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1 Introduction

The purpose of this Note is to give an affirmative answer to a question raised
in the paper of P. Kurlberg and Z. Rudnick [K-R]. We first briefly recall the
background (see [K-R2]). Given A ∈ SL2(Z), consider the automorphism of
the torus T

2 : x �→ Ax.
Given f ∈ C∞(T2), the classical evolution defined by A is f �→ f ◦ A.

The quantization is obtained as follows. Let N ∈ Z+ be a large integer and
consider the Hilbert space HN = L2(ZN ), ZN = Z/NZ with inner product

〈φ, ψ〉 =
1
N

∑

x∈ZN

φ(x)ψ(x).

The basic observables are given by the operators TN (n), n = (n1, n2) ∈ Z
2

defined as follows
(
TN (n)φ

)
(x) = eiπ

n1n2
N e2πi

n2x

N φ(x+ n1). (1.1)

Writing f(x) =
∑
n∈Z2 f̂(n)e2πinx, f ∈ C∞(T2), its quantization is then de-

fined by
Op

N
(f) =

∑

n∈Z2

f̂(n)TN (n). (1.2)

Assume further that A =
(
a b
c d

)
satisfies

ab ≡ cd ≡ 0 (mod 2).

One may then assign to A a unitary operator UN (A) called quantum propa-
gator or quantized cat map, which satisfies the ‘exact’ Egorov theorem

UN (A)∗Op
N

(f)UN (A) = Op
N

(f ◦A). (1.3)
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We are concerned with the eigenfunctions of UN (A) which play the role of
energy eigenstates.

It is shown in [K-R] that for N taken in a subsequence N ⊂ Z+ of asymp-
totic density one, we have for all f ∈ C∞(T2)

max
ψ

∣
∣
∣
∣〈OpN

(f)ψ,ψ〉 −
∫

T2
f

∣
∣
∣
∣

−→
N→∞
N∈N 0 (1.4)

where the maximum is taken over all normalized eigenfunctions ψ of UN (A).
The quantization of the cat map described above was proposed by Hannay

and Berry [H-B]. A few comments at this point. In the context of cat maps,
Schnirelman’s general theorem when the classical dynamics is ergodic (which
is the case when A ∈ SL2(Z) is hyperbolic) takes the following form. Let
f ∈ C∞(T2). If {ψj} is an arbitrary orthonormal basis of HN consisting
of eigenfunctions of UN (A), there is a subset J(N) ⊂ {1, . . . , N} such that
#J(N)
N → 1 and for j ∈ J(N)

〈OpN (f)ψj , ψj〉 →
∫

T2
f when N →∞. (1.5)

Hence the [K-R] result (1.4) goes beyond (1.5), since they obtain a statement
valid for all eigenfunctions of UN (A).

Previously, the only result providing an infinite set N of integers N
(primes) satisfying (1.4) was due to Degli-Esposti, Graffi and Isola [D-G-I],
conditional to GRH. The precise form of the [K-R] result is as follows (using
previous notations)

N∑

j=1

∣
∣
∣
∣〈OpN (f)ψj , ψj〉 −

∫

T2
f

∣
∣
∣
∣

4

� N(logN)14

o(A,N)2
(1.6)

where o(A,N) denotes the order of A mod N . (See [K-R], Theorem 2.) In
order to derive (1.4) from (1.6), one needs to ensure that o(A,N) � N1/2 for
N ∈ N . Verifying this property for sequence N of asymptotic density 1 is in
fact a significant part of the [K-R] paper (the issue is related to the classical
Gauss–Artin problem.) It is shown in [K-R] one may ensure for N ∈ N of
asymptotic density 1, that

o(A,N) � N1/2 exp
(
(logN)δ

)
(1.7)

for some δ > 0.
The authors raise the question how to get results when o(A,N) is smaller

than N1/2. We will show here how to settle this problem using the new expo-
nential sum bounds obtained in [BGK], [B], [B-C] for multiplicative subgroups
G of finite fields and their products. These results provide nontrivial estimates
even when G is very small.

They will allow us to deal with the case when o(A,N) � Nε (say for N
prime) for an arbitrary small given ε > 0. Unlike a stronger statement such
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as (1.7), the generic validity of this last condition is essentially obvious to
verify. Our results are stated in Proposition 2 (prime modulus) and Theorem
3 (arbitrary modulus). Note that in (3.1) below the discrepancy is estimated
as N−δ, which is better than the bound obtained in [K-R].

