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1 Introduction

The purpose of this Note is to give an affirmative answer to a question raised
in the paper of P. Kurlberg and Z. Rudnick [K-R]. We first briefly recall the
background (see [K-R2]). Given A € SLs(Z), consider the automorphism of
the torus T? : x — Ax.

Given f € C*(T?), the classical evolution defined by A is f — f o A.
The quantization is obtained as follows. Let N € Z, be a large integer and
consider the Hilbert space Hy = L*(Zy), Zn = Z/NZ with inner product

(6.0) = 3 Gy,

TELN
The basic observables are given by the operators T (n),n = (n1,ng) € Z2
defined as follows

ning .nox

(T (n)6) (2) = ™ F* 27K gz 4 my). (L1)

Writing f(z) = >, cze f(n)e2™ine f e C>(T?), its quantization is then de-
fined by

Opy(f) =Y f()Tn(n). (1.2)

nez?

Assume further that A = (‘; Z) satisfies
ab = cd =0 (mod 2).

One may then assign to A a unitary operator Uy (A) called quantum propa-
gator or quantized cat map, which satisfies the ‘exact’ Egorov theorem

Un(A)"Opy(f)Un(A) = Opy(fo A). (1.3)
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We are concerned with the eigenfunctions of Uy (A) which play the role of
energy eigenstates.

It is shown in [K-R] that for N taken in a subsequence N' C Z, of asymp-
totic density one, we have for all f € C>°(T?)

—

max (0p, (11,0~ [ 1] N2k 0 (14)

where the maximum is taken over all normalized eigenfunctions ¢ of Uy (A).

The quantization of the cat map described above was proposed by Hannay
and Berry [H-B|. A few comments at this point. In the context of cat maps,
Schnirelman’s general theorem when the classical dynamics is ergodic (which
is the case when A € SLy(Z) is hyperbolic) takes the following form. Let
f € C>=(T?). If {¢;} is an arbitrary orthonormal basis of Hy consisting
of eigenfunctions of Uy (A), there is a subset J(N) C {1,..., N} such that

%(N)HlandforjEJ(N)

(O (1)05.05) = [ F when N = . (15)

Hence the [K-R] result (1.4) goes beyond (1.5), since they obtain a statement
valid for all eigenfunctions of Uy (A).

Previously, the only result providing an infinite set A" of integers N
(primes) satisfying (1.4) was due to Degli-Esposti, Graffi and Isola [D-G-IJ,
conditional to GRH. The precise form of the [K-R] result is as follows (using
previous notations)

N

>

Jj=1

4 o 14
< m (1.6)

Orx(fsi) = [ 1

where o(A, N) denotes the order of A mod N. (See [K-R], Theorem 2.) In
order to derive (1.4) from (1.6), one needs to ensure that o(A, N) > N'/2 for
N € N. Verifying this property for sequence N of asymptotic density 1 is in
fact a significant part of the [K-R] paper (the issue is related to the classical
Gauss—Artin problem.) It is shown in [K-R] one may ensure for N € N of
asymptotic density 1, that

o(A,N) > NY?exp ((log N)?) (1.7)

for some & > 0.

The authors raise the question how to get results when o(A, N) is smaller
than N'/2. We will show here how to settle this problem using the new expo-
nential sum bounds obtained in [BGK], [B], [B-C] for multiplicative subgroups
G of finite fields and their products. These results provide nontrivial estimates
even when G is very small.

They will allow us to deal with the case when o(A, N) > N°¢ (say for N
prime) for an arbitrary small given ¢ > 0. Unlike a stronger statement such
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as (1.7), the generic validity of this last condition is essentially obvious to
verify. Our results are stated in Proposition 2 (prime modulus) and Theorem
3 (arbitrary modulus). Note that in (3.1) below the discrepancy is estimated
as N9 which is better than the bound obtained in [K-R].

