge ciphertext. Due to the uniformness of the chameleon hash, the
distribution of the challenge is exactly as a real attack.

Decryption Queries: For decryption query ¢ = <u(i), v(i),réi)>, B checks
whether (u(i),rg)) = (u*,r3) and v # v*. If yes, this is an invalid cipher-
text and B rejects. Otherwise, B sends (u(i), v® @) to its own decryption
oracle and forwards to A whatever its decryption oracle replies.

Guess: When A outputs a guess b’ on ¢*, B outputs the same bit as its answer.

From the description of B, it is easily verified that the key generation is simu-
lated perfectly. Furthermore, because of the uniformness property, 3 is uniformly
distributed, thus the challenge oracle is also perfectly simulated. Finally, if A
succeeds, B also succeeds.

Type 2 adversary: For Type 2 adversary has many similarities with Type 1,
so we only give the sketch. For setup, B receives hk from its challenger. B then
generates (pk’, sk’) «+ TBEkg(1¥) and sets the public key as (pk’, hk). B keeps
sk’ as the secret key. Since B has sk’, all decryption queries can be answered
perfectly. For challenge, upon receiving (mg, m1) from A, B first picks b < {0,1}
and sets u* = f1(pk’, mp,7), where r is chosen uniformly from corresponding
randomness space. B then outputs v* to its hash challenger. After receiving 73
from the challenger, B sets t* <« CMhash(hk, u*,r5) and v* = fo(pk',t*,r), and
sends (u*,v*,r3) to A as the challenge ciphertext. One can verify this is a valid

challenge. Finally, when decryption query (u(®, v(i),ry)> is queried for some i,

where CMhash(hk, u(?), rgi)) =t* and (u?, rgi)) # (u*,r3), B outputs (u(?, rgi))
as a collision for its challenger. We conclude B break collision resistance with
the same probability as A’s advantage in guessing b.

Summarizing two cases, we have the claimed results. a



334 R. Zhang

We further present another transform (T1’) based on IBE in Figure 2l Since
an (e,q,T)-IND-sID-CPA-Secure identity based encryption implies an (e, q,T)-
IND-sTag-CCA-secure tag based encryption, we have an immediate corollary for
the security of this transform.

PKEkg(1%): PKEenc(pk, m): PKEdec(sk, c):
(params, msk) — IBEkg(1*)  pk = (params, hk) ¢ = (u,v,r2)
hk < CMkg(1%) r— Ri id «— CMhash(hk, u,r2)
pk «— (params, hk) ro «— Ro sk;q < IBEext(sk, id)
sk «— msk u— fi(params,m,r1)  m «— IBEdec(skia,id, u||v)
return (pk, sk) t < CMhash(hk,u,r2) return m

v «— fa(params,id,ri)

¢ (u,v,72)

return ¢
T Again, td can be erased. R and Rs are corresponding spaces of random coins
for IBEenc and CMhash.

Fig. 2. The Separable IBE to PKE Transform

Corollary 1. The public key encryption acquired via T1' is (e + e, q, T +
Ty +O(gk))-IND-CCA-secure assuming the separable identity based encryption is
(e,q, T)-IND-sID-CPA-Secure and the collision resistant chameleon hash function
is (€, Tp)-collision resistant.

3.2 Further Improvements

Note that the performance of T1 and T1’ can be further optimized by replacing
chameleon hash functions using practical hash functions (e.g. SHA-1, or SHA-
2 for higher security). We have to modify our assumptions and corresponding
proofs. Instead of possessing td of a chameleon hash function, the simulator B
is given one chance of accessing a collision oracle (possibly inefficient) that finds
collision on the hash function. The uniformness of such hash functions should
also be rephrased accordingly. With these changes, it is still possible to prove
the security of the modified constructions according to previous strategies. The
details are omitted here.

4 A Generic TBE to PKE Transform

We give the description of a generic TBE to PKE transform using chameleon
hash in Figure Bl and naturally it can be rewritten to fit IBE case accordingly.
The transform mimics [I3] with a one-time signature replaced by a chameleon
hash function that is discussed in Section This transform shows another
tradeoff between computational cost and ciphertext size for generic TBE/IBE
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PKEkg(1%): PKEenc(pk,m): PKEdec(sk, c):
(pk, sk) — TBEkg(1*)  (hk,sk) — CMkg(1%) ¢ = (u, hk|[t',r)
return (pk, sk) a+—C test if ¢/ = CMhash(hk, u,r)
TR if invalid, return “.L”
t" «— CMhash(hk, @, 7) m < TBEdec(sk, t,u)
t «— hk||t’ return m

u < TBEenc(pk,t,m)
r <« CMswch(td, u, T, u)
¢ — (u,t,r)
return ¢
T € and R are corresponding spaces of ciphertext and random coins of CMhash
respectively.