The results of importance for what follows are the following

Theorem 1 (see [BGK] if f = 1 and [B-C] if f > 1). Let G < F
∗
pf be of

order t such that
t > pεf (1.8)

and
max
r|f
r<f

(t, pr − 1) < t1−ε (1.9)

where ε > 0 is an arbitrarily small given constant.
Then

max
X �=X0

∣
∣
∣
∣
∑

x∈G
X (x)

∣
∣
∣
∣ < Ct

1−δ (1.10)

where X runs over the nontrivial additive characters of Fpf , thus X (x) =
e
(

1
pTr(ax)

)
, a ∈ F

∗
pf , and δ = δ(ε) > 0.

In the application below, f = 2.
Also needed is the following exponential sum bound in Fp × Fp, obtained

in [B].

Theorem 2 ([B]). Let G < F
∗
p × F

∗
p be generated by (θ1, θ2) ∈ F

∗
p × F

∗
p satis-

fying

O(θ1) > pε (1.11)
O(θ2) > pε (1.12)
O(θ1θ−1

2 ) > pε (1.13)

with ε > 0 a given arbitrary constant. We denote here O(θ) the multiplicative
order of θ ∈ F

∗
p.

There is δ = δ(ε) > 0 such that

max
(a1,a2) �=(0,0)

∣
∣
∣
∑

x∈G
ep(a1x1 + a2x2)

∣
∣
∣ < C|G|1−δ. (1.14)

Acknowledgement. The author is grateful to Z. Rudnick for his comments on an
earlier version of this account.

2 The Prime Case

Considering first the case with N = p prime, we show the following
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Proposition 1. For all ε > 0, there is δ > 0 such that if o(A,N) > Nε, then,
assuming n and nA linearly independent mod N , we have

max
ψ

∣
∣〈TN (n)ψ,ψ〉

∣
∣ < 2N−δ (2.1)

with the maximum taken over the normalized eigenfunctions ψ of UN (A).

Proof. Denote t = o(A,N). Since UN (A) is unitary, write for j = 1, . . . , t

〈TN (n)ψ,ψ〉 = 〈TN (n)UN (A)jψ,UN (A)jψ〉

=
1
t

t∑

j=1

〈UN (A)−jTN (n)UN (A)jψ,ψ〉. (2.2)

By Egorov’s theorem (1.3), we have

UN (A)−1TN (n)UN (A) = TN (nA) (2.3)

and iterating
UN (A)−jTN (n)UN (A)j = TN (nAj).

Hence from (2.2)
|〈TN (n)ψ,ψ〉| ≤ ‖D(n)‖ (2.4)

where D = D(n) is following operator on HN

D =
1
t

t∑

j=1

TN (nAj) (2.5)

and ‖ ‖ stands for the operator norm.
Take a (sufficiently large) positive integer � (to be specified) and estimate

‖D‖4� ≤ trace (DD∗)2�. (2.6)

Recall the following properties (see [K-R])

TN (m)∗ = TN (−m) (2.7)

and

TN (m)TN (n) = eN

(
ω(m,n)

2

)

TN (m+ n) (2.8)

with
ω(m,n) = m1n2 −m2n1.

Expanding (2.6) using (2.7)–(2.8) gives

(DD∗)2� =
1
t4�

t∑

j1,...,j4�=1

γj1...j4�
TN
(
n(Aj1 −Aj2 · · · −Aj4�)

)
(2.9)
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where |γj1 . . . j4�| = 1.
Next

trace TN (n) =

{
N if n = (0, 0) modN
0 otherwise.

(2.10)

It follows now from (2.9), (2.10) that

(2.6) ≤ t−4�N.#
{

(j1, . . . , j4�) ∈ {1, . . . , t}4�
∣
∣ n(Aj1−· · · −Aj4�) ≡ 0 mod N

}
.

(2.11)
The issue becomes now to estimate (2.11).

Recall that N = p (prime).
Following [K-R], letK be the real quadratic field containing the eigenvalues

of A (which are units) and O its maximal order. Let P be a prime of K lying
above p and consider the residue class field = O/P. If p splits, Kp � Fp and
if p is inert, Kp � Fp2 . Diagonalizing A over Kp, we obtain A′ =

(
ε 0
0 ε−1

)

and n′ = (n′1, n
′
2) in the eigenvector basis. Also n′1 
= 0, n′2 
= 0 in Kp as

a consequence of the linear independence assumption for n and nA mod p.
Our problem is therefore reduced to estimating the number (†) of solutions in
(j1, . . . , j4�) ∈ {1, . . . , t}4� of the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

4�∑

s=1
(−1)sεjs = 0 (2.12)

4�∑

s=1
(−1)sε−js = 0 (2.12′)

in Kp. Here ε ∈ K∗
p is of order t.

