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Abstract. One of the main problems in the radiosity method is how to
discretise a scene into mesh elements that allow us to accurately represent
illumination. In this paper we present a new refinement criterion for
hierarchical radiosity based on the continuous and discrete generalised
mutual information measures between two patches or elements. These
measures, derived from the generalised entropy ofHarvda-Charvát-Tsallis,
express the information transfer within a scene. The results obtained
improve on the ones based on kernel smoothness and Shannon mutual
information.

1 Introduction

The radiosity method solves the problem of illumination in an environment with
diffuse surfaces by using a finite element approach [1]. The scene discretisation
has to represent the illumination accurately by trying to avoid unnecessary sub-
divisions that would increase the computation time. A good meshing strategy
will balance the requirements of accuracy and computational cost.

In the hierarchical radiosity algorithms [2] the mesh is generated adaptively:
when the constant radiosity assumption on a patch is not valid for the radiosity
received from another patch, the refinement algorithm will subdivide it in a set
of subpatches or elements. A refinement criterion, called oracle, informs us if a
subdivision of the surfaces is needed, bearing in mind that the cost of the oracle
should remain acceptable. In [3,4], the difficulty in obtaining a precise solution
for the scene radiosity has been related to the degree of dependence between all
the elements of the adaptive mesh. This dependence has been quantified by the
mutual information, which is a measure of the information transfer in a scene.

In this paper, a new oracle based on the generalised mutual information [5],
derived from the generalised entropy of Harvda-Charvát-Tsallis [6], is intro-
duced. This oracle is obtained from the difference between the continuous and
discrete generalised mutual information between two elements of the adaptive
mesh and expresses the loss of information transfer between two patches due to
the discretisation. The results obtained show that this oracle improves on the
kernel smoothness-based [7] and the mutual information-based [8,9] ones, con-
firming the usefulness of the information-theoretic approach in dealing with the
radiosity problem.
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2 Preliminaries

2.1 Radiosity

The radiosity method uses a finite element approach, discretising the diffuse
environment into patches and considering the radiosities, emissivities and re-
flectances constant over them. With these assumptions, the discrete radiosity
equation [1] is given by

Bi = Ei + ρi

∑

j∈S

FijBj , (1)

where S is the set of patches of the scene, Bi, Ei, and ρi, are respectively the
radiosity, emissivity, and reflectance of patch i, Bj is the radiosity of patch j,
and Fij is the patch-to-patch form factor, defined by

Fij =
1
Ai

∫

Si

∫

Sj

F (x, y)dAydAx, (2)

where Ai is the area of patch i, Si and Sj are, respectively, the surfaces of patches
i and j, F (x, y) is the point-to-point form factor between x ∈ Si and y ∈ Sj , and
dAx and dAy are, respectively, the differential areas at points x and y. Using
Monte Carlo computation with area-to-area sampling, Fij can be calculated:

Fij ≈ Aj
1

|Si×j |
∑

(x,y)∈Si×j

F (x, y), (3)

where the computation accuracy depends on the number of random segments
between i and j (|Si×j |).

To solve the system (1), a hierarchical refinement algorithm is used. The
efficiency of this algorithm depends on the election of a good refinement cri-
terion. Many refinement oracles have been proposed in the literature (see [10]
for details). For comparison purposes, we review here the oracle based on ker-
nel smoothness (KS), proposed by Gortler et al. [7] in order to drive hierarchical
refinement with higher-order approximations. When applied to constant approx-
imations, this refinement criterion is given by

ρi max{Fmax
ij − F avg

ij , F avg
ij − Fmin

ij }AjBj < ε, (4)

where Fmax
ij = max{F (x, y) | x ∈ Si, y ∈ Sj} and Fmin

ij = min{F (x, y) | x ∈
Si, y ∈ Sj} are, respectively, the maximum and minimum radiosity kernel values
estimated by taking the maximum and minimum value computed between pairs
of random points on both elements, and F avg

ij = Fij/Aj is the average radiosity
kernel value.

2.2 HCT Entropy and Generalised Mutual Information

In 1967, Harvda and Charvát [6] introduced a new generalised definition of en-
tropy. In 1988, Tsallis [11] used this entropy in order to generalise the Boltzmann-
Gibbs entropy in statistical mechanics.
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Definition 1. The Harvda-Charvát-Tsallis entropy (HCT entropy) of a discrete
random variable X, with |X | = n and pX as its probability distribution, is defined
by

Hα(X) = k
1 −

∑n
i=1 pα

i

α − 1
, (5)

where k is a positive constant (by default k = 1) and α ∈ �\{1} is called entropic
index.

This entropy recovers the Shannon discrete entropy when α → 1, H1(X) ≡
−

∑n
i=1 pi ln pi, and fulfils good properties such as non-negativity and concavity.

On the other hand, Taneja [5] and Tsallis [12] introduced the generalised
mutual information.