Fig. 3. A Generic TBE to PKE Transform Using Chameleon Hash

transforms. It is not hard to come up with an IBE version of T2, just as we did
previously to T1. We omit the details here. Finally, Theorem Pl guarantees the
security of T2.

Theorem 2. The public key encryption acquired via T2 is (e + e, q, T +
Tw + O(gk))-IND-CCA-secure assuming the tag based encryption is (e, q,T)-IND-
sTag-CCA-secure and the chameleon hash function is (ex, Ty )-oracle collision
resistant.

Proof Sketch. The idea of the proof is quite similar to [I3]. Let A be a PKE
adversary. Denote (u(i),t(i),r(i)>, where 1 < i < ¢, as decryption queries by A.
Denote (u*,t*,r*) be the challenge ciphertext for A. We consider two types of
adversaries.

Type 1: For any (u(i), t@) @) where t() # t*, we build an adversary B against
the underlying TBE.

Type 2: There exists a query (u®,t* 7)) where (u®, 7)) £ (u*,r*), t* =
hE*|[t”* and t* = CMhash(hk*,u( (). We construct an adversary B
against the oracle collision resistance of the underlying chameleon hash.

Type 1 Adversary. For setup, B runs (hk,td) «+ CMkg(1¥), chooses dummy %
and random coin 7 and sets t' < CMhash(hk, @, 7). Then B outputs t* = (hk||t)
as the selective tag for a TBE challenger. After receiving pk from the TBE
challenger, B forwards pk to A. For decryption, since there is no query with tag
t() = ¢*, all decryption queries of A can be forwarded to the TBE challenger
and answered perfectly. For challenge, after A submits a pair of chosen message
(mg,my), B forwards to the TBE challenger and receives a challenge ciphertext
u*. B then computes r* «— CMswch(td, u,7,u*), and gives (u*,t*,r*) to A as
the challenge. Finally, B outputs whatever A outputs as its guess. From above
descriptions we can see that B succeeds with exactly the probability of A.
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Type 2 Adversary. For setup, B runs (pk,sk) « TBEkg(1*). B then for-
wards pk to A as the public key of the PKE. Additionally, on B’s request, a
chameleon hash challenger runs (hk*,td*) « CMkg(1*) and computes ¢'* «
CMhash(hk*, @, 7), where 4 and 7 are uniformly sampled from corresponding
spaces. Then t* = hk|[t'" is given to B. For decryption, since B knows sk, all
decryption queries will be handled perfectly. For challenge, B receives (mg, my)
from A and sets u* «— TBEenc(pk,t*,my) for b < {0,1}. B submits u* to the
chameleon hash challenger, who computes r* «— CMswch(td*, @, 7, u*) and re-
turns 7* to B. B then gives (u*,t*,7*) to A as a challenge. After receiving a
ciphertext query of the form (u(®, t*,7(9) where t* = CMhash(hk*,u(®, ()
and (u®,r®) £ (u*,r*), B outputs (u'?, 7)) as a collusion for the chameleon
hash. It is verified that B breaks the oracle collision resistance of chameleon hash
at exactly A’s advantage in correctly guess b.

Summarizing the above two cases we prove the claim. O

Although additional computational cost may be involved in the key generation
and evaluation of the chameleon hash, it can be improved by pre-computation.
It is worth repeating that oracle collision chameleon hash functions can be built
from many number theoretic assumptions, and the public verifiability of under-
lying primitives is preserved by using T2.

5 Applications

5.1 Practical CCA-Secure PKE Schemes

Our methods achieves CCA-security with tight reductions to underlying selective-
Tag based primitives. Instantiate T1 with IND-sTag-CCA-secure TBE, one gets
more efficient scheme with public verifiability. We give such a scheme based on
Kiltz TBE [22]. To remark, the Cramer-Shoup encryption [15] can be viewed as
applying the BMW transform [I1] to a related TBE with adaptive chosen tag
security. Finally, instantiate T1’ with Gentry IBE, one gets an efficient PKE
based on DABDHE assumption.

