
Assume-Guarantee Synthesis�

Krishnendu Chatterjee1 and Thomas A. Henzinger1,2

1 University of California, Berkeley, USA
2 EPFL, Switzerland

{c krish,tah}@eecs.berkeley.edu

Abstract. The classical synthesis problem for reactive systems asks,
given a proponent process A and an opponent process B, to refine A so
that the closed-loop system A||B satisfies a given specification Φ. The
solution of this problem requires the computation of a winning strategy
for proponent A in a game against opponent B. We define and study
the co-synthesis problem, where the proponent A consists itself of two
independent processes, A = A1||A2, with specifications Φ1 and Φ2, and
the goal is to refine both A1 and A2 so that A1||A2||B satisfies Φ1 ∧ Φ2.
For example, if the opponent B is a fair scheduler for the two processes
A1 and A2, and Φi specifies the requirements of mutual exclusion for Ai

(e.g., starvation freedom), then the co-synthesis problem asks for the
automatic synthesis of a mutual-exclusion protocol.

We show that co-synthesis defined classically, with the processes A1

and A2 either collaborating or competing, does not capture desirable
solutions. Instead, the proper formulation of co-synthesis is the one where
process A1 competes with A2 but not at the price of violating Φ1, and
vice versa. We call this assume-guarantee synthesis and show that it can
be solved by computing secure-equilibrium strategies. In particular, from
mutual-exclusion requirements the assume-guarantee synthesis algorithm
automatically computes Peterson’s protocol.

1 Introduction

The algorithmic synthesis (or control) of reactive systems is based on solving
2-player zero-sum games on graphs [11,12]. Player 1 (representing the system or
controller to be synthesized) attempts to satisfy a specification Φ; player 2 (rep-
resenting the environment or plant) tries to violate the specification. Synthesis is
successful if a strategy for player 1 can be found which ensures that Φ is satisfied
no matter what player 2 does. These games are zero-sum, because the objective
of player 2 is ¬Φ, the negation of player 1’s objective. In other words, synthesis
assumes the worst-case scenario that player 2 is as obstructive as possible.

In many game situations in economics, the two players do not have strictly
complementary objectives. Then the appropriate notion of rational behavior
is that of a Nash equilibrium. One also encounters non-zero-sum situations in
� This research was supported in part by the Swiss National Science Foundation and

by the NSF grants CCR-0225610 and CCR-0234690.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 261–275, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

262 K. Chatterjee and T.A. Henzinger

computer science applications [10]. In this paper, we demonstrate that non-zero-
sum situations arise in the co-synthesis problem. In co-synthesis, we are not
asked to synthesize a single reactive process, but a system composed of several
processes Pi, each with its own specification Φi. For instance, the design of a
mutual-exclusion protocol is a co-synthesis question: each one of two processes
P1 and P2 is supposed to satisfy certain requirements, such as mutual exclusion,
bounded overtaking, and starvation freedom. In such a situation, the processes
are neither collaborating nor are they strictly competitive: they are not collabo-
rating because process P1 cannot assume that P2 will help establishing Φ1; they
are not strictly competitive because process P2 will not obstruct Φ1 at all costs,
but only if doing so does not endanger Φ2. In other words, the two processes are
conditionally competitive: process P1 can assume that P2 will primarily try to
satisfy Φ2, and only secondarily try to violate Φ1, and vice versa. This situation
can be captured by 2-player games with lexicographic objectives, and Nash equi-
libria for such lexicographic objectives are called secure equilibria [4]. Formally,
a pair of strategies for the two players is winning and secure if (1) both players
satisfy their objectives by playing the strategies, and (2) if one player deviates
from her strategy in order to harm the other player, then the other player can
retaliate by violating the first player’s objective. We refer to the resulting payoff
profile, with both players winning, as a winning secure equilibrium.

We formally define the co-synthesis problem, using the automatic synthesis
of a mutual-exclusion protocol as a guiding example. More precisely, we wish
to synthesize two processes P1 and P2 so that the composite system P1||P2||R,
where R is a scheduler that arbitrarily but fairly interleaves the actions of P1
and P2, satisfies the requirements of mutual exclusion and starvation freedom for
each process. We show that traditional zero-sum game-theoretic formulations,
where P1 and P2 either collaborate against R, or unconditionally compete, do
not lead to acceptable solutions. We then show that for the non-zero-sum game-
theoretic formulation, where the two processes compete conditionally, there ex-
ists an unique winning secure-equilibrium solution, which corresponds exactly to
Peterson’s mutual-exclusion protocol. In other words, Peterson’s protocol can be
synthesized automatically as the winning secure strategies of two players whose
objectives are the mutual-exclusion requirements. This is to our knowledge the
first application of non-zero-sum games in the synthesis of reactive processes. It
is also, to our knowledge, the first application of Nash equilibria —in particular,
the special kind called “secure”— in system design.

The new formulation of co-synthesis, with the two processes competing con-
ditionally, is called assume-guarantee synthesis, because similar to assume-
guarantee verification (e.g., [1]), in attempting to satisfy her specification, each
process makes the assumption that the other process does not violate her own
specification. The solution of the assume-guarantee synthesis problem can be ob-
tained by computing secure equilibria in 3-player games, with the three players
P1, P2, and R. Previously, meaningful (i.e., unique maximal) secure equilibria
were known to exist only for 2-player games [4], and there it was also shown that
in general such meaningful equilibria need not exist for three players. Here we

Assume-Guarantee Synthesis 263

do
{
flag[1]:=true; turn:=2;

| while(flag[1]) nop;
| while(flag[2]) nop;
| while(turn=1) nop;
| while(turn=2) nop;
| while(flag[1] & turn=2) nop;
| while(flag[1] & turn=1) nop;
| while(flag[2] & turn=1) nop;
| while(flag[2] & turn=2) nop;

Cr1:=true; fin_wait; Cr1:=false;
flag[1]:=false;

wait[1]:=1;
while(wait[1]=1)
| nop;
| wait[1]:=0;

} while(true)

do
{
flag[2]:=true; turn:=1;

| while(flag[1]) nop; (C1)
| while(flag[2]) nop; (C2)
| while(turn=1) nop; (C3)
| while(turn=2) nop; (C4)
| while(flag[1] & turn=2) nop; (C5)
| while(flag[1] & turn=1) nop; (C6)
| while(flag[2] & turn=1) nop; (C7)
| while(flag[2] & turn=2) nop; (C8)

Cr2:=true; fin_wait; Cr2:=false;
flag[2]:=false;

wait[2]:=1;
while(wait[2]=1)
| nop; (C9)
| wait[2]:=0; (C10)

} while(true)

Fig. 1. Mutual-exclusion protocol synthesis

extend the theoretical results of [4] in two ways, in order to solve the assume-
guarantee synthesis problem. First, we prove the existence of meaningful secure
equilibria in the special case of 3-player games where the third player can win
unconditionally. This special case arises in assume-guarantee synthesis, because
the winning condition of the third player (i.e., the scheduler) is fairness. Second,
we give an algorithm for answering the existence of a winning secure equilibrium
(Theorem 2), and for computing the corresponding strategies (Theorem 3). These
algorithms extend those of [4] from two to three players.

