A Remark on Quantum Ergodicity for CAT Maps

J. Bourgain

Institute for Advanced Study, School of Mathematics, Princeton, NJ 08540, USA
bourgain@math.ias.edu

1 Introduction

The purpose of this Note is to give an affirmative answer to a question raised in the paper of P. Kurlberg and Z. Rudnick [K-R]. We first briefly recall the background (see [K-R2]). Given $A \in S L_{2}(\mathbb{Z})$, consider the automorphism of the torus $\mathbb{T}^{2}: x \mapsto A x$.

Given $f \in \mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right)$, the classical evolution defined by A is $f \mapsto f \circ A$. The quantization is obtained as follows. Let $N \in \mathbb{Z}_{+}$be a large integer and consider the Hilbert space $\mathcal{H}_{N}=L^{2}\left(\mathbb{Z}_{N}\right), \mathbb{Z}_{N}=\mathbb{Z} / N \mathbb{Z}$ with inner product

$$
\langle\phi, \psi\rangle=\frac{1}{N} \sum_{x \in \mathbb{Z}_{N}} \phi(x) \overline{\psi(x)}
$$

The basic observables are given by the operators $T_{N}(n), n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ defined as follows

$$
\begin{equation*}
\left(T_{N}(n) \phi\right)(x)=e^{i \pi \frac{n_{1} n_{2}}{N}} e^{2 \pi i \frac{n_{2} x}{N}} \phi\left(x+n_{1}\right) \tag{1.1}
\end{equation*}
$$

Writing $f(x)=\sum_{n \in \mathbb{Z}^{2}} \hat{f}(n) e^{2 \pi i n x}, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$, its quantization is then defined by

$$
\begin{equation*}
O p_{N}(f)=\sum_{n \in \mathbb{Z}^{2}} \hat{f}(n) T_{N}(n) . \tag{1.2}
\end{equation*}
$$

Assume further that $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfies

$$
a b \equiv c d \equiv 0(\bmod 2)
$$

One may then assign to A a unitary operator $U_{N}(A)$ called quantum propagator or quantized cat map, which satisfies the 'exact' Egorov theorem

$$
\begin{equation*}
U_{N}(A)^{*} O p_{N}(f) U_{N}(A)=O p_{N}(f \circ A) \tag{1.3}
\end{equation*}
$$

We are concerned with the eigenfunctions of $U_{N}(A)$ which play the role of energy eigenstates.

It is shown in [K-R] that for N taken in a subsequence $\mathcal{N} \subset \mathbb{Z}_{+}$of asymptotic density one, we have for all $f \in \mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right)$

$$
\begin{equation*}
\max _{\psi}\left|\left\langle O p_{N}(f) \psi, \psi\right\rangle-\int_{\mathbb{T}^{2}} f\right| \underset{N \in \mathcal{N}}{\overrightarrow{N \rightarrow \infty} 0} 0 \tag{1.4}
\end{equation*}
$$

where the maximum is taken over all normalized eigenfunctions ψ of $U_{N}(A)$.
The quantization of the cat map described above was proposed by Hannay and Berry $[\mathrm{H}-\mathrm{B}]$. A few comments at this point. In the context of cat maps, Schnirelman's general theorem when the classical dynamics is ergodic (which is the case when $A \in S L_{2}(\mathbb{Z})$ is hyperbolic) takes the following form. Let $f \in C^{\infty}\left(\mathbb{T}^{2}\right)$. If $\left\{\psi_{j}\right\}$ is an arbitrary orthonormal basis of \mathcal{H}_{N} consisting of eigenfunctions of $U_{N}(A)$, there is a subset $J(N) \subset\{1, \ldots, N\}$ such that $\frac{\# J(N)}{N} \rightarrow 1$ and for $j \in J(N)$

$$
\begin{equation*}
\left\langle O p_{N}(f) \psi_{j}, \psi_{j}\right\rangle \rightarrow \int_{\mathbb{T}^{2}} f \text { when } N \rightarrow \infty \tag{1.5}
\end{equation*}
$$

Hence the [K-R] result (1.4) goes beyond (1.5), since they obtain a statement valid for all eigenfunctions of $U_{N}(A)$.