PKEkg(1%): PKEenc(pk, m): PKEdec(sk, c):
gi,h — Gy r1,72,73 — L) ¢ = (u1,uz2,e,v1,v2,73)
o1, 22,Y1,Y2 — L uy — gt t H(gff(uhuz,e)hrg)
2,7 — G2 Uz — gy? test whether
st.gil =g5° =z e M.zt v = ulPTYL A gy = gl Y2
ur — gy' t— Hg(gfl(“l’ui’@hm) if invalid, return “1”
uz + g3° vy e 2yl otherwise ~ m «— .
choose Hyi, Ha : {0,1}" — Z;, vy « 2'"2u}? return m 12
pk — (g1, 92,u1,u2, 2z, h, H) ¢ — (u,uz,e,v1,v2,73)
sk — (z1,22,91,72) return ¢

return (pk, sk)
' (G, G2) is a bilinear group pair with prime order p. Hy, H2 can be replaced by
injective mappings.

Fig. 4. Secure PKE Based on DLIN Assumption
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A Publicly Verifiable CCA-Secure PKE without Pairings. We instanti-
ate our method with Kiltz TBE [22], and present an efficient IND-CCA-secure
public key encryption scheme in Figure @l We note that while Kiltz KEM [22]
combined with a CCA-secure symmetric key encryption achieves better perfor-
mance regarding chosen ciphertext security, but our scheme enjoys addition-
ally a capability of threshold decryptions. Here we instantiate the chameleon
hash by using a collision resistant hash function combined with the Pedersen
commitment [23].

5.2 Extensions

CCA-Secure Hierarchical Identity Based Encryption. Since most IBEs in
the standard model can be extended to the hierarchical IBE setting, our methods
operate also on these HIBE schemes. Applying our transforms to an (¢+1)-level
semantically secure HIBE against chosen plaintext attack results in an f-level
CCA-secure HIBE with marginal computational cost, small ciphertext overhead
and tight security reduction.

Table 1. Comparisons of Schemes

Scheme Assumption Ciphertext Without Generic? Public
Overhead Pairing? Verifiable?
KD DDH 2|G| + |Mac| yes — —
CHK/BB1 DBDH 2|G1| + O(k?) — yes yes
CHK/BB2  DBDHI 2|G1| + O(k?) — yes yes
BK/BB1 DBDH 3/G1| + [Mac| — yes —
BK/BB2 DBDHI 3|G1] + [Mac]| — yes —
BK/Kiltz DLIN 5|G1| + |Mac| yes yes —
Kiltz(kEM)  DLIN 4|Gq| yes — —

BMW/BB1 DBDH 2G| - - -
BMW /Waters DBDH 2|G1| - o o

T1/Kiltz DLIN 4|G1| + |r| yes — yes
T1'/BB1 DBDH 2|G1| + |r| — — yes
T1'/Gentry DABDHE |Gq|+|Gz2| + |r] — — yes
T2/BB1 DBDH 2|Gy| + |hk| + |t] + |r| — yes yes

1 KD is Kurosawa-Desmedt [24]. Kiltz is Kiltz TBE [22]. Waters is Waters IBE [30].
Gentry is Gentry IBE [I8]. All schemes in the table are PKEs, except that BMW/BB1
and Kiltz(KEm) [22] are CCA-secure KEMs. Such KEMs can combine with symmetric
key encryption (SKE) (e.g. block ciphers run in CMC mode [20] or EME mode [21])
which has no overhead, however, such operations are usually computationally less effi-
cient than passively secure SKEs combined with Macs. The cost of computing one-time
signatures and symmetric key primitives are neglected here. p is the order of Gi. G
is a group where DDH problem is hard. (Gi,G2) is a bilinear group pair. One may
assume |G| = 1024 (or 160 by using elliptic curve) and |G1| = 512 and |Gz| = 1024
for symmetric bilinear group. r is a random coin for chameleon hash functions and is
chosen uniformly from Z,, where p is the order of Gy. hk is a hash key, and t’ is a
hash value. For practical implementations of chameleon hash, the size of hk and ¢’ can
be further optimized by reusing the system parameters. One-time signatures based on
number-theoretic assumptions are no better than T2.
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Non-interactive CCA-Secure Threshold Decryption. If the underlying tag
based primitive is publicly verifiable, one can easily build non-interactive thresh-
old encryption against chosen ciphertext attack with our method. It is quite
natural if one follows previous work, e.g., [I1], and the details and concrete in-
stantiations are omitted here. We note that alternatively, this can be achieved
by building a tag-KEM [2], combined with a semantically secure DEM. However,
one may need to take care on the security of underlying primitives to build the
tag-KEM. A recent work [I] addresses this in more details.

6 Comparisons

We compare some typical PKE schemes in Table[Il Note that our transforms can
be further improved according to the discussions in Section 3.2, thus we come
to conclusion that our transforms are efficient and widely applicable.
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