
Agents Based Hierarchical Parallelization of
Complex Algorithms on the Example of hp

Finite Element Method

M. Paszyński

Department of Computer Science
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Cracow, Poland

paszynsk@agh.edu.pl
http://home.agh.edu.pl/~paszynsk

Abstract. The paper presents how application of agents can improve
scalability of domain decomposition (DD) based parallel codes, where
the optimal load balance for some components of the code cannot be
achieved only by partitioning computational domain. The limitation of
the DD paradigm, where some highly overloaded pieces of domain cannot
be partitioned into smaller sub-domains can be effectively overcome by
parallelization of computational algorithm over these pieces. The agents
are used to localize such highly loaded unbreakable parts of domain.
Multiple agents are then assign to each highly loaded part to execute
computational algorithm in parallel. The resulting hierarchical paral-
lelization scheme results in the significant improvement of the scalability.
The proposed agent based hierarchical parallelization scheme has been
successfully tested on a very complex hp Finite Element Method (FEM)
parallel code, applied for simulating Step-and-Flash-Imprint Lithogra-
phy (SFIL), resistance heating of Al-Si billet in steel die for tixoforming
process as well as for the Fichera model problem.

Keywords: Hierarchical parallelization, Computational agents, Finite
Element Method, hp adaptivity.

1 Introduction

In general, there are two methodologies for parallelization of computational codes
[4]. The first one is based on the domain decomposition paradigm (DD), where
computational domain is partitioned into sub-domains and the same computa-
tional algorithm is executed over each sub-domain. The second one based on
functional decomposition (FD), first decomposing the computation to be per-
formed and then dealing with data.

For some classes of problems the first one is suitable, whilst for some other
classes the second one is better. However, for some complex problems mixed
approach is necessary. For example let us consider the system which consists of
many components working on the same data structure. Most of these components

Y. Shi et al. (Eds.): ICCS 2007, Part II, LNCS 4488, pp. 912–919, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://home.agh.edu.pl/~paszynsk


Agents Based Hierarchical Parallelization of Complex Algorithms 913

can be efficiently parallelized by utilizing the domain decomposition paradigm.
Unfortunately, some other components interpret these data in a different manner,
and there are some unbreakable pieces of data which require very expensive
computations.

The paper presents agent based hierarchical parallelization of such complex
algorithms, where DD paradigm is utilized on the base level, and the func-
tional decomposition is applied to resolve highly overloaded unbreakable pieces
of domain. Many agents are applied to localize such highly overloaded pieces
of domain, which cannot be broken into smaller subdomains. The agents utilize
functional decomposition to reduce computational load on these nodes.

The Finite Element Method (FEM) [1] is the most popular and flexible way
of solving engineering problems. The FEM applications are usually parallelized
by utilizing the DD paradigm, since its computational mesh can be partitioned
into uniformly loaded subdomains. The hp Finite Element Method [2] is the
most complex version of FEM. The computational meshes for hp FEM consist
of finite elements with various sizes (thus h stands for finite element diameter)
and with polynomial orders of approximation varying locally on finite elements
edges, faces and interiors (thus p stands for order of approximation). The parallel
version of the hp FEM has been developed [5], utilizing the domain decomposi-
tion paradigm. Most of the components of the system, including decisions about
optimal mesh refinements, parallel mesh refinements and mesh reconciliation,
scale very well under domain decomposition paradigm. However, for some other
components, like integration and elimination components of the solver, the com-
putational meshes with high polynomial orders of approximation suffer from
presence of single nodes, where computational cost can be higher than sum of
costs for all other nodes in the mesh [5]. There is no way of partitioning such
single nodes, and the domain decomposition paradigm is not sufficient to pro-
vide well scalability for these components. The proposed agent based hierarchical
parallelization can effectively improve scalability of these components.

