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Abstract. In this paper we present a new method for the model of
interpolation sweep surfaces by the C2-continuous generalized quasi-
cubic interpolation spline. Once given some key position, orientation
and some points which are passed through by the spine and initial
cross-section curves, the corresponding sweep surface can be constructed
by the introduced spline function without calculating control points in-
versely as in the cases of B-spline and Bézier methods or solving equa-
tion system as in the case of cubic polynomial interpolation spline. A
local control technique is also proposed for sweep surfaces using scal-
ing function, which allows the user to change the shape of an object
intuitively and effectively. On the basis of these results, some examples
are given to show how the method is used to model some interesting
surfaces.

1 Introduction

Sweeping is a powerful technique to generate surfaces in CAD/CAM, robot-
ics motion design and NC machining, etc. There has been abundant research
in the modeling of sweeping surfaces and their applications. Hu and Ling ([2],
1996) considered the swept volume of a moving object which can be constructed
from the envelope surfaces of its boundary. In this study, these envelope surfaces
are the collections of the characteristic curves of the natural quadric surfaces.
Wang and Joe ([13], 1997) presented sweep surface modeling by approximating
a rotation minimizing frame. The advantages of this method lie in the robust
computation and smoothness along the spine curves. Jittler and Maurer ([5],
1999) constructed rational representations of sweeping surfaces with the help
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of the associated rational frames of PH cubic curves and presented sufficient
conditions ensuring G continuity of the sweeping surfaces. Schmidt and Wywvill
([9], 2005) presented a technique for generating implicit sweep objects that sup-
port direct specification and manipulation of the surface with no topological
limitations on the 2D sweep template. Seong, Kim et. al ([10], 2006) presented
an efficient and robust algorithm for computing the perspective silhouette of
the boundary of a general swept volume. In computer graphics, many advanced
techniques using sweeping surfaces ([I], [3], [4]) have been applied to the defor-
mation, NC simulation, motion traced and animation, including human body
modeling and cartoon animation, etc. Yoon and Kim ([I4], 2006) proposed a ap-
proach to the freeform deformation(FFD) using sweeping surfaces, where a 3D
object was approximated with sweep surfaces and it was easy to control shape
deformations using a small number of sweep parameters. Li, Ge and Wang ([6],
2006) introduced a sweeping function and applied it to the surface deformation
and modeling, where the surface can be pulled or pushed along a trajectory
curve.

In the process of constructing sweep surface, the hard work in modeling are
to present simple objects and refine them towards the desired shapes, where the
construction of the spine and across-section curves and the design of the moving
frame ([8]) are very important. Frenet frame, generalization translation frame
and rotation-minimizing frame et. al ([4], [5], [7], [13], [14]) can all be applied to
solve these problem thoroughly.

In general, the spine curve can be presented by Bézier and B-spline methods.
But they have many difficulties in calculating the data points conversely in order
to interpolate given points. The main contribution of this paper is the develop-
ment of a new method based on a class of generalized quasi-cubic interpolation
spline. This approach has the following features:

e The spine and across-section curves are C? continuous and pass through some
given points by the user without calculating the control points conversely as in
the cases of B-spline and Bézier methods or solving equation system as in the
case of cubic polynomial interpolation spline.

e A local control technique is proposed by the defined spline. It is implemented
flexibly and effectively on the computer-human interaction.

e The moving frame is smoothness and can be established associated with the
spine curve uniformly using our method.

The rest of this paper is organized as follows: A C2-continuous generalized
quasi-cubic interpolation spline is introduced in Sect. 2. We present a new
method for the sweep surface modeling by the generalized quasi-cubic inter-
polation spline in Sect. 3. Some examples of shape modeling by the introduced
method are given in Sect. 4. Finally, we conclude the paper in Sect. 5.



Sweeping Surface 43

2 (C?-Continuous Generalized Quasi-cubic Interpolation
Spline

Definition 1. [T1)] Let by, by, ba, - -, byya, (n > 1), be given control points. Then
a generalized quasi-cubic piecewise interpolation spline curve is defined to be

3
pi(t) =Y Bja(t)bij, t €[0,1],i=0,1,---,n—1, (1)
§=0
where
Bos(t) = }l + ; —singt— icosmf—I— 2177 sinnt
By s(t :—}1—1—;—&—0057575—1—}10057775— L sin 7t ,
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! sin 7t ,
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Bs3(t) = — 5 —cos 5t + , cosmt + on SINTE .
From (@), we know that B, 3(t),(i = 0,1,2,3), possess properties similar to

those of B-spline base functions except the positive property. Moreover, p;(t)
interpolates the points b;4; and b;42 . That is,

pi(0) = bit1, pi(1) = biya , (3)
From (1)) and (@), we can also get

Pi(0) = (5 = 1)(big2 —b;),  pi(1) = (5 — 1)(bigz — biy1) , @
p;(0) = 12 (bi — 2bi1 + biya), P/ (1) = 42 (big1 — 2biyo + biys) -
So l l

Therefore, the continuity of the quasi-cubic piecewise interpolation spline curves
is established up to second derivatives. Besides this property, the quasi-cubic
piecewise interpolation spline curves also possess symmetry, geometric invari-
ability and other properties, the details of these properties can be found in our

another paper ([I1]).

