
  Arenaviruses 

   J.   P.   Gonzalez    1,3     (*ü ) ·   S.   Emonet   1    ·   X.   de    Lamballerie   2,3    ·   R.   Charrel   2,3    

   1    IRD U178 ,  Conditions et Territoires d’Emergence des Maladies ,   Thaïlande ,
  frjpg@mahidol.ac.th     
   2    Unité des Virus Emergents (EA3292, IFR48) ,  Université de la Méditerranée ,   Marseille , 
 France   
   3    Unité Pathologies Virales Emergentes ,  Univ Méditerranée-IRD   

1 Introduction ....................................................................................................  254

2 Arenaviruses and Their Natural Hosts .........................................................  259
2.1 Co-evolution Process .......................................................................................  262
2.2 A Brief Ancient History of Rodents ................................................................  262
2.3 Rodent Migration Within the Americas and an Astonishing Diversity ........  266
2.4 Mechanisms of Virus Evolution ......................................................................  267
2.4.1 Accumulation of Mutations ............................................................................  267
2.4.2 Intersegmental Recombination (Reassortment) ............................................  268
2.4.3 Intrasegmental Recombination .......................................................................  269
2.4.4 Evolutive Significance of Interspecies Recombination ..................................  270

3 From Enzootic to Epidemic: Arenavirus Ecology and Human Health ......  271
3.1 Lymphocytic Choriomeningitis Virus ............................................................  273
3.1.1 South American Arenaviral Hemorrhagic Fever ............................................  274

4 Prevention and Control ..................................................................................  278

5 Conclusion .......................................................................................................  279

References ....................................................................................................................  279

   Abstract   The  Arenaviridae  family contains 22 recognized virus species, each of them strongly 
associated with a rodent species (except Tacaribe virus which is associated with a species of 
bat), suggesting an ancient co-evolutionary process. Although the concept of co-evolution 
between rodents and arenaviruses is now largely accepted, little has been uncovered in terms 
of dating the phenomenon and the mechanisms of evolution, including speciation and 
pathogenicity. These questions are targeted in the present chapter. Old World arenaviruses 
are associated with the Eurasian rodents in the family Muridae. New World arenaviruses are 
associated with American rodents in the subfamily Sigmodontinae. The correlation between 
the rodent host phylogeny and the viruses suggests a long association and a co-evolution-
ary process. Furthermore, three distinct New World arenaviruses share a common ancestor, 
demonstrating a unique recombination event that probably occurred in that ancestor. This 
shows that recombination among arenaviruses of different lineages might occur in nature. 
Recombination and co-evolutionary adaptation appear as the main mechanisms of 
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arenavirus evolution, generating a high degree of diversity. The diversity among rodent host 
reservoir and virus species and the potential to exchange genomic material provide a basis 
for the emergence of new viruses and the risk of these becoming pathogenic for humans.    

   1
Introduction 

 The  Arenaviridae  family consists of a unique  Arenavirus  genus that currently con-
tains 22 recognized virus species (Salvato et al. 2005). Arenaviruses are enveloped 
single-stranded RNA viruses, with a genome consisting of two RNA segments, 
designated large (L) and small (S). The L genomic segment (~7.2 kb) encodes the 
viral RNA-dependent RNA polymerase and a zinc-binding protein. The S genomic 
segment (~3.5 kb) encodes the nucleocapsid protein and envelope glycoproteins 
in nonoverlapping open reading frames of opposite polarities. The genes on both 
S and L segments are separated by an intergenic noncoding region with the potential 
of forming one or more hairpin configurations. The 5´ and 3´ untranslated termi-
nal sequences of each RNA segment possess a relatively conserved reverse comple-
mentary sequence spanning 19 nucleotides at each extremity. Nucleocapsid antigens 
are shared by most arenaviruses, and quantitative relationships show the basic split 
between viruses of Africa and viruses of the Western Hemisphere. Individual viruses 
are immunologically distinct by neutralization assays, which depend on the specific-
ity of epitopes contained in the envelope glycoproteins (Salvato et al. 2005). 