Case 1: The Split Case. Thus Kp = Fp. Apply Theorem 2 with θ1 = ε, θ2 =
ε−1 for which 0(θ1) = 0(θ2) = t > pε and 0(θ1θ−1

2 ) = 0(ε2) > t
2 >

1
2p
ε. Hence

(1.11) holds for some δ1 = δ1(ε) > 0.
Estimate by the circle method

(†) =
1
p2

∑

0≤a1,a2<p

∣
∣
∣
∣

t∑

j=1

ep(a1εj + a2ε−j)
∣
∣
∣
∣

4�

<
1
p2
t4� + max

(a1,a2) �=(0,0)

∣
∣
∣
∣

t∑

j=1

ep(a1εj + a2ε−j)
∣
∣
∣
∣

4�

<
1
p2
t4� + C�t(1−δ1)4�

< t4�(p−2 + C�p−4εδ1�). (2.13)

Taking

� >
1
εδ1

(2.14)

it follows that (for p large enough)
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(†) < 2t4�p−2. (2.15)

Case 2: The Inert Case. Then Kp ≈ Fp2 . Let G = {εj |0 ≤ j < t} < K∗
p . We

have to distinguish 2 further subcases.
Assume first that t = |G| satisfies

(t, p− 1) < t1−
ε
2 (2.16)

so that condition (1.6) of Theorem 1 is fulfilled.
Then (1.7) holds with δ = δ1 = δ1(ε). By the circle method, we obtain

again

(†) =
1
p2

∑

X

∣
∣
∣
∣
∑

x∈G
X (x)

∣
∣
∣
∣

4�

<
t4�

p2
+ max

X �=X0

∣
∣
∣
∣
∑

x∈G
X (x)

∣
∣
∣
∣

4�

< t4�
(
p−2 + Cp−4�εδ1

)

< 2t4�p−2 (2.16′)

for a choice of � as in (2.14).
Next, suppose (2.16) violated. Then t = t1t2 where

t1|p− 1 and t2 < tε/2.

Replace G by G1 = Gt2 < F
∗
p generated by ε1 = εt2 of order t1 in F

∗
p, t1 > p

ε/2.
Write j ∈ {0, 1, . . . , t−1} in the form j = j1t2 +j2 with j1 ∈ {0, 1, . . . , t1−

1} and j2 ∈ {0, 1, . . . , t2 − 1}. Estimate

(†) =
1
p4

∑

a1,a2∈Fp2

∣
∣
∣
∣

t−1∑

j=0

ep
(
Tr(a1εj) + Tr(a2ε−j)

)
∣
∣
∣
∣

4�

and by Hölder’s inequality

p−4t4�−1
2

∑

a1,a2∈Fp2

t2−1∑

j2=0

∣
∣
∣
∣

t1−1∑

j1=0

ep
(
Tr(a1εj2)εj11 + Tr(a2ε−j2)ε−j11

)
∣
∣
∣
∣

4�

(2.17)

the inner sum in (2.17) is again estimated by Theorem 2. Thus for some
δ1 = δ

(
ε
2

)
> 0

∣
∣
∣
∣

t1−1∑

j1=0

ep(b1ε
j1
1 + b2ε

−j1
1 )

∣
∣
∣
∣ < Ct

1−δ1
1 (2.18)

for (b1, b2) ∈ Fp × Fp, (b1, b2) 
= (0, 0).
Therefore clearly
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(2.17) ≤ p−4t4�1 t
4�−1
2

·
∣
∣
∣
{

(a1, a2, j) ∈ Fp2 × Fp2 × {0, 1, . . . , t2 − 1
}
| Tr(a1εj) = Tr(a2ε−j) = 0}

∣
∣
∣

+ Ct4�2 t
4�(1−δ1)
1

≤ p−4t4�1 t
4�−1
2 t2p

2 + Ct4�2 t
4�(1−δ1)
1

≤ t4�(p−2 + Cp−2εδ1�). (2.19)

Taking � > 1
εδ1

, we obtain again that

(†) < 2p−2t4�. (2.20)

Thus (2.20) holds provided we take � = �(ε) large enough, and gives the bound
on the number of solutions of (2.12), (2.12′).

Returning to (2.11), we conclude that

(2.6) <
2
N

hence
‖D‖ < 2N−1/4�. (2.21)

This proves (2.1).

Remark. As observed in [K-R], the condition of linear independence modN
of n and nA (n ∈ Z

2 being fixed, n 
= (0, 0)) is automatically satisfied for N
a sufficiently large prime. Indeed, since A does not have rational eigenvectors,
det(n, nA) ∈ Z\{0} for all n ∈ Z

2\{0}.

If o(A, p) = t, necessarily p|det(At − 1), where det(At − 1) ∈ Z\{0}.
Therefore a prime p < T for which o(A, p) < T ε necessarily divides

B =
∏

1<t<T ε

det(At − 1). (2.22)

The number of these primes is at most log |B| < C.T 2ε.
In view of Proposition 1, this shows the following

Proposition 2. For all ε > 0, there is δ > 0 and a sequence S = Sε of primes
such that

#{N ∈ S | N < T} < CT ε (2.23)
and for all n ∈ Z

2\{(0, 0)}
max
ψ

|〈TN (n)ψ,ψ〉| < N−δ (2.24)

if N is a sufficiently large prime, N 
∈ S.
(The maximum taken over all normalized eigenfunctions ψ of UN (A).)