3 Sweep Surface Modeling

Given a spine curve P(t) in space and a cross-section curve C'(6), a sweep surface
W (t,0) can be generated by

W(t,0) = P(t) + R(t)(s(t) - C(9)), (6)

where P(t) is a spine curve, R(t) is an orthogonal matrix representing a moving
frame along P(t), s(t) is scaling function. Geometrically, a sweep surface W (t, )
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is generated by sweeping C'(6) along P(t) with moving frame R(t). cross-section
curve C(0) is in the 2D or 3D space which passes through the spine curve P(t)
during sweeping.

So the key problems in sweep surface generation are to construct the spine
and cross-section curves P(t),C() and to determine the moving frame R(¢).

Given a initial cross-sections C;(#) moving along a spine curve P;(t). Each
given position is associated with a local transformation R;(t) on the C;(6). The
sweep surface is generated by interpolating these key cross-sections C;(6) at
these special positions by the user:

Wi j(t,0) = Pi(t) + Ri(t)(si(t) - C;(0))

xi(t) 11,0 (1) 112,i(t) 113,4(1) 52i(t)Cr;(0) (7)
= | () | + | r21,i(t) r22,i(t) 7234 (t) | | s:(H)Cy3(0) |,
zi(t) 31, () 32,4 (t) r33,:(¢) 0

where the s(t) is scaling function, which can be used to change the shapes of
cross-sections to achieve local deformations.

3.1 The Construction of Spine and Cross-Section Curves

From the above discussions, we know that once some places that the cross-
sections will pass through are given, a spine curve can be constructed to inter-
polate these places (points) as follows:

3
Pi(t) = (zi(t), yi(1), zi(1))" = Z:()Bj,3(t)bi+j7 tel0,1] , (8)
j=
i=0,1,---,n—1,

where b;, 7 = 0,1,---,n+ 2, (n > 1), are given points (positions) by user, and
B;3(t),(j =0,1,2,3), are generalized quasi-cubic piecewise interpolation spline
base functions.

Similarly, if the explicit expression of cross-section curves are unknown in
advance. But we know also the cross-section curves pass through some given

points, then we can define the cross-section curves by

C5(0) = (Cay (60), Cys (0),0)7 = 2 Bis(@)gjin, 0 € [0.1] |

j:Oala"'amfl )

)

where ¢;, 7 =0,1,---,m+2,, (m > 1), are given points (positions) by user.
In order to improve the flexibility and local deformation of the interpolation
sweeping surfaces, we introduce scaling functions defined by

5i(t) = (s02(8). 5y:(1), 0)T = z By s(t)siss t € [0.1]

i=0,1,-,n—1,

(10)

where s; = (3;,5;,0)7,i =0,1,---,n+2, (n > 1) . §; and §; are n+3 nonnegative
real numbers respectively, which are called scaling factors. B; 3(t), (j =0, 1,2, 3),
are generalized quasi-cubic piecewise interpolation spline base functions.
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3.2 The Moving Frame

In order to interpolate their special orientations of key cross-sections, we can
find a proper orthogonal matrix sequence R(t) as a series of moving frame, such
that R(t) interpolate the given orthogonal matrices at the time ¢ = ¢;. Therefore,
the interpolation problem lie in R(t;) = R;, where R; are the given orthogonal
matrices at t = t;.

For the given positions of the moving frames (P;, Rx;, Ry;, Rz;), i = 0,1, -,
n — 1, we interpolate the translation parts P; by generalized quasi-cubic in-
terpolation spline introduced in the above section, and we can also interpolate
three orthogonal coordinates (Rx;, Ry;, Rz;) homogeneously by the generalized
quasi-cubic interpolation spline (Fig[l(a)). Namely,

3
R;(t) = (Rz;(t), Ryi(t), Rz ()T = Z:()Bj,3(t)(R$i+j7 Ryi+j, Rzipj)T |
=

(11)

Fig. 1. (a) The moving frame on the different position, dashed line is spine curve. (b)
The sweep surface associated with open cross-section curve.