 Virions are spherical to pleomorphic with a diameter of 50–300 nm (average 
diameter for spherical particles is 120 nm). They possess a dense lipid-containing 
envelope covered with 8- 10-nm-long club-shaped projections. Host cell ribo-
somes present in the viral particles, are responsible for the sandy appearance 
of the virus by electron microscopy, hence the name arenavirus (Latin:  arena , 
sand). Buoyant density is 1.17–1.18 g/cm 3  in sucrose and 1.19–1.20 g/cm 3  in 
CsCl. Virus is rapidly inactivated at 56°C, at pH below 5.5 or above 8.5, or by 
exposure to UV and gamma irradiation (Table  1 ). 

 Lymphocytic choriomeningitis virus (LCMV) was first isolated in the 
1930s (Armstrong and Lillie 1934) but it is only in the late 1960s that LCMV 
was found to be related to the already existing Tacaribe group, which then led 
to the creation of the  Arenaviridae  family (Murphy et al. 1969). The arenavi-
ruses have been classified into two groups according to their antigenic prop-
erties: (1) the Tacaribe serocomplex (including viruses indigenous to rodents 
of the New World) and the prototype Tacaribe virus (TCRV) isolated from  
Artibeus  bats in Trinidad (Downs et al. 1963), and (2) the Lassa-lymphocytic 
choriomeningitis (LCM) serocomplex (including the viruses indigenous to 
rodents of Africa and the ubiquitous lymphocytic choriomeningitis virus 
(LCMV), recognized as the Old World group) (Fig.  1 ). 
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Table 1 The Arenaviridae family

   Country of  
   prototype virus Human Historical
Virus  Acronym isolate significancea reference