On large state spaces, assume-guarantee synthesis, like all algorithmic meth-
ods, can be impractical. In Section 4, we provide an abstraction methodology for
assume-guarantee synthesis. We show how a game structure can be abstracted,
independently for player 1 and player 2, so that from certain winning strategies
on the two abstract games, we can infer winning secure strategies on the concrete
game. To our knowledge, this is the first abstraction methodology that works
with two independent abstractions of a single game structure. Single-player ab-
stractions suffice for zero-sum games (the abstraction weakens one player and
strengthens the other). However, for non-zero-sum games, the two-abstractions
methodology suggests itself, because each abstraction focuses on the objective of
a different player and may thus omit different details. In this way, both abstrac-
tions may have smaller state spaces than a combined abstraction would. Specifi-
cally, we provide proof rules for inferring winning secure strategies on a concrete
3-player non-zero-sum game from classical winning strategies on two abstract
2-player zero-sum games, for the cases of safety and Büchi objectives. In fact, in
the safety case, our proof rule corresponds closely to the assume-guarantee rule

264 K. Chatterjee and T.A. Henzinger

of [1]. In the Büchi case, our rule provides a novel assume-guarantee rule for the
verification of specifications under weak fairness.
Related work. We use non-zero-sum games in a perfect-information setting to
restrict the power of an adversary in the synthesis of reactive systems. Another
way to restrict the power of the adversary is to allow the adversary only a partial
view of the state space. The resulting class of imperfect-information games [3,13],
and more generally, distributed games [8,9], have been studied extensively in the
literature, but only with zero-sum (strictly competitive) objectives. The compu-
tational complexity of imperfect-information games is typically much higher than
of the perfect-information analogues, and several problems become undecidable
in the distributed setting. As illustrated with the mutual-exclusion example, we
believe that non-zero-sum games have their place in system synthesis, for syn-
thesizing components with different specifications. They restrict the behaviors
of the players in a natural way, by focusing on non-zero-sum objectives, without
the exponential (or worse) cost of limiting information.

2 Co-synthesis

In this section we define processes, refinement, schedulers, and specifications. We
consider the traditional co-operative [5] and strictly competitive [11,12] versions
of the co-synthesis problem; we refer to them as weak co-synthesis and classical
co-synthesis, respectively. We show the drawbacks of these formulations and then
present a new formulation of co-synthesis, namely, assume-guarantee synthesis.

Variables, valuations, and traces. Let X be a finite set of variables such that
each variable x ∈ X has a finite domain Dx. A valuation v on X is a function
v : X →

⋃
x∈X Dx that assigns to each variable x ∈ X a value v(x) ∈ Dx. We

write V for the set of valuations on X . A trace on X is an infinite sequence
(v0, v1, v2, . . .) ∈ V ω of valuations on X . Given a valuation v ∈ V and a subset
Y ⊆ X of the variables, we denote by v � Y the restriction of the valuation v
to the variables in Y . Similarly, for a trace τ = (v0, v1, v2, . . .) on X , we write
τ � Y = (v0 � Y, v1 � Y, v2 � Y, . . .) for the restriction of τ to the variables in Y .
The restriction operator is lifted to sets of valuations, and to sets of traces.

Processes and refinement. For i ∈ {1, 2}, a process Pi = (Xi, δi) consists of a
finite set Xi of variables and a nondeterministic transition function δi : Vi →
2Vi \ ∅, where Vi is the set of valuations on Xi. The transition function maps a
present valuation to a nonempty set of possible successor valuations. We write
X = X1 ∪X2 for the set of variables of both processes; note that some variables
may be shared by both processes. A refinement of process Pi = (Xi, δi) is a
process P ′

i = (X ′
i, δ

′
i) such that (1) Xi ⊆ X ′

i, and (2) for all valuations v′ on X ′
i,

we have δ′i(v
′) � Xi ⊆ δi(v′ � Xi). In other words, the refined process P ′

i has
possibly more variables than the original process Pi, and every possible update
of the variables in Xi by P ′

i is a possible update by Pi. We write P ′
i � Pi to

denote that P ′
i is a refinement of Pi. Given two refinements P ′

1 of P1 and P ′
2 of

P2, we write X ′ = X ′
1 ∪ X ′

2 for the set of variables of both refinements, and we
denote the set of valuations on X ′ by V ′.

Assume-Guarantee Synthesis 265

Schedulers. Given two processes P1 and P2, a scheduler R for P1 and P2 chooses
at each computatiuon step whether it is process P1’s turn or process P2’s turn
to update its variables. Formally, the scheduler R is a function R : V ∗ → {1, 2}
that maps every finite sequence of global valuations (representing the history
of a computation) to i ∈ {1, 2}, signaling that process Pi is next to update its
variables. The scheduler R is fair if it assigns turns to both P1 and P2 infinitely
often; i.e., for all traces (v0, v1, v2, . . .) ∈ V ω, there exist infinitely many j ≥ 0 and
infinitely many k ≥ 0 such that R(v0, . . . , vj) = 1 and R(v0, . . . , vk) = 2. Given
two processes P1 = (X1, δ1) and P2 = (X2, δ2), a scheduler R for P1 and P2,
and a start valuation v0 ∈ V , the set of possible traces is [[(P1 || P2 || R)(v0)]] =
{(v0, v1, v2, . . .) ∈ V ω | ∀j ≥ 0. R(v0, . . . , vj) = i and vj+1 � (X \ Xi) = vj �
(X \Xi) and vj+1 � Xi ∈ δi(vj � Xi)}. Note that during turns of one process Pi,
the values of the private variables X \Xi of the other process remain unchanged.