The results of importance for what follows are the following

Theorem 1 (see [BGK] if f =1 and [B-C] if f >1). Let G <F}, be of
order t such that

t>p! (1.8)
and
mlz}x(t,p’“ —1)<t® (1.9)
r<f

where € > 0 is an arbitrarily small given constant.

Then
> X(x)
zeG

where X runs over the nontrivial additive characters of Fpr, thus X(x) =

e(%Tr(ax)),a €F;, and § =6(c) > 0.

<ot (1.10)

max
X#X,

In the application below, f = 2.
Also needed is the following exponential sum bound in F, x F,, obtained
in [B].

Theorem 2 ([B]). Let G < F; x Iy, be generated by (01,02) € F,, x F; satis-
fying

0(6,) > p° (1.11)
O(s) > p° (1.12)
O(6,051) > p° (1.13)

with € > 0 a given arbitrary constant. We denote here O(0) the multiplicative
order of 6 € IFy.
There is § = 6(g) > 0 such that

max e, (a1 + asxs)| < C|G|M 0. 1.14
(al,az);é(o,o)‘; pla121 + azs) |G (1.14)

Acknowledgement. The author is grateful to Z. Rudnick for his comments on an
earlier version of this account.

2 The Prime Case

Considering first the case with NV = p prime, we show the following
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Proposition 1. For alle > 0, there is 6 > 0 such that if o(A, N) > N¢, then,
assuming n and nA linearly independent mod N, we have

m$x|<TN(n)w,¢>] < 2N (2.1)

with the maximum taken over the normalized eigenfunctions ¥ of Un(A).

Proof. Denote t = 0o(A, N). Since Uy (A) is unitary, write for j =1,...,¢

(Tn(n)y,9) = (Tn (n)Un (AY 9, Un (A) )

&
1i TN UNAY . 0). (22)

By Egorov’s theorem (1.3), we have
Un(A) ' Tn(n)Un(A) = Tn(nA) (2.3)

and iterating ‘ ‘ ‘
UN(A)ijN(n)UN(A)J = TN(TLAJ).

Hence from (2.2)

(T (), ) < [[D(n)] (2.4)
where D = D(n) is following operator on Hy
1o :
= > Tn(nd) (2.5)
j=1
and || || stands for the operator norm.

Take a (sufficiently large) positive integer £ (to be specified) and estimate
| D||* < trace (DD*)?". (2.6)
Recall the following properties (see [K-R])
Tn(m)* =Tn(-m) (2.7)
and
Tn(m)Tn(n) =en (M(W;M)TN(m+n) (2.8)

with
w(m,n) = ming — mang.
Expanding (2.6) using (2.7)—(2.8) gives

t
1 . . .
(DD ) t4z Z ’lemjuTN (n(AJl —A” .~ AJM)) (2'9)

J1seeJae=1
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where |v;, ... jae| = 1.

Next
N LB
It follows now from (2.9), (2.10) that
(2.6) <t ¥NA{ (1, dae) € {1t} | n(AT - —AT) =0 mO((i N}).
2.11

The issue becomes now to estimate (2.11).

Recall that N = p (prime).

Following [K-R], let K be the real quadratic field containing the eigenvalues
of A (which are units) and O its maximal order. Let P be a prime of K lying
above p and consider the residue class field = O/P. If p splits, K, ~ F,, and
if p is inert, K, ~ F,». Diagonalizing A over K, we obtain A’ = (§ 591)
and n’ = (n},n5) in the eigenvector basis. Also nj # 0,n5 # 0 in K, as
a consequence of the linear independence assumption for n and nA mod p.
Our problem is therefore reduced to estimating the number (f) of solutions in

(1, - -, Jjae) € {1,...,t}* of the system of equations

%ﬁ‘(—l)sa‘jb‘ =0 (2.12)
s=1
%(—1)36‘3‘ =0 (2.12)
s=1

in K. Here € € K, is of order t.

