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Abstract. We present a physical, laboratory-scale analog of large-scale atmos-
pheric circulation and develop an observatory for it. By combining observations
of a hydro-dynamically unstable flow with a 3D numerical fluid model, we obtain
a real-time estimate of the state of the evolving fluid which is better than either
model or observations alone. To the best of our knowledge this is the first such
observatory for laboratory simulations of planetary flows that functions in real
time. New algorithms in modeling, parameter and state estimation, and observa-
tion targeting can be rapidly validated, thus making weather and climate applica-
tion accessible to computational scientists. Properties of the fluid that cannot be
directly observed can be effectively studied by a constrained model, thus facili-
tating scientific inquiry.

1 Introduction

Predicting planetary circulation is fundamental for forecasting weather and for stud-
ies of climate change. Predictions are typically made using general circulation models
(GCMs), which implement the discretized governing equations. It is well-known that
the prediction problem is hard [4]. Models typically have erroneous parameters and pa-
rameterizations, uncertain initial and boundary conditions, and their numerical schemes
are approximate. Thus not only will the error between physical truth and simulation
evolve in a complex manner, but the PDF of the evolving model state’s uncertainty is
unlikely to retain the true state within it. A way forward is to constrain the model with
observations of the physical system. This leads to a variety of inference problems such
as estimating initial and boundary conditions and model parameters to compensate for
model inadequacies and inherent limits to predictability. Constraining models with ob-
servations on a planetary scale is a logistical nightmare for most researchers. Bringing
the real world into an appropriate laboratory testbed allows one to perform repeatable
experiments, and so explore and accelerate acceptance of new methods.

A well-known analog of planetary fluid-flow is a thermally-driven unstable rotating
flow [2,3]. In this experiment a rotating annulus with a cold center (core) and warm pe-
riphery (exterior) develops a circulation that is dynamically similar to the mid-latitude
circulation in the atmosphere (see Figure 1). We have built an observatory for this lab-
oratory experiment with the following components: Sensors to take measurements of
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Fig. 1. Image (a) shows the 500hPa heights for 11/27/06:1800Z over the northern hemisphere
centered at the north pole. Winds flow along the contours. Image (b) shows a tracer (dye) in a
laboratory analog. The tank is spinning and the camera is in the rotating frame. Tracer droplets
initially inserted at the periphery (red dye, warm region) and around the central chilled can (green
dye, cold region) has evolved to form this pattern. The laboratory analog and the planetary system
are dynamically akin to one-another. We study the state-estimation problem for planetary flows
using the laboratory analog.

the evolving physical system, a numerical model trying to forecast the system, and an
algorithm to combine model and observations. The challenges in building such a sys-
tem are rather similar to the large-scale problem, in at least four ways. Nonlinearity:
The laboratory analog is nonlinear and the numerical model is the same used in plane-
tary simulations. Dimensionality: The size of the state of the numerical model is of the
same order as planetary simulations. Uncertainty: The initial conditions are unknown,
and the model is imperfect relative to the physical system. Realtime: Forecasts must be
produced in better than realtime. This corresponds to a time of order ten seconds in our
laboratory system within which a forecast-observe- estimate cycle must be completed.

In this report, we discuss the realtime system and focus on the problem of estimating
initial conditions, or state. This estimation problem is posed as one of filtering and we
demonstrate a two-stage assimilation scheme that allows realtime model-state estimates.

2 The Observatory

The observatory, illustrated in Figure 2, has a physical and computational component.
The physical component consists of a perspex annulus of inner radius 8cm and outer
radius of 23cm, filled with 15cm of water and situated rigidly on a rotating table. A
robotic arm by its side moves a mirror up and down to position a horizontal sheet of laser
light at any depth of the fluid. Neutrally buoyant fluorescent particles are embedded in
water and respond to incident laser illumination. They appear as a plane of textured dots
in the 12-bit quantized, 1K × 1K images (see Figure 4) of an Imperx camera. These
images are transported out of the rotating frame using a fiber-optic rotary joint (FORJ
or slip-ring). The actual configuration of these elements is shown in a photograph of
our rig in Figure 3.
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Fig. 2. The laboratory observatory consists of a physical system: a rotating table on which a tank,
camera and control system for illumination are mounted. The computational part consists of a
measurement system for velocimetry, a numerical model, and an assimilation system. Please see
text for description.

Fig. 3. The apparatus consists of (a) the rotating platform, (b) the motorized mirror, (c) the tank,
(d) electronics, (e) a rig on which a camera is mounted, (g). Laser light comes from direction
(f) and bounces off two mirrors before entering the tank. The fiber optic rotary joint (FORJ) (h)
allows images to leave rotating frame and is held stably by bungee chords (i).