Specifications. A specification Φi for processs Pi is a set of traces on X ; that
is, Φi ⊆ V ω. We consider only ω-regular specifications [14]. We define boolean
operations on specifications using logical operators such as ∧ (conjunction) and
→ (implication).

Weak co-synthesis. In all formulations of the co-synthesis problem that we
consider, the input to the problem is given as follows: two processes P1 = (X1, δ1)
and P2 = (X2, δ2), two specifications Φ1 for process 1 and Φ2 for process 2, and
a start valuation v0 ∈ V . The weak co-synthesis problem is defined as follows:
do there exist two processes P ′

1 = (X ′
1, δ

′
1) and P ′

2 = (X ′
2, δ

′
2), and a valuation

v′0 ∈ V ′, such that (1) P ′
1 � P1 and P ′

2 � P2 and v′0 � X = v0, and (2) for all fair
schedulers R for P ′

1 and P ′
2, we have [[(P ′

1 || P ′
2 || R)(v′0)]] � X ⊆ (Φ1 ∧ Φ2).

Example 1 (Mutual-exclusion protocol synthesis). Consider the two processes
shown in Fig. 1. Process P1 (on the left) places a request to enter its critical
section by setting flag[1]:=true, and the entry of P1 into the critical section
is signaled by Cr1:=true; and similarly for process P2 (on the right). The two
variables flag[1] and flag[2] are boolean, and in addition, both processes may
use a shared variable turn that takes two values 1 and 2. There are 8 possible
conditions C1–C8 for a process to guard the entry into its critical section.1 The
figure shows all 8 × 8 alternatives for the two processes; any refinement without
additional variables will choose a subset of these. Process P1 may stay in its crit-
ical section for an arbitrary finite amount of time (indicated by fin wait), and
then exit by setting Cr1:=false; and similarly for process P2. The while loop
with the two alternatives C9 and C10 expresses the fact that a process may wait
arbitrarily long (possibly infinitely long) before a subsequent request to enter its
critical section.

We use the notations � and � to denote always (safety) and eventually (reach-
ability) specifications, respectively. The specification for process P1 consists of
two parts: a safety part Φmutex

1 = �¬(Cr1 = true ∧ Cr2 = true) and a liveness

1 Since a guard may check any subset of the three 2-valued variables, there are 256
possible guards; but all except 8 can be discharged immediately as not useful.

266 K. Chatterjee and T.A. Henzinger

do
{
flag[1]:=true; turn:=2;

while (flag[2] & turn=1) nop;

Cr1:=true; fin_wait; Cr1:=false;
flag[1]:=false;

wait[1]:=1;
while(wait[1]=1)
| nop;
| wait[1]:=0;

} while(true)

do
{
flag[2]:=true; turn:=1;

while (flag[1] & turn=2) nop; (C8+C5)

Cr2:=true; fin_wait; Cr2:=false;
flag[2]:=false;

wait[2]:=1;
while(wait[2]=1)
| nop; (C9)
| wait[2]:=0; (C10)

} while(true)

Fig. 2. Peterson’s mutual-exclusion protocol

part Φ
prog
1 = �(flag[1] = true → �(Cr1 = true)). The first part Φmutex

1 speci-
fies that both processes are not in their critical sections simultaneously (mutual
exclusion); the second part Φprog

1 specifies that if process P1 wishes to enter its
critical section, then it will eventually enter (starvation freedom). The specifica-
tion Φ1 for process P1 is the conjunction of Φmutex

1 and Φprog
1 . The specification

Φ2 for process P2 is symmetric.

The answer to the weak co-synthesis problem for Example 1 is “Yes.” A solution
of the weak co-synthesis formulation are two refinements P ′

1 and P ′
2 of the two

given processes P1 and P2, such that the composition of the two refinements
satisfies the specifications Φ1 and Φ2 for every fair scheduler. One possible so-
lution is as follows: in P ′

1, the alternatives C4 and C10 are chosen, and in P ′
2,

the alternatives C3 and C10 are chosen. This solution is not satisfactory, because
process P1’s starvation freedom depends on the fact that process P2 requests to
enter its critical section infinitely often. If P2 were to make only a single request
to enter its critical section, then the progress part of Φ1 would be violated.

Classical co-synthesis. The classical co-synthesis problem is defined as follows:
do there exist two processes P ′

1 = (X ′
1, δ

′
1) and P ′

2 = (X ′
2, δ

′
2), and a valuation

v′0 ∈ V ′, such that (1) P ′
1 � P1 and P ′

2 � P2 and v′0 � X = v0, and (2) for all
fair schedulers R for P ′

1 and P ′
2, we have (a) [[(P ′

1 || P2 || R)(v′0)]] � X ⊆ Φ1 and
(b) [[(P1 || P ′

2 || R)(v′0)]] � X ⊆ Φ2.
The answer to the classical co-synthesis problem for Example 1 is “No.” We

will argue later (in Example 2) why this is the case.

Assume-guarantee synthesis. We now present a new formulation of the co-
synthesis problem. The main idea is derived from the notion of secure equi-
libria [4]. We refer to this new formulation as the assume-guarantee synthesis
problem; it is defined as follows: do there exist two refiements P ′

1 = (X ′
1, δ

′
1) and

P ′
2 = (X ′

2, δ
′
2), and a valuation v′0 ∈ V ′, such that (1) P ′

1 � P1 and P ′
2 � P2

and v′0 � X = v0, and (2) for all fair schedulers R for P ′
1 and P ′

2, we have

Assume-Guarantee Synthesis 267

(a) [[(P ′
1 || P2 || R)(v′0)]] � X ⊆ (Φ2 → Φ1) and (b) [[(P1 || P ′

2 || R)(v′0)]] � X ⊆
(Φ1 → Φ2) and (c) [[(P ′

1 || P ′
2 || R)(v′0)]] � X ⊆ (Φ1 ∧ Φ2).

The answer to the assume-guarantee synthesis problem for Example 1 is “Yes.”
A solution P ′

1 and P ′
2 is shown in Fig. 2. We will argue the correctness of this so-

lution later (in Example 3). The two refined processes P ′
1 and P ′

2 present exactly
Peterson’s solution to the mutual-exclusion problem. In other words, Peterson’s
protocol can be derived automatically as an answer to the assume-guarantee syn-
thesis problem for the requirements of mutual exclusion and starvation freedom.
The success of assume-guarantee synthesis for the mutual-exclusion problem,
together with the failure of the classical co-synthesis, suggests that the classical
formulation of co-synthesis is too strong.