Case 1: The Split Case. Thus K, = [F,. Apply Theorem 2 with 6; = €,0, =
e~ for which 0(61) = 0(62) =t > p® and 0(6165 ") = 0(?) > £ > 1p°. Hence
(1.11) holds for some ¢; = d1(g) > 0.

Estimate by the circle method

t a6
1 ‘ »
(t) = Z Z Zep(alaj + ase™)
0<ai,az<p | j=1
) t a6
< " i i
P (aran00) ;e”(aﬁ o)
o Ly 4 ot-sae
p2
<t (p=2 4 Otfpi=nty, (2.13)
Taking
1
> — 2.14
= (2.14)

it follows that (for p large enough)
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(1) < 2t*p=2. (2.15)

Case 2: The Inert Case. Then K ~ Fy. Let G = {7]0 < j <t} < K. We
have to distinguish 2 further subcases.
Assume first that t = |G| satisfies

(t,p—1) <t'"% (2.16)

so that condition (1.6) of Theorem 1 is fulfilled.
Then (1.7) holds with § = §; = d1(¢). By the circle method, we obtain
again

40

QZ

> X
zeG
4
X(z
+ Eﬁaé) Z
< t4£ (p + Cp74Z661)
< 2a*p~? (2.16")

4

for a choice of £ as in (2.14).
Next, suppose (2.16) violated. Then ¢t = t1t5 where

tilp— 1 and t3 < /2,
Replace G by G1 = G2 < F; generated by e1 = £'2 of order t; in F}, t1 > p/2.

Write j € {0,1,...,t—1} in the form j = jito+jo with 53 € {0,1,...,¢; —
1} and j; € {0,1,...,ty — 1}. Estimate

t—1 40
1 .
(1) = = Z Zep Tr (a167) + Tr(age™ j))
p a1,a2€F 2 ' j=0
and by Holder’s inequality
to—1 | t1—1 ' 4
p iyt Z Z Z ep(Tr(a1e?)el" + Tr(age™7?)e7 ") (2.17)
a1,a2€F 2 j2=0"71=0

the inner sum in (2.17) is again estimated by Theorem 2. Thus for some

61=6(5)>0

ti—1 ‘

Z ep(brel’ + baey”’ )

Jj1=0

for (bl,bz) S Fp X Fp, (bl,bz) 7& (0,0)
Therefore clearly

<cp (2.18)
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(2.17) < p~ 4!
. ‘{(al,ag,j) €F,e x Fpo x {0,1,...,to — 1} | Tr(are?) = Tr(aze™7) = 0}

4 ot
< p M gp? 4 a0
< tH(p? + Cp ). (2.19)
Taking ¢ > %, we obtain again that

(1) < 2p~t". (2.20)

Thus (2.20) holds provided we take ¢ = ¢(e) large enough, and gives the bound
on the number of solutions of (2.12), (2.12").
Returning to (2.11), we conclude that

2.6 —
(2.6) <
hence
|D|| < 2N~Y/4¢, (2.21)
This proves (2.1).
Remark. As observed in [K-R], the condition of linear independence mod N
of n and nA (n € Z? being fixed, n # (0,0)) is automatically satisfied for N
a sufficiently large prime. Indeed, since A does not have rational eigenvectors,
det(n,nA) € Z\{0} for all n € Z?\{0}.
If o(A,p) = t, necessarily p|det(A® — 1), where det(A* — 1) € Z\{0}.
Therefore a prime p < T for which o(A4,p) < T¢ necessarily divides
B= ][] det(A'-1). (2.22)
1<t<Te
The number of these primes is at most log |B| < C.T?%.
In view of Proposition 1, this shows the following

Proposition 2. For alle > 0, there is § > 0 and a sequence S = S, of primes
such that

#{NeS|N<T} <CT*? (2.23)
and for all n € Z2\{(0,0)}
maxc (T (n)ih, )| < N7 (2.24)

if N is a sufficiently large prime, N € S.
(The mazimum taken over all normalized eigenfunctions v of Un(A).)