Previously, the only result providing an infinite set \mathcal{N} of integers N (primes) satisfying (1.4) was due to Degli-Esposti, Graffi and Isola [D-G-I], conditional to $G R H$. The precise form of the [K-R] result is as follows (using previous notations)

$$
\begin{equation*}
\sum_{j=1}^{N}\left|\left\langle O p_{N}(f) \psi_{j}, \psi_{j}\right\rangle-\int_{\mathbb{T}^{2}} f\right|^{4} \ll \frac{N(\log N)^{14}}{o(A, N)^{2}} \tag{1.6}
\end{equation*}
$$

where $o(A, N)$ denotes the order of $A \bmod N$. (See $[\mathrm{K}-\mathrm{R}]$, Theorem 2.) In order to derive (1.4) from (1.6), one needs to ensure that $o(A, N) \gg N^{1 / 2}$ for $N \in \mathcal{N}$. Verifying this property for sequence \mathcal{N} of asymptotic density 1 is in fact a significant part of the [K-R] paper (the issue is related to the classical Gauss-Artin problem.) It is shown in $[\mathrm{K}-\mathrm{R}]$ one may ensure for $N \in \mathcal{N}$ of asymptotic density 1 , that

$$
\begin{equation*}
o(A, N) \gg N^{1 / 2} \exp \left((\log N)^{\delta}\right) \tag{1.7}
\end{equation*}
$$

for some $\delta>0$.
The authors raise the question how to get results when $o(A, N)$ is smaller than $N^{1 / 2}$. We will show here how to settle this problem using the new exponential sum bounds obtained in [BGK], [B], [B-C] for multiplicative subgroups G of finite fields and their products. These results provide nontrivial estimates even when G is very small.

They will allow us to deal with the case when $o(A, N) \gg N^{\varepsilon}$ (say for N prime) for an arbitrary small given $\varepsilon>0$. Unlike a stronger statement such
as (1.7), the generic validity of this last condition is essentially obvious to verify. Our results are stated in Proposition 2 (prime modulus) and Theorem 3 (arbitrary modulus). Note that in (3.1) below the discrepancy is estimated as $N^{-\delta}$, which is better than the bound obtained in $[\mathrm{K}-\mathrm{R}]$.

The results of importance for what follows are the following
Theorem 1 (see [BGK] if $f=1$ and [B-C] if $f>1$). Let $G<\mathbb{F}_{p^{f}}^{*}$ be of order t such that

$$
\begin{equation*}
t>p^{\varepsilon f} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{\substack{r \mid f \\ r<f}}\left(t, p^{r}-1\right)<t^{1-\varepsilon} \tag{1.9}
\end{equation*}
$$

where $\varepsilon>0$ is an arbitrarily small given constant.
Then

$$
\begin{equation*}
\max _{\mathcal{X} \neq \mathcal{X}_{0}}\left|\sum_{x \in G} \mathcal{X}(x)\right|<C t^{1-\delta} \tag{1.10}
\end{equation*}
$$

where \mathcal{X} runs over the nontrivial additive characters of $\mathbb{F}_{p^{f}}$, thus $\mathcal{X}(x)=$ $e\left(\frac{1}{p} \operatorname{Tr}(a x)\right), a \in \mathbb{F}_{p^{f}}^{*}$, and $\delta=\delta(\varepsilon)>0$.

In the application below, $f=2$.
Also needed is the following exponential sum bound in $\mathbb{F}_{p} \times \mathbb{F}_{p}$, obtained in $[\mathrm{B}]$.

Theorem $2([\mathbf{B}])$. Let $G<\mathbb{F}_{p}^{*} \times \mathbb{F}_{p}^{*}$ be generated by $\left(\theta_{1}, \theta_{2}\right) \in \mathbb{F}_{p}^{*} \times \mathbb{F}_{p}^{*}$ satisfying

$$
\begin{align*}
& O\left(\theta_{1}\right)>p^{\varepsilon} \tag{1.11}\\
& O\left(\theta_{2}\right)>p^{\varepsilon} \tag{1.12}\\
& O\left(\theta_{1} \theta_{2}^{-1}\right)>p^{\varepsilon} \tag{1.13}
\end{align*}
$$

with $\varepsilon>0$ a given arbitrary constant. We denote here $O(\theta)$ the multiplicative order of $\theta \in \mathbb{F}_{p}^{*}$.