3 Game Algorithms for Co-synthesis

We reduce the three formulations of the co-synthesis problem to problems about
games played on graphs with three players.

Game graphs. A 3-player game graph G = ((S, E), (S1, S2, S3)) consists of a
directed graph (S, E) with a finite set S of states and a set E ⊆ S2 of edges,
and a partition (S1, S2, S3) of the state space S into three sets. The states in Si

are player-i states, for i ∈ {1, 2, 3}. For a state s ∈ S, we write E(s) = {t ∈ S |
(s, t) ∈ E} for the set of successor states of s. We assume that every state has
at least one outgoing edge; i.e., E(s) is nonempty for all states s ∈ S. Beginning
from a start state, the three players move a token along the edges of the game
graph. If the token is on a player-i state s ∈ Si, then player i moves the token
along one of the edges going out of s. The result is an infinite path in the game
graph; we refer to such infinite paths as plays. Formally, a play is an infinite
sequence (s0, s1, s2, . . .) of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write
Ω for the set of plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy σi for player i is a function σi : S∗ · Si → S that, given a
finite sequence of states (representing the history of the play so far) which ends
in a player-i state, chooses the next state. The strategy must choose an available
successor state; i.e., for all w ∈ S∗ and s ∈ Si, if σi(w · s) = t, then t ∈ E(s).
We write Σi for the set of strategies for player i. Strategies in general require
memory to remember some facts about the history of a play. An equivalent
definition of strategies is as follows. Let M be a set called memory. A strategy
σ = (σu, σn) can be specified as a pair of functions: (1) a memory-update function
σu : S × M → M that, given the memory and the current state, updates the
memory; and (2) a next-state function σn : S × M → S that, given the memory
and the current state, determines the successor state. The strategy σ is finite-
memory if the memory M is finite. The strategy σ is memoryless if the memory
M is a singleton set. Memoryless strategies do not depend on the history of a
play, but only on the current state. A memoryless strategy for player i can be
specified as a function σi : Si → S such that σi(s) ∈ E(s) for all s ∈ Si. Given a

268 K. Chatterjee and T.A. Henzinger

start state s ∈ S and three strategies σi ∈ Σi, one for each of the three players
i ∈ {1, 2, 3}, there is an unique play, denoted ω(s, σ1, σ2, σ3) = (s0, s1, s2, . . .),
such that s0 = s and for all k ≥ 0, if sk ∈ Si, then σi(s0, s1, . . . , sk) = sk+1; this
play is the outcome of the game starting at s given the three strategies σ1, σ2,
and σ3.

Winning. An objective Ψ is a set of plays; i.e., Ψ ⊆ Ω. The following notation is
derived from ATL [2]. For an objective Ψ , the set of winning states for player 1
in the game graph G is 〈〈1〉〉G(Ψ) = {s ∈ S | ∃σ1 ∈ Σ1. ∀σ2 ∈ Σ2. ∀σ3 ∈
Σ3. ω(s, σ1, σ2, σ3) ∈ Ψ}; a witness strategy σ1 for player 1 for the existential
quantifier is referred to as a winning strategy. The winning sets 〈〈2〉〉G(Ψ) and
〈〈3〉〉G(Ψ) for players 2 and 3 are defined analogously. The set of winning states
for the team consisting of player 1 and player 2, playing against player 3, is
〈〈1, 2〉〉G(Ψ) = {s ∈ S | ∃σ1 ∈ Σ1. ∃σ2 ∈ Σ2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ Ψ}. The
winning sets 〈〈I〉〉G(Ψ) for other teams I ⊆ {1, 2, 3} are defined similarly. The
following determinacy result follows from [6].

Theorem 1 (Finite-memory determinacy [6]). Let Ψ be an ω-regular ob-
jective, let G be a 3-player game graph, and let I ⊆ {1, 2, 3} be a set of the
players. Let J = {1, 2, 3} \ I. Then (1) 〈〈I〉〉G(Ψ) = S \ 〈〈J〉〉G(¬Ψ), and (2) there
exist finite-memory strategies for the players in I such that against all strategies
for the players in J , for all states in s ∈ 〈〈I〉〉G(Ψ), the play starting at s given
the strategies lies in Ψ .

Game solutions to weak and classical co-synthesis. Given two processes
P1 = (X1, δ1) and P2 = (X2, δ2), we define the 3-player game graph Ĝ =
((S, E), (S1, S2, S3)) as follows: let S = V × {1, 2, 3}; let Si = V × {i} for
i ∈ {1, 2, 3}; and let E contain (1) all edges of the form ((v, 3), (v, 1)) for
v ∈ V , (2) all edges of the form ((v, 3), (v, 2)) for v ∈ V , and (3) all edges
of the form ((v, i), (u, 3)) for i ∈ {1, 2} and u � Xi ∈ δi(v � Xi) and
u � (X \ Xi) = v � (X \ Xi). In other words, player 1 represents process P1,
player 2 represents process P2, and player 3 represents the scheduler. Given a
play of the form ω = ((v0, 3), (v0, i0), (v1, 3), (v1, i1), (v2, 3), . . .), where ij ∈ {1, 2}
for all j ≥ 0, we write [ω]1,2 for the sequence of valuations (v0, v1, v2, . . .) in ω
(ignoring the intermediate valuations at player-3 states). A specification Φ ⊆ V ω

defines the objective [[Φ]] = {ω ∈ Ω | [ω]1,2 ∈ Φ}. In this way, the specifications
Φ1 and Φ2 for the processes P1 and P2 provide the objectives Ψ1 = [[Φ1]] and
Ψ2 = [[Φ2]] for players 1 and 2, respectively. The objective for player 3 (the
scheduler) is the fairness objective Ψ3 = Fair that both S1 and S2 are visited
infinitely often; i.e., Fair contains all plays (s0, s1, s2, . . .) ∈ Ω such that sj ∈ S1
for infinitely many j ≥ 0, and sk ∈ S2 for infinitely many k ≥ 0.