1.1 Hexahedral 3D hp Finite Element

The reference 3D hexahedral hp finite element presented in Figure 1 consists of 8
vertices, 12 edges, 6 faces and the interior. It is defined as a triple

(
K̂, X(K̂), ΠK̂

)

where K̂ is a [0, 1]3 cube shape geometry of the reference element, X(K) is a
space of shape functions, defined as a subspace of Q(px,py,pz) polynomials of
order px, py and pz in ξ1, ξ2, ξ3 spatial variables. The polynomial order of
approximation at each vertex is set to 1. In order to be able to glue together
on single computational mesh finite elements with different orders, we associate
a possibly different polynomial order of approximation pi = (pih, piv) with each
finite element face, where h and v stand for horizontal and vertical orders of
approximation for each of six faces i = 1, ..., 6. Similarly, we associate with each
finite element edges a possibly different polynomial order of approximation pj

for each of twelve edges j = 1, ..., 12. Finally, the interior of an element has three
polynomial orders of approximation (px, py, pz) in every spatial direction. The



914 M. Paszyński

Fig. 1. Left picture: 3D hexahedral hp finite element. Right picture: Graphical
notation for various polynomial orders of approximation on element edges and faces.

graphical notation for denoting different polynomial orders of approximation by
different colors is introduced in Fig. 1. ΠK̂ is the projection operator ΠK̂ : X →
X(K̂), see [2]. The integration performed by FEM over any arbitrary geometry
finite element K called physical element are transferred into the reference element
K̂ by performing change of variables.

2 Computational Problems

The hierarchical parallelization will be discussed on three engineering problems

– The 3D model Fichera problem, described in details [5].
– The Step-and-Flash Imprint Lithography (SFIL), the patterning process uti-

lizing photopolimerization to replicate microchip pattern from the template
into the substrate [6]. The goal of hp FEM simulation is to compute vol-
umetric shrinkage of the feature modeled by linear elasticity with thermal
expansion coefficient.

– The resistance heating of the Al-Si billet in steel die for tixoforming process
[7]. The goal of hp FEM simulation is to compute heat distribution during
the resistance heating process, modeled by the Poisson equation with Fourier
boundary condition of the third type.

To solve each of these problems in an accurate way, a sequence of hp FE
meshes are generated by the fully automatic parallel hp-adaptive FEM code
[5]. These sequences of meshes generated in automatic mode (without any user
interaction) deliver exponential convergence of the numerical error with respect
to the mesh size (number of degrees of freedom).

When the computational problem contains singularities related with either
jumps in material data, jumps of prescribed boundary conditions, or complicated
geometry, the generated hp meshes are irregular, and may contain very small
finite elements with high polynomial orders of approximation, especially in areas
close to these singularities.

In the first problem, there is one singularity at the center of the domain [5].
The generated hp mesh contains a single finite element with interior node with
polynomial orders of approximation set to 7 in all three directions, as well as



Agents Based Hierarchical Parallelization of Complex Algorithms 915

three finite elements with interior nodes with polynomial orders of approxima-
tion set to 6 in two directions and 7 in the third direction. The load representing
computational cost over these elements for integration and elimination compo-
nents is much higher then load over all other elements, see Fig. 2. In the second

Fig. 2. The load inbalance over the optimal hp mesh for the Fichera model problem

Fig. 3. The load inbalance over the optimal hp mesh for the SFIL problem

problem, there is one central finite element with polynomial order of approxima-
tion higher then orders in all other finite elements. The load over this element
is higher then load over all other finite elements, and it is equal to 5 in two
directions and 6 in the third direction, see Figure 3. In the third problem, there
are many singularities related to jumps in material data. There are many finite
elements with high polynomial orders of approximation and the load distribution
is quite uniform, see Figure 4.

3 Load Balancing Problem

This section presents an overview of FEM computations performed by integra-
tion and direct solve components over hp finite element meshes. The goal of this



916 M. Paszyński

presentation is to derive estimation of the computational cost over a single hp
finite element. All problems presented in the previous section fit into abstract
variational formulation

{
u ∈ u0 + V
b (u, v) = l (v)∀v ∈ V

. (1)

We seek a solution u from a functional space u0 + V where u0 is the lift of the
Dirichlet boundary conditions [3]. Here b and l are problem dependent func-
tionals defined as integrals over the entire domain. The variational formulations
are derived from partial differential equations describing the considered physical
phenomena, and is satisfied for all test functions v ∈ V . The problem (1) is