Definition 2. The generalised mutual information between two discrete random
variables (X, Y ) is defined by

Iα(X, Y ) =
1

1 − α

⎛

⎝1 −
n∑

i=1

m∑

j=1

pα
ij

pα−1
i qα−1

j

⎞

⎠ , (6)

where |X | = n, |Y | = m, pX and qY are the marginal probability distributions,
and pXY is the joint probability distribution between X and Y .

The transition of Iα(X, Y ) to the continuous generalised mutual information is
straightforward. Using entropies, an alternative form is given by

Iα(X, Y ) = Hα(X) + Hα(Y ) − (1 − α)Hα(X)Hα(Y ) − Hα(X, Y ). (7)

Shannon mutual information (MI) is obtained when α → 1. Some alternative
ways for the generalised mutual information can be seen in [13].

3 Generalised Mutual Information-Based Oracle

We will see below how the generalised mutual information can be used to build
a refinement oracle within a hierarchical radiosity algorithm. Our strategy will
be based on the estimate of the discretisation error from the difference between
the continuous and discrete generalised mutual information (6) between two
elements of the adaptive mesh. The discretisation error based on Shannon mu-
tual information was introduced by Feixas et al. [8] and applied to hierarchical
radiosity with good results.

In the context of a discrete scene information channel [4], the marginal pro-
babilities are given by pX = qY = {ai} (i.e., the distribution of the relative area
of patches: Ai

AT
, where AT is the total area of scene) and the joint probability is

given by pXY = {aiFij}. Then,

Definition 3. The discrete generalised mutual information of a scene is given
by

Iα =
1

1 − α

⎛

⎝1 −
∑

i∈S

∑

j∈S

aα
i Fα

ij

aα−1
i aα−1

j

⎞

⎠ =
∑

i∈S

∑

j∈S

τα(aiFij , aiaj), (8)
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where, using 1 =
∑

i∈S

∑
j∈S aiaj and τα(p, q) = 1

1−α
qα−pα

qα−1 , the last equality is
obtained.

This measure quantifies the discrete information transfer in a discretised scene.
The term τα(aiFij , aiaj) can be considered as an element of the generalised
mutual information matrix Iα, representing the information transfer between
patches i and j.

To compute Iα, the Monte Carlo area-to-area sampling (3) is used, obtaining
for each pair of elements

Iαij = τα(aiFij , aiaj) =
1

1 − α

aα
i aα

j − aα
i Fα

ij

aα−1
i aα−1

j

≈ 1
1 − α

Ai

AT

Aj

AT

⎛

⎝1 − Aα
T

⎛

⎝ 1
|Si×j |

∑

(x,y)∈Si×j

F (x, y)

⎞

⎠
α⎞

⎠ . (9)

The information transfer between two patches can be obtained more accu-
rately using the continuous generalised mutual information between them. From
the discrete form (8) and using the pdfs p(x) = q(y) = 1

AT
and p(x, y) =

1
AT

F (x, y), we define

Definition 4. The continuous generalised mutual information of a scene is
given by

Ic
α =

∫

S

∫

S

τα

(
1

AT

F (x, y),
1

A2
T

)
dAydAx. (10)

This represents the continuous information transfer in a scene. We can split the
integration domain and for two surface elements i and j we have

Ic
αij

=
∫

Si

∫

Sj

τα

(
1

AT

F (x, y),
1

A2
T

)
dAydAx (11)

that, analogously to the discrete case, expresses the information transfer between
two patches.

Both continuous expressions, (10) and (11), can be solved by Monte Carlo in-
tegration. Taking again area-to-area sampling (i.e., pdf 1

AiAj
), the last expression

(11) can be approximated by

Ic
αij

≈ AiAj
1

|Si×j |
∑

(x,y)∈Si×j

τα

(
1

AT

F (x, y),
1

A2
T

)

=
1

1 − α

Ai

AT

Aj

AT

⎛

⎝1 − Aα
T

⎛

⎝ 1
|Si×j |

∑

(x,y)∈Si×j

F (x, y)α

⎞

⎠

⎞

⎠ . (12)

Now, we define
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Definition 5. The generalised discretisation error of a scene is given by

Δα = Ic
α − Iα =

∑

i∈S

∑

j∈S

Δαij , (13)

where Δαij = Ic
αij

− Iαij .

While Δα expresses the loss of information transfer in a scene due to the dis-
cretisation, the term Δαij gives us this loss between two elements i and j. This
difference is interpreted as the benefit to be gained by refining and can be used
as the base of the new oracle.

From (13), using (9) and (12), we obtain

Δαij ≈ AiAjA
α−2
T

1
1 − α

δαij , (14)

where

δαij =

⎛

⎝ 1
|Si×j |

∑

(x,y)∈Si×j

F (x, y)

⎞

⎠
α

− 1
|Si×j |

∑

(x,y)∈Si×j

F (x, y)α. (15)

Accordingly to the radiosity equation (1) and in analogy to classic oracles,
like KS, we consider the oracle structure ρiσBj < ε, where σ is the geometric
kernel [14]. Now, we propose to take the generalised discretisation error between
two patches as the kernel (σ = Δαij ) for the new oracle based on generalised
mutual information (GMIα). To simplify the expression of this oracle, we multiply
the inequality by the scene constant AT

2−α(1 − α).