Hence, for f € C*(T?)

wax|Op (1))~ [ f‘ <N (2.25)

for N a sufficiently large prime outside S.
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3 The Case of General Modulus

We may now establish the following

Theorem 3. There is a density 1 sequence N of integers N and § > 0 such
that for all observables f € C*°(T?), we have

max |(Op, (f)¥, ) —/ f’ < CfN7° for Ne N (3.1)
1/’ ’]1‘2

where the mazimum is taken over all normalized eigenfunctions v of Uag.

Remark. Compared with [K-R], see in particular the combination of Corollary
9 and Theorem 17 in [K-R], what we get more is an N estimate rather than
1/exp(log N)? for some § > 0.

The main ingredient is the improvement for N prime obtained in previous
section.

Proof of Theorem 3. Fix a small positive number 7 > 0 (to be specified).
Given a positive integer N, write N = NZN, with Ny square-free. Since

T <N <2T| N, >T7}H < ) T e (3.2)

we may restrict ourselves to integers N with square-free part Ny > N1727,
Next, we require that for any prime divisor p of N, p > /log N, we have

o(A,p) > p3. (3.3)

As pointed out in the previous section, this property is satisfied for all primes
2

2F < p < 281 except 25% of them. Our requirement (3.3) will therefore

exclude from [T, 2T at most

2, T _
> stz—k < T(logT)~Y/¢ (3.4)
2T>>2’“>\/logT

integers, which again leads to a density zero sequence. Given N as above,
write N = NZNoN’ where Ny < N™,Ny < [yIogN]! < N7 and N’ is a
simple product of primes p > v/log N for which (3.3) holds. Returning to the
proof of Proposition 1, we estimate (2.11)

t_4éN‘{(j17...,j44) e{l,...,t}*¥* | nAl — ... — AJu) = 0(mod N)}| (3.5)

(up to this point no primality of N was involved).

For M € Z,, denote Mato(M) the 2 x 2 matrices over Z/MZ and Gy its
multiplicative subgroup {47 | 0 < j < o(A, M)}.

With previous decomposition of N, the map
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Gy — Gy2 x Gy x [] Gy

p|N’
is injective. Defining
Qv = |{(a1,...,o¢4g) € G?\f] [n(ag — - —aq) = O(modM)H (3.6)
the last factor in (3.5) equals Qx. Obviously
Qn <Qn2-Qny - [ Q- (3.7)
p|N’

Take p|N’ not dividing v,, = det(n,nA), so that n and nA are independent
mod p. Since (3.3) holds, the estimate (2.20) on (1) in the proof of Proposition
1 gives

Qp < 2p7%|Gpl* (3.8)

where ¢ = {(3) is some integer in particular independent of the choice of 7.
From (3.7), (3.8)

20(A, p)**
Qur < (N2Now) ' ] (pzp)
pIN’
(p,vn)=1
(N2Nyu,, ) 66+2 log N 4
A
< N2 P loglog N H o(4,p)
p|N2
40
< C4|n|10f NOOTE-2 { H 0(A,p):| (3.9)
p| N2

(N2 = square free part of N).
At this point, recall Proposition 11 of [K-R]. It asserts that we may mino-

rate I (A.p)
oA, p
A N) > pIN2 3.10
ol ) > ca exp(3(loglog N)*) (3.10)
by further exclusion of IV outside a density zero sequence
Substituting (3.10) in (3.9) gives,
Qn < Ca|n|* " N2 exp (13¢(loglog N)*)o(A4, N)*
< Caln|*PENOITE=20( A, N, (3.11)

Hence, from the argument in the initial part of the proof of Proposition 1
(T (), )| < Caln|'ONOI 737, (3.12)

Choosing 7 small enough, the claim easily follows.
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