Fig. 4. The load balance over the optimal hp mesh for the resistance heating problem

solved over a finite dimensional subspace Vh,p ⊂ V [3]
{

uh,p ∈ u0 + Vh,p

b (uh,p, vh,p) = l (vh,p)∀vh,p ∈ Vh,p
. (2)

The finite dimensional basis of Vhp is constructed from polynomials of the first
order in all directions at all finite elements vertices, from polynomials of order
{pj,K}j=1,..,12,K over all 12 edges of all finite elements K, from polynomials of
order {(pih,K , piv,K}i=1,...,6,K over all 6 faces j = 1, ..., 6 of all finite elements K
and from polynomials of order {(px,K , py,K , pz,K)}K over interiors of all finite
elements K. These polynomials are called finite element shape-functions and
their support is spread over adjacent elements only, see [3] for more details. The
global shape functions {ei

h,p}i=1,...,N are obtain by collecting all interior finite
elements shape functions, and by glueing together edge and face finite elements
shape functions, respectively. The total number of global shape functions is de-
noted by N . Thus, the approximated solution uh,p is represented as a linear
combination of global shape functions

uh,p = u0 +
∑

i,...,N

ui
h,pe

i
h,p. (3)



Agents Based Hierarchical Parallelization of Complex Algorithms 917

The coefficients {ui
h,p}i=1,...,N are called global degrees of freedom. and the dis-

cretized problem (2) can be rewritten as
{

uh,p ∈ u0 + Vh,p∑
i=1,...,N ui

h,pb
(
ei

h,p, e
j
h,p

)
= l

(
ej

h,p

)
∀j = 1, ..., N

. (4)

To solve problem (4) it is necessary to build and solve the global stiffness matrix
{b

(
ei

h,p, e
j
h,p

)
}i,j=1,...,N , and the right-hand-side (rhs) vector {l

(
ej

h,p

)
}j=1,...,N .

The global stiffness matrix and the rhs vector are aggregated from local vectors
and matrices, related to restrictions of integrals {b

(
ei

h,p|K , ej
h,p|K

)
}i,j=1,...,N ,

and {l
(
ej

h,p|K
)
}j=1,...,N over particular finite elements K.

For hp meshes with high polynomial orders of approximation the construction
of these local contributions, performed by the integration component, is very
expensive.

Let us consider a single finite element with polynomial orders of approximation
in its interior equal to (p1, p2, p3). The size of the local matrix associated with
such a finite element is equal to the number of degrees of freedom nrdof of the
shape function of order (p1, p2, p3).

nrdof = (p1 + 1)(p2 + 1)(p3 + 1). (5)

Here is the algorithm building the local matrix over such a finite element:

1 for i=1,nint1
2 for j=1,nint2
3 for k=1,nint3
4 for m=1,nrdof
5 for n=1,nrdof
6 aggregate local contribution to the stiffness matrix,
7 associated with m-th and n-th degrees of freedom
8 aggregate local contribution to the rhs vector
9 associated with m-th degrees of freedom

where nint1 = p1 + 1, nint2 = p2 + 1 and nint3 = p3 + 1 stand for number of
Gaussian quadrature interpolation points necessary to compute integral of poly-
nomial of orders (p1, p2, p3). The computational complexity of the integration
algorithm is then nint1×nint2×nint3×nrdof ×nrdof = (p1 +1)× (p2 +1)×
(p3+1)×(p1+1)(p2+1)(p3+1)(p1+1)(p2+1)(p3+1) = (p1+1)3(p2+1)3(p3+1)3.
The load balancing is performed based on the computational cost estimation

load = (p1 + 1)3(p2 + 1)3(p3 + 1)3. (6)

When the hp mesh contains finite elements with load much higher than sum of
loads of all other elements, the optimal load balance is such that each expensive
finite element is assigned to a separate processor, and some number of other
processors is responsible for all other finite elements. For example in Figures 2
and 3 there are hp meshes balanced in optimal way into 6 or 4 processors, whilst
total number of available processors is 8 (2 or 4 processors are idle).



918 M. Paszyński

4 Agents Based Hierarchical Parallelization

To overcome the problem with expensive integration over finite elements with
very high p, the following agent based strategy is proposed.

