
Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 599 – 602, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Optimal Object-Oriented
Program Re-modularization

Saeed Parsa and Omid Bushehrian

Faculty of Computer Engineering, Iran University of Science and Technology
{parsa,bushehrian}@iust.ac.ir

Abstract. In this paper a new criterion for automatic re-modularization of
object-oriented programs is presented. The aim of re-modularization here is to
determine a distributed execution of a program over a dedicated network of
computers with the shortest execution time. To achieve this, a criterion to
quantitatively evaluate performance of a re-modularized program is presented
as a function. This function is automatically constructed while traversing the
program call flow graph once before the search for the optimal re-
modularization of the program and considers both synchronous and
asynchronous types for each call within the call flow graph.

1 Introduction

With the increasing popularity of using clusters and network of low cost computers in
solving computationally intensive problems, there is a great demand for system and
application software that can provide transparent and efficient utilization of the
multiple machines in a distributed system [2][3][5]. There are a number of such
application softwares including middle-wares and utility libraries which support
parallel and distributed programming over a network of machines. A distributed
program written using these middle-wares comprises a number of modules or
distributed parts communicating by means of message passing or asynchronous
method calls.

 Our aim has been to develop automatic techniques to obtain maximum execution
concurrency among distributed parts or modules of a program. To reach this end,
the main difficulty is to determine theses distributed parts, or equivalently, the
architecture of a distributed program code. The architecture of a program can be
reconstructed using software reverse engineering and re-modularization techniques
[1][4].

2 The Optimal Re-modularization of a Program

Each clustering of a program call graph, which is a modularization of that program,
represents a subset of program method calls, named remote-call set, to be converted to
remote asynchronous calls. For instance consider the modularized call graph of four
classes in Figure 1. This modularization corresponds to remote-call set {c1, c2, c4}.

600 S. Parsa and O. Bushehrian

A B

C D

C1

C2

C3
C4

Fig. 1. Re-modularization of a program call graph

3 Performance Estimation of a Re-modularized Program

In order to evaluate a re-modularized program performance, the remote-call set
corresponding to that re-modularization is obtained and evaluated by applying a
function called Estimated Execution Time (EET). For a given remote-call set r,
EETl(r) calculates a value which is an estimation of the amount of execution time of
method call I with respect to r. Each EET formula is generated from the program
call flow graph (CFG). CFG shows the flow of method calls among program
classes. Each node in this graph represents a method body in an abstract way by
means of a sequence of symbols. Each symbol in this sequence indicates one of
these concepts: a method invocation, a synchronization point between caller and
callee methods or an ordinary program instruction which are denoted by Ii, Si and
Wi respectively. Symbol Si indicates the first program location which is data
dependent to a method invocation Ii in the CFG node sequence. Symbol Wi
represents any collection of ordinary program statements with estimated execution
time i. Below in Figure 2 is a sample Java code and its corresponding CFG. EET
function for a program is generated automatically by traversing the program CFG.
Since each method invocation Ii in the program CFG may be executed either
synchronously or asynchronously, depending on the specified modularization of the
program classes, the EET function includes time estimation for both synchronous
and asynchronous execution types for each invocation Ii. For instance the EET
function for CFG in Figure 2 is generated as follows:

Calss A{
…… public static void main(string[]
arg){
 int r1,r2;
 B b=new B(); C c=new C();
 r1= b.m(); // I1

 r2= c.n (); // I2

 use(r2); //S2

 use(r1); //S1

 }
private void use(int r){…}
 }//Class

Calss B{
…..
public int m(){
//some
computations
}}//Class

Calss C{
…..
public int n(){

//some
computations
}}//Class

I1

W3

I2 S2 S1W1 W1

W4

Fig. 2. A sample program including three classes and its CFG

 On the Optimal Object-Oriented Program Re-modularization 601

 (1)

EET main(r)= a1*EETI1(r) + a2*EETI2(r) + (1-a2)*T(S2) + W1 + (1-a1)*T(S1)
+ W1 EETI1(r)=W3 , EETI2(r)=W4 ,

In this relation, depending on the execution type of invocations I1 and I2,
asynchronous or synchronous, coefficients a1 and a2 are set to 0 or 1 respectively. S1
and S2 are synchronization points of calls I1 and I2 respectively and T(Si) indicates the
amount of time that should be elapsed at synchronization point Si until invocation Ii is
completed.

The general form of an EET relation for a program is as follows:

 (2) EETm(r)=∑ wi + ∑ ai* EETIi (r) + ∑ (1-ai)*T(Si)

In the above formula coefficients ai are determined by remote-call set r as follows:

 1 : Ii ∉ r

ai=
 0 : Ii ∈ r

As described above, T(Si) is the amount of time that should be elapsed at
synchronization point Si until invocation Ii is completed. T(Si) is calculated by the
following relation:

 (3) T(Si)= max((EETIi (r) + Oi) – ti ,0)

Where, ti is estimated execution time of the program fragment between symbols Ii and
Si. Since each asynchronous method invocation Ii imposes a communication overhead
on the overall program execution time, this overhead which is denoted by Oi , is
added to the estimated execution time of Ii. Since it is assumed that CFG is cycle free,
EETm(r) can be solved by recursively replacing EET terms until EETm(r) contains
only ai coefficients, Wi terms, Oi terms and max operators.

4 Conclusions

The main difficulty in obtaining a distributed execution of a program with minimum
execution time is to find the smallest set of program invocations to be converted to
remote asynchronous invocations. Program re-modularization can be applied as an
approach to reach this end. Program re-modularization is used to reconstruct program
architecture with respect to one ore more quality constraints such as performance or
maintainability. In this paper a new criterion for performance driven re-
modularization of a program has been proposed. This criterion is used to
quantitatively estimate the performance of a re-modularized program with a function
which is generated automatically from the program call flow graph (CFG). This
function includes time estimations for both asynchronous and synchronous execution
types of each method in the program call flow graph.

602 S. Parsa and O. Bushehrian

References

1. Berndt Bellay, Harald Gall, “Reverse Engineering to Recover and Describe a Systems
Architecture”, Development and Evolution of Software Architectures for Product Families,
Lecture Notes in Computer Science(1998), Volume 1429 .

2. Bushehrian Omid, Parsa Saeed, “Formal Description of a Runtime Infrastructure for
Automatic Distribution of Programs”, The 21th International Symposium on Computer and
Information Sciences, Lecture Notes in Computer Science(2006), Vol. 4263.

3. Jameela Al-Jaroodi, Nader Mahamad, Hong Jiang, David Swanson, “JOPI: a Java Object
Passing Interface”, Concurrency Computat. : Pract. Exper. (2005); 17:775–795

4. Parsa S. , Bushehrian O., “The Design and Implementation of a Tool for Automatic
Software Modularization”, Journal of Supercomputing, Volume 32, Issue 1, April (2005).

5. Parsa Saeed, Khalilpour Vahid, “Automatic Distribution of Sequential Code Using
JavaSymphony Middleware”, SOFSEM06, Lecture Notes in Computer Science(2006), Vol.
3831,.

	Introduction
	The Optimal Re-modularization of a Program
	Performance Estimation of a Re-modularized Program
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