The computational aspects of the observatory are also shown in Figure 2. A server
acquires particle images and ships them to two processors that compute optic-flow in
parallel (Figure 2, labeled (OBS)). Flow vectors are passed to an assimilation program
(Figure 2, labeled (DA)) that combines them with forecasts to estimate new states.
These estimates become new initial conditions for the models. We now go on to discuss
individual components of this system.

2.1 Physical Simulation and Visual Observation

We homogenize the fluid with neutrally buoyant particles and spin the rotating platform,
typically with a period of six seconds. After twenty minutes or so the fluid entrains itself
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Fig. 4. The rotating annulus is illuminated by a laser light sheet shown on the left. The camera in
the rotating frame sees embedded particles shown on the right. Notice the shadow due to the chiller
in the middle. The square tank is used to prevent the laser from bending at the annulus interface.

to the rotation and enters into solid body rotation. The inner core is then cooled using a
chiller. Within minutes the water near the core cools and becomes dense. It sinks to the
bottom to be replenished by warm waters from the periphery of the annulus, thus setting
up a circulation. At high enough rotation rates eddies form; flowlines bend forming all
sorts of interesting structures much like the atmosphere; see Figure 1.

Once cooling commences, we turn off the lights and turn on the continuous wave
1W 532nm laser, which emits a horizontal sheet of light that doubles back through two
periscoped mirrors to illuminate a sheet of the fluid volume (see Figure 4). An imaging
system in the rotating frame observes the developing particle optic-flow using a camera
looking down at the annulus.

The ultra-small pliolite particles move with the flow. We see the horizontal com-
ponent and compute optical flow from image pairs acquired 125-250ms apart using
LaVision’s DaVis software. Flow is computed in 32 × 32 windows with a 16 pixel uni-
form pitch across the image. It takes one second to acquire and compute the flow of a
single 1Kx 1K image pair. An example is shown in Figure 5.

Observations are gathered over several levels, repeatedly. The mirror moves to a
preprogrammed level, the system captures images, flow is computed, and the mirror
moves to the next preprogrammed level and so on, scanning the fluid volume in layers.
We typically observe the fluid at five different layers and so observations of the whole
fluid are available every 5 seconds and used to constrain the numerical model of the
laboratory experiment.

2.2 Numerical Model

We use the MIT General Circulation Model developed by Marshall et al. [6,5] to nu-
merically simulate the circulation. The MIT-GCM is freely available software and can
be configured for a variety of simulations of ocean or atmosphere dynamics.

We use the MIT-GCM to solve the primitive equations for an incompressible Boussi-
nesq fluid in hydrostatic balance. Density variations are assumed to arise from changes
in temperature. The domain is three-dimensional and represented in cylindrical coor-
dinates, as shown in Figure 6(a), the natural geometry for representing an annulus. In
experiments shown here, the domain is divided into 23 bins in radius (1cm/bin), 120
bins in orientation (3o bins). The vertical coordinate is discretized non uniformly using
15 levels and covering 15cm of physical fluid height, as shown in Figure 6(b). The fluid
is modeled as having a free slip upper boundaries and a linear implicit free surface. The



A Realtime Observatory for Laboratory Simulation of Planetary Circulation 1159

Fig. 5. A snapshot of our interface showing model velocity vectors (yellow), and observed ve-
locities (green) at some depth. The model vectors macroscopically resemble the observations,
though the details are different, since the model began from a different initial condition and has
other errors. Observations are used to constrain model states, see section 2.1.

lateral and bottom boundaries are modeled as no-slip. The temperature at the outer core
is constant and at the inner core is set to be decreasing with a profile interpolated from
sparse measurements in a separate experiment (see Figure 6(b)). The bottom boundary
has a no heat-flux condition. We launched the model from a random initial temperature
field. A 2D slice is shown in Figure 6(c).

The MIT-GCM discretizes variables on an Arakawa C-grid [1]. Momentum is ad-
vected using a second-order Adams Bashforth technique. Temperature is advected using
an upwind-biased direct space-time technique with a Sweby flux-limiter [7]. The treat-
ment of vertical transport and diffusion is implicit. The 2D elliptic equation for the surface
pressure is solved using conjugate gradients. In Figure 5, the model velocities are overlaid
on the observed velocities after suitably registering the model geometry to the physical
tank and interpolating. Despite the obvious uncertainty in initial conditions and other ap-
proximations, the model preserves the gross character of flow observed in the physical
fluid, but at any instant the model-state differs from the observations, as expected.