There is $\delta=\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
\max _{\left(a_{1}, a_{2}\right) \neq(0,0)}\left|\sum_{x \in G} e_{p}\left(a_{1} x_{1}+a_{2} x_{2}\right)\right|<C|G|^{1-\delta} \tag{1.14}
\end{equation*}
$$

Acknowledgement. The author is grateful to Z. Rudnick for his comments on an earlier version of this account.

2 The Prime Case

Considering first the case with $N=p$ prime, we show the following

Proposition 1. For all $\varepsilon>0$, there is $\delta>0$ such that if $o(A, N)>N^{\varepsilon}$, then, assuming n and $n A$ linearly independent $\bmod N$, we have

$$
\begin{equation*}
\max _{\psi}\left|\left\langle T_{N}(n) \psi, \psi\right\rangle\right|<2 N^{-\delta} \tag{2.1}
\end{equation*}
$$

with the maximum taken over the normalized eigenfunctions ψ of $U_{N}(A)$.
Proof. Denote $t=o(A, N)$. Since $U_{N}(A)$ is unitary, write for $j=1, \ldots, t$

$$
\begin{align*}
\left\langle T_{N}(n) \psi, \psi\right\rangle & =\left\langle T_{N}(n) U_{N}(A)^{j} \psi, U_{N}(A)^{j} \psi\right\rangle \\
& =\frac{1}{t} \sum_{j=1}^{t}\left\langle U_{N}(A)^{-j} T_{N}(n) U_{N}(A)^{j} \psi, \psi\right\rangle \tag{2.2}
\end{align*}
$$

By Egorov's theorem (1.3), we have

$$
\begin{equation*}
U_{N}(A)^{-1} T_{N}(n) U_{N}(A)=T_{N}(n A) \tag{2.3}
\end{equation*}
$$

and iterating

$$
U_{N}(A)^{-j} T_{N}(n) U_{N}(A)^{j}=T_{N}\left(n A^{j}\right)
$$

Hence from (2.2)

$$
\begin{equation*}
\left|\left\langle T_{N}(n) \psi, \psi\right\rangle\right| \leq\|D(n)\| \tag{2.4}
\end{equation*}
$$

where $D=D(n)$ is following operator on \mathcal{H}_{N}

$$
\begin{equation*}
D=\frac{1}{t} \sum_{j=1}^{t} T_{N}\left(n A^{j}\right) \tag{2.5}
\end{equation*}
$$

and || || stands for the operator norm.
Take a (sufficiently large) positive integer ℓ (to be specified) and estimate

$$
\begin{equation*}
\|D\|^{4 \ell} \leq \operatorname{trace}\left(D D^{*}\right)^{2 \ell} \tag{2.6}
\end{equation*}
$$

Recall the following properties (see [K-R])

$$
\begin{equation*}
T_{N}(m)^{*}=T_{N}(-m) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{N}(m) T_{N}(n)=e_{N}\left(\frac{\omega(m, n)}{2}\right) T_{N}(m+n) \tag{2.8}
\end{equation*}
$$

with

$$
\omega(m, n)=m_{1} n_{2}-m_{2} n_{1}
$$

Expanding (2.6) using (2.7)-(2.8) gives

$$
\begin{equation*}
\left(D D^{*}\right)^{2 \ell}=\frac{1}{t^{4 \ell}} \sum_{j_{1}, \ldots, j_{4 \ell}=1}^{t} \gamma_{j_{1} \ldots j_{4 \ell}} T_{N}\left(n\left(A^{j_{1}}-A^{j_{2}} \cdots-A^{j_{4 \ell}}\right)\right) \tag{2.9}
\end{equation*}
$$

where $\left|\gamma_{j_{1}} \ldots j_{4 \ell}\right|=1$.
Next

$$
\text { trace } T_{N}(n)=\left\{\begin{array}{l}
N \text { if } n=(0,0) \bmod N \tag{2.10}\\
0 \text { otherwise }
\end{array}\right.
$$