Proposition 1. Given two processes P1 = (X1, δ1) and P2 = (X2, δ2), two
specifications Φ1 for P1 and Φ2 for P2, and a start valuation v0 ∈ V , the answer
to the weak co-synthesis problem is “Yes” iff (v0, 3) ∈ 〈〈1, 2〉〉

�G(Fair → ([[Φ1]] ∧
[[Φ2]])); and the answer to the classical co-synthesis problem is “Yes” iff both
(v0, 3) ∈ 〈〈1〉〉

�G(Fair → [[Φ1]]) and (v0, 3) ∈ 〈〈2〉〉
�G(Fair → [[Φ2]]).

Assume-Guarantee Synthesis 269

Example 2 (Failure of classical co-synthesis). We now demonstrate the failure of
classical co-synthesis for Example 1. We show that for every strategy for process
P1, there exist spoiling strategies for process P2 and the scheduler such that
(1) the scheduler is fair and (2) the specification Φ1 of process P1 is violated. With
any fair scheduler, process P1 will eventually set flag[1]:=true. Whenever
process P1 enters its critical section (setting Cr1:=true), the scheduler assigns a
finite sequence of turns to process P2. During this sequence, process P2 enters its
critical section: it may first choose the alternative C10 to return to the beginning
of the the main loop, then set flag[2]:=true; turn:=1; then pass the guard
C4: (since (turn �= 2)), and enter the critical section (setting Cr2:=true). This
violates the mutual-exclusion requirement Φmutex

1 of process P1. On the other
hand, if process P1 never enters its critical section, this violates the starvation-
freedom requirement Φ

prog
1 of process P1. Thus the answer to the classical

co-synthesis problem is “No.”

Game solution to assume-guarantee synthesis. We extend the notion of
secure equilibria [4] from 2-player games to 3-player games where player 3 can
win unconditionally; i.e., 〈〈3〉〉G(Ψ3) = S for the objective Ψ3 for player 3. In
the setting of two processes and a scheduler (player 3) with a fairness objective,
the restriction that 〈〈3〉〉G(Ψ3) = S means that the scheduler has a fair strategy
from all states; this is clearly the case for Ψ3 = Fair. (Alternatively, the scheduler
may not required to be fair; then Ψ3 is the set of all plays, and the restriction is
satisfied trivially.) The concept of secure equilibria is based on a lexicographic
preference ordering of payoff profiles, which can be extended naturally from two
to three players under the restriction that player 3 can win unconditionally. We
first present the definition of secure equilibria and then characterize the winning
secure equilibrium states as the winning states of certain subgames with zero-
sum objectives (Theorem 2); this result is a non-trivial generalization of [4] from
two to three players. We then establish the existence of finite-memory winning
secure strategies (Theorem 3). This will allow us to solve the assume-guarantee
synthesis problem by computing winning secure equilibria (Theorem 4).

Payoffs. In the following, we fix a 3-player game graph G and objectives Ψ1,
Ψ2, and Ψ3 for the three players such that 〈〈3〉〉G(Ψ3) = S. Given strategies σi

for the three players i ∈ {1, 2, 3}, and a state s ∈ S, the payoff pi(s, σ1, σ2, σ3)
for player i is 1 if ω(s, σ1, σ2, σ3) ∈ Ψi, and 0 otherwise. The payoff profile
(p1(s, σ1, σ2, σ3), p2(s, σ1, σ2, σ3), p3(s, σ1, σ2, σ3)) consists of the payoff for each
player. Since 〈〈3〉〉G(Ψ3) = S, any equilibrium payoff profile will assign payoff 1
to player 3. Hence we focus on payoff profiles whose third component is 1.

Payoff-profile ordering. The preference order ≺i for player i on payoff profiles
is defined by (p1, p2, p3) ≺i (p′

1, p
′
2, p

′
3) iff either (1) pi < p′

i, or (2) pi = p′
i and

pj+pk > p′
j+p′

k for j, k ∈ {1, 2, 3}\{i} with j �= k. In the case where the payoff for
player 3 is 1, the player-1 preference order ≺1 on payoff profiles is lexicographic:
(p1, p2, 1) ≺1 (p′

1, p
′
2, 1) iff either (1) p1 < p′

1, or (2) p1 = p′
1 and p2 > p′

2; that is,
player 1 prefers a payoff profile that gives her greater payoff, and if two payoff
profiles match in the first component, then she prefers the payoff profile in which

270 K. Chatterjee and T.A. Henzinger

player 2’s payoff is smaller. The preference order for player 2 is symmetric. The
preference order for player 3 is such that (p1, p2, 1) ≺3 (p′

1, p
′
2, 1) iff p1+p2 > p′

1+
p′
2. Given two payoff profiles (p1, p2, p3) and (p′

1, p′
2, p′

3), we write (p1, p2, p3) =
(p′

1, p
′
2, p

′
3) iff pi = p′

i for all i ∈ {1, 2, 3}, and we write (p1, p2, p3) �i (p′
1, p

′
2, p

′
3)

iff (p1, p2, p3) ≺i (p′
1, p

′
2, p

′
3) or (p1, p2, p3) = (p′

1, p
′
2, p

′
3).

Secure equilibria. A strategy profile (σ1, σ2, σ3) is a secure equilibrium at a state
s ∈ S iff the following three conditions hold:

∀σ′
1 ∈ Σ1. (p1(s, σ′

1, σ2, σ3), p2(s, σ′
1, σ2, σ3), p3(s, σ′

1, σ2, σ3)) �1 p;
∀σ′

2 ∈ Σ2. (p1(s, σ1, σ
′
2, σ3), p2(s, σ1, σ

′
2, σ3), p3(s, σ1, σ

′
2, σ3)) �2 p;

∀σ′
3 ∈ Σ3. (p1(s, σ1, σ2, σ

′
3), p2(s, σ1, σ2, σ

′
3), p3(s, σ1, σ2, σ

′
3)) �3 p;

where p = (p1(s, σ1, σ2, σ3), p2(s, σ1, σ2, σ3), p3(s, σ1, σ2, σ3)). In other words,
(σ1, σ2, σ3) is a Nash equilibrium with respect to the payoff-profile orderings �i

for the three players i ∈ {1, 2, 3}. For u, w ∈ {0, 1}, we write Suw1 ⊆ S for the
set of states s such that a secure equilibrium with the payoff profile (u, w, 1)
exists at s; that is, s ∈ Suw1 iff there is a secure equilibrium (σ1, σ2, σ3) at s
such that (p1(s, σ1, σ2, σ3), p2(s, σ1, σ2, σ3), p3(s, σ1, σ2, σ3)) = (u, w, 1). More-
over, we write MSuw1(G) ⊆ Suw1 for the set of states s such that the pay-
off profile (u, w, 1) is a maximal secure equilibrium payoff profile at s; that is,
s ∈ MSuw1(G) iff (1) s ∈ Suw1, and (2) for all u′, w′ ∈ {0, 1}, if s ∈ Su′w′1, then
both (u′, w′, 1) �1 (u, w, 1) and (u′, w′, 1) �2 (u, w, 1). The states in MS111(G)
are referred to as winning secure equilibrium states, and the witnessing secure
equilibrium strategies as winning secure strategies.