The multiple agents are executed to localize finite elements with highest poly-
nomial orders of approximation. Multiple agents are then assigned to each high
order finite element. All agents assigned to a single high order element execute
parallel version of the integration algorithm. The following line is added in the
integration algorithm after i, j, k loops:

4 if((k+(j-1)*nint3+(i-1)*nint2*nint3) modulo NRA != RANK)continue

where NRA is the total number of agents assigned to high order node, and
RANK is the identificator of current agent. In other words, the Gaussian quadra-
ture integration loops are cut into parts, and each agent executes some portion
of loops. There are three phases of communication in this algorithm

– To localize finite elements with highest order agents must exchange orders
of approximations of interiors of hp finite elements.

– Agents must exchange data necessary to perform integration over Gaussian
quadrature points assigned to each agent. This involves only material data
for a finite element and geometry of an element represented as single double
precision Jacobian from change of variables from a physical finite element K
into the reference K̂ = [0, 1]3 element.

– At the end of loops, agents must sum up resulting local matrices of size
nrdof2 and vectors of size nrdof .

Fig. 5. Execution time of the integration algorithm with and without agents for 8 and
16 processors, for the Fichera model problem

The agent based hierarchical parallelization scheme was utilized to improve ef-
ficiency of the integration component for the presented problems. Exemplary
results for the Fichera model problem are presented in Figure 5. There is 1 node
with (px, py, pz) = (7, 7, 7) and 3 nodes with (px, py, pz) = (6, 6, 7), compare
Figure 2. The domain decomposition, optimal with respect to load defined by
(6), is put each of these nodes into separate sub-domain, and all other nodes
into two other sub-domains. For 8 processors execution there are 2 processors



Agents Based Hierarchical Parallelization of Complex Algorithms 919

idle, whilst for 16 processors execution there are 10 processors idle. The applica-
tion of agents to localize highly loaded nodes and eliminate them by performing
parallelization of loops gives ideal load balance, see Figure 5. The integration is
followed by forward elimination phase of the parallel multi-frontal direct solver
[5]. The cost of elimination over highly loaded element is nrdof3 and the same
load inbalances as for the integration component occurs. It means that we were
able to improve efficiency of the integration and elimination components by 50%,
since the elimination is still not well balanced. The further improvement of the
efficiency can be achieved by switching to iterative solvers.

5 Conclusions and Future Work

The agent based hierarchical parallelization with DD paradigm on the base level
and functional decomposition on highly loaded unbreakable pieces of data was
proposed. The computational agents were utilized to localize such highly loaded
unbreakable parts of domain, and to utilize functional decomposition by execut-
ing computational algorithm with parallelization of loops. The methodology has
been successfully applied to improve efficiency of parallel hp FEM computations.

Acknowledgments. The work reported in this paper was supported by Polish
MNiSW grant no. 3 TO 8B 055 29.

References

1. Ciarlet P., The Finite Element Method for Elliptic Problems. North Holland, New
York (1994)

2. Rachowicz, W., Pardo D., Demkowicz, L., Fully Automatic hp-Adaptivity in Three
Dimensions. ICES Report 04-22 (2004) 1-52

3. Demkowicz L., Computing with hp-Adaptive Finite Elements, Vol. I. Chapman &
Hall/Crc Applied Mathematics & Nonlinear Science, Taylor & Francis Group, Boca
Raton London New York (2006)

4. Foster I., Desiging and Building Parallel Programs. www-unix.mcs.aml.gov/dbpp
5. Paszyński, M., Demkowicz, L., Parallel Fully Automatic hp-Adaptive 3D Finite

Element Package. Engineering with Computers (2006) in press.
6. Paszyński, M., Romkes, A., Collister, E., Meiring, J., Demkowicz, L., Willson, C.

G., On the Modeling of Step-and-Flash Imprint Lithography using Molecular Statics
Models. ICES Report 05-38 (2005) 1-26

7. Paszyński, M., Macio�l, P., Application of Fully Automatic 3D hp Adaptive Code to
Orthotropic Heat Transfer in Structurally Graded Materials. Journal of Materials
Processing Technology 177 1-3 (2006) 68-71


	Introduction
	Hexahedral 3D hp Finite Element

	Computational Problems
	Load Balancing Problem
	Agents Based Hierarchical Parallelization
	Conclusions and Future Work