It follows now from (2.9), (2.10) that

$$
\begin{equation*}
(2.6) \leq t^{-4 \ell} N \cdot \#\left\{\left(j_{1}, \ldots, j_{4 \ell}\right) \in\{1, \ldots, t\}^{4 \ell} \mid n\left(A^{j_{1}}-\cdots-A^{j_{4 \ell}}\right) \equiv 0 \bmod N\right\} . \tag{2.11}
\end{equation*}
$$

The issue becomes now to estimate (2.11).
Recall that $N=p$ (prime).
Following [K-R], let K be the real quadratic field containing the eigenvalues of A (which are units) and O its maximal order. Let \mathcal{P} be a prime of K lying above p and consider the residue class field $=O / \mathcal{P}$. If p splits, $K_{p} \simeq \mathbb{F}_{p}$ and if p is inert, $K_{p} \simeq \mathbb{F}_{p^{2}}$. Diagonalizing A over K_{p}, we obtain $A^{\prime}=\left(\begin{array}{cc}\varepsilon & 0 \\ 0 & \varepsilon_{1}^{-1}\end{array}\right)$ and $n^{\prime}=\left(n_{1}^{\prime}, n_{2}^{\prime}\right)$ in the eigenvector basis. Also $n_{1}^{\prime} \neq 0, n_{2}^{\prime} \neq 0$ in K_{p} as a consequence of the linear independence assumption for n and $n A \bmod p$. Our problem is therefore reduced to estimating the number (\dagger) of solutions in $\left(j_{1}, \ldots, j_{4 \ell}\right) \in\{1, \ldots, t\}^{4 \ell}$ of the system of equations

$$
\left\{\begin{array}{l}
\sum_{s=1}^{4 \ell}(-1)^{s} \varepsilon^{j_{s}}=0 \tag{2.12}\\
\sum_{s=1}^{4 \ell}(-1)^{s} \varepsilon^{-j_{s}}=0
\end{array}\right.
$$

in K_{p}. Here $\varepsilon \in K_{p}^{*}$ is of order t.
Case 1: The Split Case. Thus $K_{p}=\mathbb{F}_{p}$. Apply Theorem 2 with $\theta_{1}=\varepsilon, \theta_{2}=$ ε^{-1} for which $0\left(\theta_{1}\right)=0\left(\theta_{2}\right)=t>p^{\varepsilon}$ and $0\left(\theta_{1} \theta_{2}^{-1}\right)=0\left(\varepsilon^{2}\right)>\frac{t}{2}>\frac{1}{2} p^{\varepsilon}$. Hence (1.11) holds for some $\delta_{1}=\delta_{1}(\varepsilon)>0$.

Estimate by the circle method

$$
\begin{align*}
(\dagger) & =\frac{1}{p^{2}} \sum_{0 \leq a_{1}, a_{2}<p}\left|\sum_{j=1}^{t} e_{p}\left(a_{1} \varepsilon^{j}+a_{2} \varepsilon^{-j}\right)\right|^{4 \ell} \\
& <\frac{1}{p^{2}} t^{4 \ell}+\max _{\left(a_{1}, a_{2}\right) \neq(0,0)}\left|\sum_{j=1}^{t} e_{p}\left(a_{1} \varepsilon^{j}+a_{2} \varepsilon^{-j}\right)\right|^{4 \ell} \\
& <\frac{1}{p^{2}} t^{4 \ell}+C^{\ell} t^{\left(1-\delta_{1}\right) 4 \ell} \\
& <t^{4 \ell}\left(p^{-2}+C^{\ell} p^{-4 \varepsilon \delta_{1} \ell}\right) \tag{2.13}
\end{align*}
$$

Taking

$$
\begin{equation*}
\ell>\frac{1}{\varepsilon \delta_{1}} \tag{2.14}
\end{equation*}
$$

it follows that (for p large enough)

$$
\begin{equation*}
(\dagger)<2 t^{4 \ell} p^{-2} \tag{2.15}
\end{equation*}
$$

Case 2: The Inert Case. Then $K_{p} \approx \mathbb{F}_{p^{2}}$. Let $G=\left\{\varepsilon^{j} \mid 0 \leq j<t\right\}<K_{p}^{*}$. We have to distinguish 2 further subcases.