The model performs in better than realtime. On an Altix350, using one processor, we
barely make it1, but on 4 processors we are faster by a factor of 1.5. The reason for this

1 In ongoing work with Leiserson et al. we seek to speedup using multicore processors.
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Fig. 6. (a) The computational domain is represented in cylindrical coordinates. (b) Depth is dis-
cretized with variable resolution, to resolve the bottom-boundary finely. The lateral boundary
conditions were obtained by interpolating sparse temperature measurements taken in a separate
run and the bottom boundary is no flux. (c) shows a random initial condition field for a layer.

performance is the non-uniform discretization of the domain using nonuniform vertical
levels, which is also sufficient to resolve the flow.

2.3 State Estimation

An imperfect model with uncertain initial conditions can be constrained through a
variety of inference problems. In this paper, we estimate initial conditions, or state
estimation, which is useful in weather prediction applications. Following well-known
methodology, when the distributions in question are assumed Gaussian, the estimate of
state Xt at time t is the minimum of the following quadratic objective

J(Xt) = (Xt − Xf
t )T B−1

t (Xt − Xf
t ) +

(Yt − h(Xt))T R−1(Yt − h(Xt)) (1)

Here, Xf
t is the forecast at time t, B is the forecast error-covariance, h is the observation

operator and R is the observation error-covariance.
We use a two-stage approach. In the first stage, forecast and measured velocities at

each of the five observed levels are separately assimilated to produce velocity estimates.
Thermal wind is then used to map the implied temperature fields at these corresponding
levels. Linear models estimated between model-variables in the vertical are finally used
to estimate velocity and temperature at all model layers. Velocities at individual layers
are assimilated using an isotropic background error covariance. In effect, we assume
that the model does not have sufficient skill at startup and the first stage, therefore, is
designed to nudge the model to develop a flow similar to the observations. Because the
domain is decomposed into independent 2D assimilations and many independent 1D
regressions, this stage is very fast.

After running the first step for a few iterations, the second stage is triggered. Here
we use an ensemble of model-states to represent the forecast uncertainty and thus
use the ensemble Kalman filter to compute model-state estimates. It is impractical to
do large ensemble simulations. So we use time samples of the MIT-GCM’s state and
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Fig. 7. The forecast velocity field at a time t = 10min (left), observations at this layer (right) and
estimated velocity (bottom). The shadow precludes measurements in a large area and produces
noisy vectors at the shadow boundary.

perturb snapshots azimuthally with a mean perturbation of 0o and standard deviation
9o to statistically represent the variability of model forecasts. In this way the ensem-
ble captures the dominant modes with very few numerical simulations. This method
produces effective state estimates very efficiently.

The model is spun up from a random initial condition and forecasts 10 seconds ahead
in approximately 6 seconds. Ensemble members are produced by time sampling every
model second and perturbed to construct 40 member forecast ensembles. Planar velocity
observations of 5 layers of the model are taken in parallel. In current implementation,
assimilation is performed off-line though its performance is well within realtime. In un-
der 2 seconds, the models and observations are fused to produce new estimates. The new
estimated state becomes a new initial condition and the model launches new forecasts.

In Figure 7 the planar velocity of a forecast simulation, observations and estimates
at the middle of the tank is shown 10 minutes into an experiment. As can be seen, the
observations are noisy and incomplete due to the shadow (see Figure 4). The estimate
is consistent with the observations and fills-in missing portions using the forecast. The
error between the observations and estimates is substantially reduced. Please note that
all 5 levels of observations are used and the entire state is estimated, though not depicted
here for lack of space.
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3 Conclusions

The laboratory analog of the mid-latitude circulation is a robust experiment, and the nu-
merical model is freely available. Thus the analog serves as a new, easy-to-use, testbed.
We have built a realtime observatory that to the best of our knowledge has not been
reported before. Our hope is that the datasets generated here would find useful appli-
cation to other researchers to apply their algorithms. Realtime performance is achieved
through parallelism (observations), domain-reduction (model) and an efficient method
to generate samples and compute updates (estimation).

A successful observatory also opens a number of exciting possibilities. Once the
numerical model faithfully tracks the physical system, properties of the fluid that can-
not easily be observed (surface height, pressure fields, vertical velocities etc.) can be
studied using the model. Tracer transport can be studied using numerical surrogates.
Macroscopic properties such as effective diffusivity can be studied via the model. For
weather prediction, the relative merits of different state estimation algorithms, charac-
terizations of model error, strategies for where to observe, etc etc, can all be studied and
results reported on the laboratory system will be credible.

Of particular interest is the role of the laboratory analog for DDDAS. By building the
infrastructure in the first year of this work, we can take on DDDAS aspects of this re-
search in the second. In particular, we are interested in using the model-state uncertainty
to optimize the number of observed sites, and locations where state updates are com-
puted. In this way we expect to steer the observation process and use the observations
to steer the estimation process.
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