Theorem 2. Let G be a 3-player game graph G with the objectives Ψ1, Ψ2, and
Ψ3 for the three players such that 〈〈3〉〉G(Ψ3) = S. Let

U1 = 〈〈1〉〉G(Ψ3 → Ψ1);
U2 = 〈〈2〉〉G(Ψ3 → Ψ2);
Z1 = 〈〈1, 3〉〉G�U1(Ψ1 ∧ Ψ3 ∧ ¬Ψ2);
Z2 = 〈〈2, 3〉〉G�U2(Ψ2 ∧ Ψ3 ∧ ¬Ψ1);
W = 〈〈1, 2〉〉G�(S\(Z1∪Z2))(Ψ3 → (Ψ1 ∧ Ψ2)).

Then the following assertions hold: (1) at all states in Z1 the only secure equilib-
rium payoff profile is (1, 0, 1); (2) at all states in Z2 the only secure equilibrium
payoff profile is (0, 1, 1); and (3) W = MS111(G).

Proof. We prove parts (1) and (3); the proof of part (2) is similar to part (1).

Part (1). Since 〈〈3〉〉G(Ψ3) = S and Z1 ⊆ U1 = 〈〈1〉〉G(Ψ3 → Ψ1), it follows that
any secure equilibrium profile in Z1 has payoff profile of the form (1, , 1). Since
(1, 1, 1) ≺1 (1, 0, 1) and (1, 1, 1) ≺3 (1, 0, 1), to prove uniqueness it suffices to
show that player 1 and player 3 can fix strategies to ensure secure equilibrium
payoff profile (1, 0, 1). Since Z1 = 〈〈1, 3〉〉G�U1(Ψ1∧Ψ3∧¬Ψ2), consider the strategy
pair (σ1, σ3) such that against all player 2 strategies σ2 and for all states s ∈ Z1,
we have ω(s, σ1, σ2, σ3) ∈ (Ψ1 ∧ Ψ3 ∧ ¬Ψ2). The secure equilibrium strategy pair
(σ∗

1 , σ∗
3) for player 1 and player 3 (along with any strategy σ2 for player 2) is

constructed as follows.

Assume-Guarantee Synthesis 271

1. The strategy σ∗
1 is as follows: player 1 plays σ1 and if player 3 deviates from

σ3, then player 1 switches to a winning strategy for Ψ3 → Ψ1. Such a strategy
exists since Z1 ⊆ U1 = 〈〈1〉〉G(Ψ3 → Ψ1).

2. The strategy σ∗
3 is as follows: player 3 plays σ3 and if player 1 deviates from

σ1, then player 3 switches to a winning strategy for Ψ3. Such a strategy exists
since 〈〈3〉〉G(Ψ3) = S.

Hence objective of player 1 is always satisfied, given objective of player 3 is
satisfied. Thus player 3 has no incentive to deviate. Similarly, player 1 also has
no incentive to deviate. The result follows.

Part (3). By Theorem 1 we have S \W = 〈〈3〉〉G(Ψ3 ∧ (¬Ψ1 ∨¬Ψ2)) and there is a
player 3 strategy σ3 that satisfies Ψ3∧(¬Ψ1∨¬Ψ2) against all strategies of player 1
and player 2. Hence the equilibrium (1, 1, 1) cannot exist in the complement set
of W , i.e., MS111(G) ⊆ W . We now show that in W there is a secure equilibrium
with payoff profile (1, 1, 1). The following construction completes the proof.

1. In W ∩ U1, player 1 plays a winning strategy for objective Ψ3 → Ψ1, and
player 2 plays a winning strategy for objective (Ψ3 ∧Ψ1) → Ψ2. Observe that
S \ Z1 = 〈〈2〉〉G(¬Ψ1 ∨ ¬Ψ3 ∨ Ψ2), and hence such a winning strategy exists
for player 2.

2. In W ∩ (U2 \ U1), player 2 plays a winning strategy for objective Ψ3 → Ψ2,
and player 1 plays a winning strategy for objective (Ψ2 ∧ Ψ3) → Ψ1. Observe
that S \ Z2 = 〈〈1〉〉G(¬Ψ2 ∨ ¬Ψ3 ∨ Ψ1), and hence such a winning strategy
exists for player 1.

3. By Theorem 1 we have W \ U1 = 〈〈2, 3〉〉G(¬Ψ1 ∧ Ψ3) and W \ U2 =
〈〈1, 3〉〉G(¬Ψ2 ∧ Ψ3). The strategy construction in W \ (U1 ∪ U2) is as fol-
lows: player 1 and player 2 play a strategy (σ1, σ2) to satisfy Ψ1 ∧Ψ2 against
all strategies of player 3, and player 3 plays a winning strategy for Ψ3; if
player 1 deviates, then player 2 and player 3 switches to a strategy (σ2, σ3)
such that against all strategies for player 1 the objective Ψ3∧¬Ψ1 is satisfied;
and if player 2 deviates, then player 1 and player 3 switches to a strategy
(σ1, σ3) such that against all strategies for player 2 the objective Ψ3 ∧ ¬Ψ2
is satisfied. Hence neither player 1 and nor player 2 has any incentive to
deviate according to the preference order �1 and �2, respectively.

Alternative characterization of winning secure equilibria. In order to obtain a
characterization of the set MS111(G) in terms of strategies, we define retaliation
strategies following [4]. Given objectives Ψ1, Ψ2, and Ψ3 for the three players,
and a state s ∈ S, the sets of retaliation strategies for players 1 and 2 at s are

Re1(s)={σ1 ∈ Σ1 | ∀σ2 ∈ Σ2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3)∈((Ψ3 ∧ Ψ2) → Ψ1)};
Re2(s)={σ2 ∈ Σ2 | ∀σ1 ∈ Σ1. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3)∈((Ψ3 ∧ Ψ1) → Ψ2)}.