Assume first that $t=|G|$ satisfies

$$
\begin{equation*}
(t, p-1)<t^{1-\frac{\varepsilon}{2}} \tag{2.16}
\end{equation*}
$$

so that condition (1.6) of Theorem 1 is fulfilled.
Then (1.7) holds with $\delta=\delta_{1}=\delta_{1}(\varepsilon)$. By the circle method, we obtain again

$$
\begin{align*}
(\dagger) & =\frac{1}{p^{2}} \sum_{\mathcal{X}}\left|\sum_{x \in G} \mathcal{X}(x)\right|^{4 \ell} \\
& <\frac{t^{4 \ell}}{p^{2}}+\max _{\mathcal{X} \neq \mathcal{X}_{0}}\left|\sum_{x \in G} \mathcal{X}(x)\right|^{4 \ell} \\
& <t^{4 \ell}\left(p^{-2}+C p^{-4 \ell \varepsilon \delta_{1}}\right) \\
& <2 t^{4 \ell} p^{-2}
\end{align*}
$$

for a choice of ℓ as in (2.14).
Next, suppose (2.16) violated. Then $t=t_{1} t_{2}$ where

$$
t_{1} \mid p-1 \text { and } t_{2}<t^{\varepsilon / 2}
$$

Replace G by $G_{1}=G^{t_{2}}<\mathbb{F}_{p}^{*}$ generated by $\varepsilon_{1}=\varepsilon^{t_{2}}$ of order t_{1} in $\mathbb{F}_{p}^{*}, t_{1}>p^{\varepsilon / 2}$.
Write $j \in\{0,1, \ldots, t-1\}$ in the form $j=j_{1} t_{2}+j_{2}$ with $j_{1} \in\left\{0,1, \ldots, t_{1}-\right.$ $1\}$ and $j_{2} \in\left\{0,1, \ldots, t_{2}-1\right\}$. Estimate

$$
(\dagger)=\frac{1}{p^{4}} \sum_{a_{1}, a_{2} \in \mathbb{F}_{p^{2}}}\left|\sum_{j=0}^{t-1} e_{p}\left(\operatorname{Tr}\left(a_{1} \varepsilon^{j}\right)+\operatorname{Tr}\left(a_{2} \varepsilon^{-j}\right)\right)\right|^{4 \ell}
$$

and by Hölder's inequality

$$
\begin{equation*}
p^{-4} t_{2}^{4 \ell-1} \sum_{a_{1}, a_{2} \in \mathbb{F}_{p^{2}}} \sum_{j_{2}=0}^{t_{2}-1}\left|\sum_{j_{1}=0}^{t_{1}-1} e_{p}\left(\operatorname{Tr}\left(a_{1} \varepsilon^{j_{2}}\right) \varepsilon_{1}^{j_{1}}+\operatorname{Tr}\left(a_{2} \varepsilon^{-j_{2}}\right) \varepsilon_{1}^{-j_{1}}\right)\right|^{4 \ell} \tag{2.17}
\end{equation*}
$$

the inner sum in (2.17) is again estimated by Theorem 2. Thus for some $\delta_{1}=\delta\left(\frac{\varepsilon}{2}\right)>0$

$$
\begin{equation*}
\left|\sum_{j_{1}=0}^{t_{1}-1} e_{p}\left(b_{1} \varepsilon_{1}^{j_{1}}+b_{2} \varepsilon_{1}^{-j_{1}}\right)\right|<C t_{1}^{1-\delta_{1}} \tag{2.18}
\end{equation*}
$$