Notes and Comments. Since (Rx;(t), Ry;(t), Rz(t)) defined by Eq.()) usually
does not form an accurate orthogonal coordinate system at ¢ # t;, we shall renew
it by the Schmidt orthogonalization or an approximation of the orthogonal one
with a controllable error. We can also convert the corresponding orthogonal
matrices into the quaternion forms, then interpolate these quaternions by the
([T similarly, at last, the accurate orthogonal coordinate system can be obtained
by the conversion inversely.

From the (@), ) and (), we know that for the fixed 6 = 6*,

3
Wi;(t,0%) = ZBk,:S(t)(ka + Ritr(Sitr 'q}k)) ) (12)
k=0

where ¢; = ¢;(0*) , and for the fixed t = t*,
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3
Wi (t,0) = Pr + RS Bra()(s - ajan) (13)
k=0
where P = P;(t*), R} = R;(t") and s = s;(t*) .

Since ¢; are constant vectors, we get that W; ; (t,0*) are C*-continuous and
the points on curves W; ;(¢,6*) can be obtained by doing the transformation of
stretching, rotation and translation on the point ¢;.

The cross-section curves W ;(t*,6) at the t = t* can also be attained by the
stretching, rotation and translation transformation on the initial cross-section
curves C;(6).

Moveover, by computing the first and second partial derivatives of W ;(t, ),
we get

ol
bu Wi (1.6) = PO (6) + fu (Ra(t) (s:(t) - C5(0))
ol
oo Wiy (1,0) = Ri(t) (s:(1) - €7 (9))
Then W; ;(t,0) are C*-continuous with respect to ¢ and @ by the (&) and (I4).

1=1,2.  (14)

4 The Modeling Examples

Ezample 1. Given interpolating points of spine curve by by = (0,0,1),b; =
(0,0,1),b2 = (1,0,2.5),b3 = (2,0, 3),bs = (3,0,3),b5 = (4,0,2) and bg = (4,0,2).

Suppose the initial cross-section curves pass through the points (cos (1'761)77’

sin ("_61)”)7 i =1,2,---,13. The rotation angle at the four positions is 0, 7/3,
7/2 and 27 /3 respectively. Scaling factors are selected by §; = §; = 1. Then we
get sweeping interpolation surface as in the Figll(a) and Fig3l

X -
,
,
, ‘ S
i

(a) (b)

Fig. 2. The four key positions of cross-section curve during sweeping. (a) is the figure
in example [l and (b) is the figure in example 2

Ezample 2. Given interpolation points of spine curve by by = (0,0,0),b; =
(0,0,1),b0 = (2,0,2.5),b3 = (4,0,3),b4 = (6,0,3),b5 = (8,0,2) and bs = (8,0,2).
The initial cross-section curve interpolates the points (cos @ 61) , sin (- 1)7r) 1=
1,2,---,13. The rotation angle at the four positions is 0, 7/6, 7/4 and 7/2 respec-
tively. The scaling factors are chosen to be §; = §; = {1.4,1.2,1,0.8,0.6,0.4,0.2}.

Then we get sweeping interpolation surface as in the Fig[2(b) and Figldl
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Fig. 4. The sweep surface modeling in example 2] (b) is the section plane of figure (a)

Ezxample 3. The interpolation points of spine curve and rotation angles are
adopted as in the example 2l The initial cross-section curve interpolates the
points g0 = (=3,1),q1 = (=2,2),q2 = (—1,1),q3 = (1,2), 1 = (2,1), g5 = (3, 2).
The scaling factors are chosen to be §; = §; = 1. Then we get the sweeping in-
terpolation surface by open cross-section curve as in the Fig[ll(b).

5 Conclusions and Discussions

As mentioned above, we have described a new method for constructing interpo-
lation sweep surfaces by the C? continuous generalized quasi-cubic interpolation
spline. Once given some key position and orientation and some points which are
passed through by the spine and initial cross-section curves, we can construct
corresponding sweep surface by the introduced spline function. We have also pro-
posed a local control technique for sweep surfaces using scaling function, which
allows the user to change the shape of an object intuitively and effectively.

Note that, in many other applications of sweep surface, the cross-section
curves are sometimes defined on circular arcs or spherical surface, etc. Then
we can construct the cross-section curves by the circular trigonometric Hermite
interpolation spline introduced in our another paper ([12]).

On the other hand, in order to avoid a sharp acceleration of moving frame,
we can use the chord length parametrization in the generalized quasi-cubic in-
terpolation spline.
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In future work, we will investigate the real-time applications of the surface

modeling based on the sweep method and interactive feasibility of controlling
the shape of freeform 3D objects .
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