Hence, for f ∈ C∞(T2)

max
ψ

∣
∣
∣
∣〈OpN (f)ψ,ψ〉 −

∫

T2
f

∣
∣
∣
∣ < N

−δ (2.25)

for N a sufficiently large prime outside S.
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3 The Case of General Modulus

We may now establish the following

Theorem 3. There is a density 1 sequence N of integers N and δ > 0 such
that for all observables f ∈ C∞(T2), we have

max
ψ

∣
∣
∣
∣〈OpN

(f)ψ,ψ〉 −
∫

T2
f

∣
∣
∣
∣� CfN

−δ for N ∈ N (3.1)

where the maximum is taken over all normalized eigenfunctions ψ of UA.

Remark. Compared with [K-R], see in particular the combination of Corollary
9 and Theorem 17 in [K-R], what we get more is an N−δ estimate rather than
1/exp(logN)δ for some δ > 0.

The main ingredient is the improvement for N prime obtained in previous
section.

Proof of Theorem 3. Fix a small positive number τ > 0 (to be specified).
Given a positive integer N , write N = N2

1N2 with N2 square-free. Since

∣
∣{T < N < 2T | N1 > T

τ}
∣
∣ <

∑

T τ<N1≤T
1
2

T

N2
1

< T 1−τ (3.2)

we may restrict ourselves to integers N with square-free part N2 > N
1−2τ .

Next, we require that for any prime divisor p of N , p >
√

logN , we have

o(A, p) > p
1
3 . (3.3)

As pointed out in the previous section, this property is satisfied for all primes
2k ≤ p < 2k+1 except 2

2
3k of them. Our requirement (3.3) will therefore

exclude from [T, 2T ] at most

∑

2T�2k>
√

log T

2
2
3k
T

2k
� T (log T )−1/6 (3.4)

integers, which again leads to a density zero sequence. Given N as above,
write N = N2

1N0N
′ where N1 < Nτ , N0 < [

√
logN ]! < Nτ and N ′ is a

simple product of primes p >
√

logN for which (3.3) holds. Returning to the
proof of Proposition 1, we estimate (2.11)

t−4�N
∣
∣
{

(j1, . . . , j4�) ∈ {1, . . . , t}4� | n(Aj1 − · · · −Aj4�) ≡ 0(modN)
}∣
∣ (3.5)

(up to this point no primality of N was involved).
For M ∈ Z+, denote Mat2(M) the 2× 2 matrices over Z/MZ and GM its

multiplicative subgroup {Aj | 0 ≤ j < o(A,M)}.
With previous decomposition of N , the map
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GN → GN2
1
×GN0 ×

∏

p|N ′
Gp

is injective. Defining

QM =
∣
∣
{

(α1, . . . , α4�) ∈ G4�
M | n(α1 − · · · − α4�) ≡ 0(modM)

}∣
∣ (3.6)

the last factor in (3.5) equals QN . Obviously

QN ≤ QN2
1
·QN0 ·

∏

p|N ′
Qp. (3.7)

Take p|N ′ not dividing νn = det(n, nA), so that n and nA are independent
mod p. Since (3.3) holds, the estimate (2.20) on (†) in the proof of Proposition
1 gives

Qp < 2p−2|Gp|4� (3.8)

where � = �(1
3 ) is some integer in particular independent of the choice of τ .

From (3.7), (3.8)

QM < (N2
1N0νn)16�

∏

p|N ′

(p,νn)=1

2o(A, p)4�

p2

<
(N2

1N0νn)16�+2

N2

(

exp
logN

log logN

)[ ∏

p|N2

o(A, p)
]4�

< CA|n|40�N60τ�−2

[ ∏

p|N2

o(A, p)
]4�

(3.9)

(N2 = square free part of N).
At this point, recall Proposition 11 of [K-R]. It asserts that we may mino-

rate

o(A,N) > cA

∏
p|N2

o(A, p)

exp(3(log logN)4)
(3.10)

by further exclusion of N outside a density zero sequence
Substituting (3.10) in (3.9) gives,

QN < CA|n|40�N60τ�−2 exp
(
13�(log logN)4

)
o(A,N)4�

< CA|n|40�N61τ�−2o(A,N)4�. (3.11)

Hence, from the argument in the initial part of the proof of Proposition 1

|〈TN (n)ψ,ψ〉| < CA|n|10N61τ− 1
4� . (3.12)

Choosing τ small enough, the claim easily follows.
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