for $\left(b_{1}, b_{2}\right) \in \mathbb{F}_{p} \times \mathbb{F}_{p},\left(b_{1}, b_{2}\right) \neq(0,0)$.
Therefore clearly

$$
\begin{align*}
& (2.17) \leq p^{-4} t_{1}^{4 \ell} t_{2}^{4 \ell-1} \\
& \cdot\left|\left\{\left(a_{1}, a_{2}, j\right) \in \mathbb{F}_{p^{2}} \times \mathbb{F}_{p^{2}} \times\left\{0,1, \ldots, t_{2}-1\right\} \mid \operatorname{Tr}\left(a_{1} \varepsilon^{j}\right)=\operatorname{Tr}\left(a_{2} \varepsilon^{-j}\right)=0\right\}\right| \\
& \\
& \quad+C t_{2}^{4 \ell} t_{1}^{4 \ell\left(1-\delta_{1}\right)} \\
& \quad \leq p^{-4} t_{1}^{4 \ell} t_{2}^{4 \ell-1} t_{2} p^{2}+C t_{2}^{4 \ell} t_{1}^{4 \ell\left(1-\delta_{1}\right)} \tag{2.19}\\
&
\end{align*}
$$

Taking $\ell>\frac{1}{\varepsilon \delta_{1}}$, we obtain again that

$$
\begin{equation*}
(\dagger)<2 p^{-2} t^{4 \ell} \tag{2.20}
\end{equation*}
$$

Thus (2.20) holds provided we take $\ell=\ell(\varepsilon)$ large enough, and gives the bound on the number of solutions of (2.12), (2.12 $)$.

Returning to (2.11), we conclude that

$$
(2.6)<\frac{2}{N}
$$

hence

$$
\begin{equation*}
\|D\|<2 N^{-1 / 4 \ell} \tag{2.21}
\end{equation*}
$$

This proves (2.1).
Remark. As observed in $[\mathrm{K}-\mathrm{R}]$, the condition of linear independence $\bmod N$ of n and $n A\left(n \in \mathbb{Z}^{2}\right.$ being fixed, $\left.n \neq(0,0)\right)$ is automatically satisfied for N a sufficiently large prime. Indeed, since A does not have rational eigenvectors, $\operatorname{det}(n, n A) \in \mathbb{Z} \backslash\{0\}$ for all $n \in \mathbb{Z}^{2} \backslash\{0\}$.

If $o(A, p)=t$, necessarily $p \mid \operatorname{det}\left(A^{t}-1\right)$, where $\operatorname{det}\left(A^{t}-1\right) \in \mathbb{Z} \backslash\{0\}$. Therefore a prime $p<T$ for which $o(A, p)<T^{\varepsilon}$ necessarily divides

$$
\begin{equation*}
B=\prod_{1<t<T^{\varepsilon}} \operatorname{det}\left(A^{t}-1\right) \tag{2.22}
\end{equation*}
$$

The number of these primes is at most $\log |B|<C \cdot T^{2 \varepsilon}$.
In view of Proposition 1, this shows the following
Proposition 2. For all $\varepsilon>0$, there is $\delta>0$ and a sequence $\mathcal{S}=\mathcal{S}_{\varepsilon}$ of primes such that

$$
\begin{equation*}
\#\{N \in \mathcal{S} \mid N<T\}<C T^{\varepsilon} \tag{2.23}
\end{equation*}
$$

and for all $n \in \mathbb{Z}^{2} \backslash\{(0,0)\}$

$$
\begin{equation*}
\max _{\psi}\left|\left\langle T_{N}(n) \psi, \psi\right\rangle\right|<N^{-\delta} \tag{2.24}
\end{equation*}
$$

if N is a sufficiently large prime, $N \notin \mathcal{S}$.
(The maximum taken over all normalized eigenfunctions ψ of $U_{N}(A)$.)
Hence, for $f \in \mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right)$

$$
\begin{equation*}
\max _{\psi}\left|\left\langle O p_{N}(f) \psi, \psi\right\rangle-\int_{\mathbb{T}^{2}} f\right|<N^{-\delta} \tag{2.25}
\end{equation*}
$$

for N a sufficiently large prime outside \mathcal{S}.