Theorem 3. Let G be a 3-player game graph G with the objectives Ψ1, Ψ2, and
Ψ3 for the three players such that 〈〈3〉〉G(Ψ3) = S. Let U = {s ∈ S | ∃σ1 ∈
Re1(s). ∃σ2 ∈ Re2(s). ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ (Ψ3 → (Ψ1 ∧ Ψ2))}. Then
U = MS111(G).

272 K. Chatterjee and T.A. Henzinger

Proof. We first show that U ⊆ MS111(G). For a state s ∈ U , choose σ1 ∈ Re1(s)
and σ2 ∈ Re2(s) such that for all σ3 ∈ Σ3, we have ω(s, σ1, σ2, σ3) ∈ (Ψ3 → (Ψ1∧
Ψ2)). Fixing the strategies σ1 and σ2 for players 1 and 2, and a winning strategy
for player 3, we obtain the secure equilibrium payoff profile (1, 1, 1). We now show
that MS111(G) ⊆ U . This follows from the proof of Theorem 2. In Theorem 2 we
proved that for all states s ∈ (S \ (Z1 ∪Z2)), we have Re1(s) �= ∅ and Re2(s) �= ∅;
and the winning secure strategies constructed for the set W = MS111(G) are
witness strategies to prove that MS111(G) ⊆ U .

Observe that for ω-regular objectives, the winning secure strategies of
Theorem 3 are finite-memory strategies. The existence of finite-memory win-
ning secure strategies establishes the following theorem.

Theorem 4 (Game solution of assume-guarantee synthesis). Given two
processes P1 = (X1, δ1) and P2 = (X2, δ2), two specifications Φ1 for P1 and
Φ2 for P2, and a start valuation v0 ∈ V , the answer to the assume-guarantee
synthesis problem is “Yes” iff (v0, 3) ∈ MS111(Ĝ) for the 3-player game graph Ĝ
with the objectives Ψ1 = [[Φ1]], Ψ2 = [[Φ2]], and Ψ3 = Fair.

Example 3 (Assume-guarantee synthesis of mutual-exclusion protocol). We con-
sider the 8 alternatives C1–C8 of process P1, and the corresponding spoiling
strategies for process P2 and the scheduler to violate P1’s specification. We de-
note by [→] a switch between the two processes (decided by the scheduler).

C1 The spoiling strategies for process P2 and the scheduler cause the following
sequence of updates:

P1: flag[1]:=true; turn:=2; [→];
P2: flag[2]:=true; turn:=1;
P2: enters the critical section by passing the guard C8: (since

(turn �= 2)). After exiting its critical section, process P2 chooses
the alternative C10 to enter the beginning of the main loop, sets
flag[2]:=true; turn:=1; and then the scheduler assigns the
turn to process P1, which cannot enter its critical section. The
scheduler then assigns turn to P2 and then P2 enters the critical
section by passing guard C8 and this sequence is repeated forever.

The same spoiling strategies work for choices C2, C3, C6 and C7.
C4 The spoiling strategies cause the following sequence of updates:

P2: flag[2]:=true; turn:=1; [→];
P1: flag[1]:=true; turn:=2; [→];
P2: enters the critical section by passing the guard C3: (since

(turn �= 1)). After exiting its critical section, process P2 continues
to choose the alternative C9 forever, and the scheduler alternates
turn between P1 and P2; and process P1 cannot enter its critical
section.

The same spoiling strategies work for the choice C5.
C8 The spoiling strategies cause the following sequence of updates:

Assume-Guarantee Synthesis 273

P2: flag[2]:=true; turn:=1; [→];
P1: flag[1]:=true; turn:=2; [→];
P2: while(flag[2]) nop;

Then process P2 does not enter its critical section, and neither can process
P1 enter. In this case P2 cannot violate P1’s specification without violating
her own specification.

It follows from this case analysis that no alternatives except C8 for process P1
can witness a solution to the assume-guarantee synthesis problem. The alterna-
tive C8 for process P1 and the symmetric alternative C6 for process P2 provide
winning secure strategies for both processes. In this example, we considered
refinements without additional variables; but in general refinements can have
additional variables.

4 Abstraction-Based Co-synthesis

In Section 3 we provided game-based algorithms for the three formulations of
the co-synthesis problem. However, the state space of the game graph can be
very large, making an algorithmic analysis often impractical. In this section we
present sound proof rules (i.e., sufficient conditions) for deriving solutions to
the three co-synthesis problems from the analysis of simpler game graphs, which
abstracts the original game graph. We first review the appropriate notion of
game abstraction and the corresponding proof rules for the weak and classical
versions of co-synthesis. We then give proof rules for assume-guarantee synthesis
in the two special but common cases where the processes have safety and Büchi
objectives. In particular, we show that the solution of zero-sum games on simpler,
abstract game graphs is sufficient for solving a given assume-guarantee synthesis
problem: the winning strategies of two different abstract zero-sum games provide
winning secure strategies for the original non-zero-sum game.

Abstraction of game graphs. Let I ⊆ {1, 2, 3} be a set of players, and let J =
{1, 2, 3}\I. An I-abstraction for a 3-player game graph G = ((S, E), (S1, S2, S3))
consists of a 3-player game graph GA = ((SA, EA), (SA

1 , SA
2 , SA

3)) and a con-
cretization function γ : SA → 2S \ ∅ such that the following conditions hold.

1. The abstraction preserves the player structure: for all i ∈ {1, 2, 3} and a ∈
SA

i , we have γ(a) ⊆ Si.
2. The abstraction partitions the concrete state space:

⋃
a∈SA γ(a) = S, and

for every s ∈ S there is a unique a ∈ SA such that s ∈ γ(a).
3. The edges for players in I are abstracted universally, and the edges for players

in J are abstracted existentially:

EA = {(a, b) | ∃i ∈ I. a ∈ SA
i ∧ ∀s ∈ γ(a). ∃t ∈ γ(b). (s, t) ∈ E}

∪ {(a, b) | ∃i ∈ J. a ∈ SA
i ∧ ∃s ∈ γ(a). ∃t ∈ γ(b). (s, t) ∈ E}.

The abstraction function α : S → SA is defined such that s ∈ γ(α(s)) for
all states s ∈ S. For a play ω = (s0, s1, s2, . . .) in G, the abstraction α(ω) =
(α(s0), α(s1), α(s2), . . .) is a play in GA.