Definition 6. The hierarchical radiosity oracle based on the generalised mutual
information is defined by

ρiAiAjδαij Bj < ε. (16)

4 Results

In this section, the GMIα oracle is compared with the KS and MI ones. Other
comparisons, with a more extended analysis, can be found in [14]. All oracles
have been implemented on top of the hierarchical Monte Carlo radiosity method.

In Fig. 1 we show the results obtained for the KS (a) and GMIα oracles with
their Gouraud shaded solutions and meshes. In the GMIα case, we show the
results obtained with the entropic indexes 1 (b) (i.e., note that GMI1 = MI) and
0.5 (c). For the sake of comparison, adaptive meshes of identical size have been
generated with the same cost for the power distribution: around 19,000 patches
and 2,684,000 rays, respectively. To estimate the form factor, the number of
random lines has been fixed to 10.

In Table 1, we show the Root Mean Square Error (RMSE) and Peak Signal
Noise Ratio (PSNR) measures for KS and GMIα (for 5 different entropic indexes)
oracles for the test scene. These measures have been computed with respect
to the corresponding converged image, obtained with a path-tracing algorithm
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(a.i) KS (a.ii) KS

(b.i) GMI1.00 (b.ii) GMI1.00

(c.i) GMI0.50 (c.ii) GMI0.50

Fig. 1. (a) KS and GMIα (entropic indexes (b) 1 and (c) 0.5) oracles. By columns, (i)
Gouraud shaded solution of view1 and (ii) mesh of view2 are shown.

with 1,024 samples per pixel in a stratified way. For each measure, we consider a
uniform weight for every colour channel (RMSEa and PSNRa) and a perceptual
one (RMSEp and PSNRp) in accordance with the sRGB system.

Observe in the view1, obtained with GMIα (Fig. 1.i.b-c), the finer details of
the shadow cast on the wall by the chair on the right-hand side and also the
better-defined shadow on the chair on the left-hand side and the one cast by the
desk. In view2 (Fig. 1.ii) we can also see how our oracle outperforms the KS,
especially in the much more defined shadow of the chair on the right. Note the
superior quality mesh created by our oracle.
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Table 1. The RMSE and PSNR measures of the KS and GMIα oracles applied to the
test scene of Fig. 1, where the KS and GMIα∈{0.5,1} results are shown. The oracles have
been evaluated with 10 random lines between each two elements.

oracle view1 view2

RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

KS 13.791 13.128 25.339 25.767 15.167 14.354 24.513 24.991
GMI1.50 11.889 11.280 26.628 27.084 13.046 12.473 25.821 26.211
GMI1.25 10.872 10.173 27.405 27.982 11.903 11.279 26.618 27.086
GMI1.00 9.998 9.232 28.133 28.825 10.438 9.709 27.758 28.387
GMI0.75 9.555 8.786 28.526 29.254 10.010 9.257 28.122 28.801
GMI0.50 9.370 8.568 28.696 29.473 9.548 8.740 28.533 29.300

(i) (ii)

Fig. 2. GMI0.50 oracle: (i) Gouraud shadow solution and (ii) mesh are shown

Table 2. The RMSE and PSNR measures of the GMIα oracle applied to the scene
of Fig. 2, where the GMI0.5 result is shown. The oracle has been evaluated with 10
random lines between each two elements.

oracle RMSEa RMSEp PSNRa PSNRp

GMI1.50 16.529 15.530 23.766 24.307
GMI1.25 15.199 14.145 24.494 25.119
GMI1.00 14.958 13.844 24.633 25.306
GMI0.75 14.802 13.683 24.724 25.407
GMI0.50 14.679 13.573 24.797 25.477

In general, the improvement obtained with the GMIα oracle is significant.
Moreover, its behaviour denotes a tendency to improve towards subextensive
entropic indexes (α < 1). To observe this tendency, another test scene is shown in
Fig. 2 for an entropic index 0.5. Its corresponding RMSE and PSNR measures are
presented in Table 2. The meshes are made up of 10,000 patches with 9,268,000
rays to distribute the power and we have kept 10 random lines to evaluate the
oracle between elements.
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5 Conclusions

We have presented a new generalised-mutual-information-based oracle for hier-
archical radiosity, calculated from the difference between the continuous and dis-
crete generalised mutual information between two elements of the adaptive mesh.
This measure expresses the loss of information transfer between two patches due
to the discretisation. The objective of the new oracle is to reduce the loss of
information, obtaining an optimum mesh. The results achieved improve on the
classic methods significantly, being better even than the version based on the
Shannon mutual information. In all the tests performed, the best behaviour is
obtained with subextensive indexes.
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