3 The Case of General Modulus

We may now establish the following
Theorem 3. There is a density 1 sequence \mathcal{N} of integers N and $\delta>0$ such that for all observables $f \in \mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right)$, we have

$$
\begin{equation*}
\max _{\psi}\left|\left\langle O p_{N}(f) \psi, \psi\right\rangle-\int_{\mathbb{T}^{2}} f\right| \ll C_{f} N^{-\delta} \text { for } N \in \mathcal{N} \tag{3.1}
\end{equation*}
$$

where the maximum is taken over all normalized eigenfunctions ψ of U_{A}.
Remark. Compared with [K-R], see in particular the combination of Corollary 9 and Theorem 17 in [K-R], what we get more is an $N^{-\delta}$ estimate rather than $1 / \exp (\log N)^{\delta}$ for some $\delta>0$.

The main ingredient is the improvement for N prime obtained in previous section.

Proof of Theorem 3. Fix a small positive number $\tau>0$ (to be specified). Given a positive integer N, write $N=N_{1}^{2} N_{2}$ with N_{2} square-free. Since

$$
\begin{equation*}
\left|\left\{T<N<2 T \mid N_{1}>T^{\tau}\right\}\right|<\sum_{T^{\tau}<N_{1} \leq T^{\frac{1}{2}}} \frac{T}{N_{1}^{2}}<T^{1-\tau} \tag{3.2}
\end{equation*}
$$

we may restrict ourselves to integers N with square-free part $N_{2}>N^{1-2 \tau}$.
Next, we require that for any prime divisor p of $N, p>\sqrt{\log N}$, we have

$$
\begin{equation*}
o(A, p)>p^{\frac{1}{3}} . \tag{3.3}
\end{equation*}
$$

As pointed out in the previous section, this property is satisfied for all primes $2^{k} \leq p<2^{k+1}$ except $2^{\frac{2}{3} k}$ of them. Our requirement (3.3) will therefore exclude from $[T, 2 T]$ at most

$$
\begin{equation*}
\sum_{2 T \gg 2^{k}>\sqrt{\log T}} 2^{\frac{2}{3} k} \frac{T}{2^{k}} \ll T(\log T)^{-1 / 6} \tag{3.4}
\end{equation*}
$$

integers, which again leads to a density zero sequence. Given N as above, write $N=N_{1}^{2} N_{0} N^{\prime}$ where $N_{1}<N^{\tau}, N_{0}<[\sqrt{\log N}]!<N^{\tau}$ and N^{\prime} is a simple product of primes $p>\sqrt{\log N}$ for which (3.3) holds. Returning to the proof of Proposition 1, we estimate (2.11)

$$
\begin{equation*}
t^{-4 \ell} N\left|\left\{\left(j_{1}, \ldots, j_{4 \ell}\right) \in\{1, \ldots, t\}^{4 \ell} \mid n\left(A^{j_{1}}-\cdots-A^{j_{4 \ell}}\right) \equiv 0(\bmod N)\right\}\right| \tag{3.5}
\end{equation*}
$$

(up to this point no primality of N was involved).
For $M \in \mathbb{Z}_{+}$, denote $\operatorname{Mat}_{2}(M)$ the 2×2 matrices over $\mathbb{Z} / M \mathbb{Z}$ and G_{M} its multiplicative subgroup $\left\{A^{j} \mid 0 \leq j<o(A, M)\right\}$.