274 K. Chatterjee and T.A. Henzinger

Abstraction of objectives. Given an objective Ψ on the concrete game graph G,
we define the following two objectives on the abstract game graph GA:

–existential abstraction: α(Ψ) = {α(ω) | ω ∈ Ψ};
–universal abstraction: β(Ψ) = {τ | ∀ω ∈ Sω. if τ = α(ω) then ω ∈ Ψ}.

For the players in I, the abstract objectives are obtained by universal abstraction,
and for the players in J , by existential abstraction.

Proof rules for weak and classical co-synthesis. The following proposition
states the basic principle behind proof rules for weak and classical co-synthesis.

Proposition 2. [7] Given a 3-player game graph G, a set I ⊆ {1, 2, 3} of play-
ers, an I-abstraction (GA, γ), and an objective Ψ , let A = 〈〈I〉〉GA(β(Ψ)). Then
γ(A) ⊆ 〈〈I〉〉G(Ψ).

Proof rules for assume-guarantee synthesis. We present proof rules for
assume-guarantee synthesis in two cases: for safety objectives, and for Büchi
objectives (which include reachability objectives as a special case).

Safety objectives. Given a set F ⊆ S of states, the safety objective �F requires
that the set F is never left. Formally, the safety objective �F contains all plays
(s0, s1, s2, . . .) such that sj ∈ F for all j ≥ 0. Given safety objectives for players
1 and 2, it is immaterial whether the scheduler (player 3) is fair or not, because
if a safety objective is violated, then it is violated by a finite prefix of a play.
Hence, for simplicity, we assume that the objective of player 3 is trivial (i.e., the
set of all plays). The following theorem states that winning secure equilibrium
states in a game graph G can be derived from winning secure equilibrium states
in two simpler graphs, a {1}-abstraction GA

1 and a {2}-abstraction GA
2 . The

winning secure strategies on the concrete graph can likewise be derived from the
winning secure strategies on the two abstract graphs.

Theorem 5. Let G be a 3-player game graph with two safety objectives Ψ1 and
Ψ2 for players 1 and 2, respectively. Let (GA

1 , γ1) be a {1}-abstraction, and let
(GA

2 , γ2) be a {2}-abstraction. Let the objective for player 1 in GA
1 and GA

2 be
β1(Ψ1) and α2(Ψ1), respectively. Let the objective for player 2 in GA

1 and GA
2

be α1(Ψ2) and β2(Ψ2), respectively. Let the objective for player 3 in G, GA
1 , and

GA
2 be the set of all plays. Let A1 = MS111(GA

1) and A2 = MS111(GA
2). Then

(γ1(A1) ∩ γ2(A2)) ⊆ MS111(G).

The classical assume-guarantee rule for safety specifications [1] can be obtained
as a special case of Theorem 5 where all states are player-3 states (in this case,
player 3 is not only a scheduler, but also resolves all nondeterminism in the two
processes P1 and P2).

Büchi objectives. Given a set B ⊆ S of states, the Büchi objective ��B requires
that the set B is visited infinitely often. Formally, the Büchi objective ��B
contains all plays (s0, s1, s2, . . .) such that sj ∈ B for infinitely many j ≥ 0.
The following theorem states that winning secure equilibrium states (and the

Assume-Guarantee Synthesis 275

corresponding winning secure strategies) in a game graph G can be derived
from a zero-sum analysis of three simpler graphs, a {1}-abstraction GA

1 , a {2}-
abstraction GA

2 , and a {1, 2}-abstraction GA
1,2.

Theorem 6. Let G be a 3-player game graph with two Büchi objectives Ψ1 and
Ψ2 for player 1 and player 2, respectively, and the objective Fair for player 3.
Let (GA

1 , γ1) be a {1}-abstraction, let (GA
2 , γ2) be a {2}-abstraction, and let

(GA
1,2, γ1,2) be a {1, 2}-abstraction. Let

A1 = 〈〈1〉〉GA
1
((α1(Fair) ∧ α1(Ψ2)) → β1(Ψ1));

A2 = 〈〈2〉〉GA
2
((α2(Fair) ∧ α2(Ψ1)) → β2(Ψ2));

A3 = 〈〈1, 2〉〉GA
1,2

(α1,2(Fair) → (β1,2(Ψ ′
1) ∧ β1,2(Ψ ′

2)));

where Ψ ′
1 = (Ψ1∧�γ1(A1)) and Ψ ′

2 = (Ψ2∧�γ2(A2)). Then γ1,2(A3) ⊆ MS111(G).

References

1. R. Alur and T.A. Henzinger. Reactive modules. In Formal Methods in System
Design, 15:7–48, 1999.

2. R. Alur, T.A. Henzinger, O. Kupferman. Alternating-time temporal logic. Journal
of the ACM, 49:672–713, 2002.

3. K. Chatterjee and T.A. Henzinger. Semiperfect-information games. In FSTTCS’05,
LNCS 3821, pages 1–18. Springer, 2005.

4. K. Chatterjee, T.A. Henzinger, M. Jurdziński. Games with secure equilibria. In
LICS’04, pages 160–169. IEEE, 2004.

5. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs’81, LNCS 131, pages
52–71. Spinger, 1982.

6. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages
60–65. ACM, 1982.

7. T.A. Henzinger, R. Majumdar, F.Y.C. Mang, J.-F. Raskin. Abstract interpretation
of game properties. In SAS’00, LNCS 1824, pages 220–239. Springer, 2000.

8. P. Madhususan and P.S. Thiagarajan. Distributed controller synthesis for local
specifications. In ICALP’01, LNCS 2076, pages 396–407. Springer, 2001.

9. S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS’03, LNCS 2914,
pages 338–351. Springer, 2003.

10. C.H. Papadimitriou. Algorithms, games, and the internet. In STOC’01, pages
749–753. ACM, 2001.

11. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89,
pages 179–190. ACM, 1989.

12. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal of Control and Optimization, 25:206–230, 1987.

13. J.H. Reif. The complexity of 2-player games of incomplete information. Journal
of Computer and System Sciences, 29:274–301, 1984.

14. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3, pages 389–455. Springer, 1997.

	Introduction
	Co-synthesis
	Game Algorithms for Co-synthesis
	Abstraction-Based Co-synthesis