With previous decomposition of N, the map

$$
G_{N} \rightarrow G_{N_{1}^{2}} \times G_{N_{0}} \times \prod_{p \mid N^{\prime}} G_{p}
$$

is injective. Defining

$$
\begin{equation*}
Q_{M}=\left|\left\{\left(\alpha_{1}, \ldots, \alpha_{4 \ell}\right) \in G_{M}^{4 \ell} \mid n\left(\alpha_{1}-\cdots-\alpha_{4 \ell}\right) \equiv 0(\bmod M)\right\}\right| \tag{3.6}
\end{equation*}
$$

the last factor in (3.5) equals Q_{N}. Obviously

$$
\begin{equation*}
Q_{N} \leq Q_{N_{1}^{2}} \cdot Q_{N_{0}} \cdot \prod_{p \mid N^{\prime}} Q_{p} \tag{3.7}
\end{equation*}
$$

Take $p \mid N^{\prime}$ not dividing $\nu_{n}=\operatorname{det}(n, n A)$, so that n and $n A$ are independent $\bmod p$. Since (3.3) holds, the estimate (2.20) on (\dagger) in the proof of Proposition 1 gives

$$
\begin{equation*}
Q_{p}<2 p^{-2}\left|G_{p}\right|^{4 \ell} \tag{3.8}
\end{equation*}
$$

where $\ell=\ell\left(\frac{1}{3}\right)$ is some integer in particular independent of the choice of τ.
From (3.7), (3.8)

$$
\begin{align*}
Q_{M} & <\left(N_{1}^{2} N_{0} \nu_{n}\right)^{16 \ell} \prod_{\substack{p \mid N^{\prime} \\
\left(p, \nu_{n}\right)=1}} \frac{2 o(A, p)^{4 \ell}}{p^{2}} \\
& <\frac{\left(N_{1}^{2} N_{0} \nu_{n}\right)^{16 \ell+2}}{N^{2}}\left(\exp \frac{\log N}{\log \log N}\right)\left[\prod_{p \mid N_{2}} o(A, p)\right]^{4 \ell} \\
& <C_{A}|n|^{40 \ell} N^{60 \tau \ell-2}\left[\prod_{p \mid N_{2}} o(A, p)\right]^{4 \ell} \tag{3.9}
\end{align*}
$$

$\left(N_{2}=\right.$ square free part of $\left.N\right)$.
At this point, recall Proposition 11 of [K-R]. It asserts that we may minorate

$$
\begin{equation*}
o(A, N)>c_{A} \frac{\prod_{p \mid N_{2}} o(A, p)}{\exp \left(3(\log \log N)^{4}\right)} \tag{3.10}
\end{equation*}
$$

by further exclusion of N outside a density zero sequence
Substituting (3.10) in (3.9) gives,

$$
\begin{align*}
Q_{N} & <C_{A}|n|^{40 \ell} N^{60 \tau \ell-2} \exp \left(13 \ell(\log \log N)^{4}\right) o(A, N)^{4 \ell} \\
& <C_{A}|n|^{40 \ell} N^{61 \tau \ell-2} o(A, N)^{4 \ell} \tag{3.11}
\end{align*}
$$

Hence, from the argument in the initial part of the proof of Proposition 1

$$
\begin{equation*}
\left|\left\langle T_{N}(n) \psi, \psi\right\rangle\right|<C_{A}|n|^{10} N^{61 \tau-\frac{1}{4 \ell}} \tag{3.12}
\end{equation*}
$$

Choosing τ small enough, the claim easily follows.

References

[B] Bourgain, J.: Mordell's estimate revisited. JAMS
[B-C] Bourgain, J., Chang, M.: A Gauss sum estimate in arbitrary finite fields. CRASP
[BGK] Bourgain, J., Glibichuk, A., Konyagin, S.: Estimates for the number of sums and products and for exponential sums in fields of prime order. J. London Math. Soc., to appear
[H-B] Hannay, J.H., Berry, M.V.: Quantization of linear maps on a torus - Fresnel diffraction by a periodic grating. Physica D, 1, 267-291 (1980)
[D-G-I] Degli Esposti, E., Graffi, S., Isola, S.: Classical limit of the quantized hyperbolic toral automorphisms. Commun. Math. Phys., 167, 471-507 (1995)
[K-R] Kurlberg, P., Rudnick, Z.: On quantum ergodicity for linear maps of the torus. Comm. Math. Phys., 222, no 1, 201-227 (2001)
[K-R2] Kurlberg, P., Rudnick, Z.: On the distribution of the matrix elements for the quantum cat maps. Annals of Math., 161, 489-507 (2003)