 1 Allpahuayo ALLV Peru NE Moncayo et al. 2001

 2 Amapari AMAV Brazil NE Pinheiro et al. 1966

 3 Bear canyon BCNV USA, California NE Peters et al. 1996 

 5 Cupixi CPXV Brazil NE Charrel et al. 2002

 6 Flexal FLEV Brazil LI Pinheiro et al. 1977

 7 Guanarito GTOV Venezuela HF, LI Salas et al. 1991

 8 Ippy IPPYV Central African  NE Swanepoel et al. 
   Republic  1985

 9 Junin JUNV Argentina HF Parodi et al.1958

10 Lassa LASV Nigeria HF Buckley et al. 1970

11 Latino LATV Bolivia NE Webb et al. 1973

12 Lymphocytic LCMV Europe, USA NS Amstrong and 
 choriomeningitis    Lilly 1934

13 Machupo MACV Bolivia HF, LI Johnson et al. 1965

14 Mobala MOBV Central African  NE Gonzalez et al.
   Republic  1983

15 Mopeia MOPV Mozambique NE Wulff et al. 1977 

16 Oliveros OLVV Argentina NE Mills et al. 1996

16b Pampa   Argentina NE Lozano et al. 1997

17 Parana PARV Paraguay NE Webb et al. 1970

18 Pichinde PICV Colombia LI Trapido and 
     Sanmartin 1971

19 Pirital PIRV Venezuela NE Fulhorst et al. 1997

20 Sabia SABV Brazil HF, LI Lisieur et al. 1994

21 Tacaribe TCRV Trinidad LI Downs et al. 1963

22 Tamiami TAMV USA Florida NE Calisher et al. 1970

23 Whitewater  WWAV USA, south West NE Fulhorst et al. 1996
  Arroyo

Acronyms are attributed by the ICTV (Salvato et al. 2000). Countries are where the 
virus was first isolated and the associated reference is also the first report of the proto-
type virus. For arenaviruses known to be human pathogens virus, the primary clinical 
syndrome is indicated
a BSL biosafety level 
b HF hemorrhagic fever; NS neurological syndrome; LI laboratory infection; NE No 
evidence of natural human infection
c Pampa virus should be considered as a genotype of Oliveros virus
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   Fig. 1  Arenavirus phylogeny and rodent reservoir  
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 Genetic studies of arenaviruses are congruent with comparative serologi-
cal analyses. Both methods indicate that the 22 arenaviruses represent four 
phylogenetic lineages. The Old World (Lassa-LCM serocomplex) lineage com-
prises five viruses: LCMV, Lassa (LASV), Mopeia (MOPV), Mobala (MOBV) 
(Buckley et al. 1970; Wulff et al. 1977; Gonzalez et al. 1983), and Ippy (IPPYV) 
(Swanepoel et al. 1985) and is deeply rooted to the three New World (Tacaribe 
serocomplex) lineages, designated A, B, and C. Lineage A includes five South 
American viruses, Pirital (PIRV), Pichindé (PICV) (Fulhorst et al. 1997; Trapido 
and Sanmartin 1971), Flexal (FLEV), Paraná (PARV), and Allpahuayo (ALLV) 
(Pinheiro et al. 1977; Webb et al. 1970; Moncayo et al. 2001). Lineage B includes 
seven South American viruses including Sabiá (SABV), Junín (JUNV), Machupo 
(MACV), Guanarito (GTOV), Amapari (AMAV) (Lisieux et al. 1994; Parodi et al. 
1958, Johnson et al. 1965; Salas et al. 1991; Pinheiro et al. 1966), Tacaribe (TCRV) 
(Downs et al. 1963), and Cupixi (CPXV) (Charrrel et al. 2002). Lineage C com-
prises three South American viruses: Oliveros (OLVV) (Mills et al. 1996), Latino 
(LATV) (Webb et al. 1975), and Pampa (PAMV), which is a genotype of OLVV 
and does not represent a taxonomic species (Salvato et al. 2005). Phylogenetic 
studies conducted with complete gene sequences recently demonstrated that 
discrepancies observed in the topology of phylograms reconstructed from nucleo-
protein and envelope glycoprotein genes are attributed to the recombinant nature 
of the S RNA segment of the three North American viruses: Whitewater Arroyo 
(WWAV), Tamiami (TAMV), and Bear Canyon (BCNV) (Fulhorst et al. 1996; 
 Calisher et al. 1970; Fulhorst et al. 2002) (Table  2 ). 

 LASV, JUNV, MACV, GTOV, and SABV are known to cause a severe hem-
orrhagic fever, in western Africa, Argentina, Bolivia, Venezuela, and Brazil, 
respectively (Peters et al. 1996), and were first recovered during investigations 
of human disease in 1969 (Buckley et al. 1970), 1958 (Parodi et al.1958),  in 1963 
(Johnson et al. 1965), 1989, (Salas et al. 1991), and 1990 (Coimbra et al. 1994), 
respectively. They are included in the Category A Pathogen List as defined by 
the CDC, and listed as Biosafety Level 4 (BSL-4) agents. The family prototype, 
LCMV, was first isolated in 1933 during serial monkey passage of human mate-
rial obtained from a fatal infection in the first documented epidemic 
of St. Louis encephalitis. LCMV is an agent of acute central nervous system 
disease (Barton and Hyndman 2000) and is also responsible for congenital mal-
formations (Barton et al. 1993). FLEV and TCRV viruses have caused febrile ill-
nesses in laboratory workers. WWAV has been associated with three fatal cases 
of infection in California in 2000 (CDC 2000), but further cases have not been 
documented since. 

 LCMV, LASV, and related viruses from the Old World are associated with 
rodents from the family  Muridae , subfamily  Murinae . New World arenaviruses 
are associated with New World rodents in the family Muridae, subfamily 
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Table 2 Geographic and reservoir characteristics of arenaviruses

 Evolutionary   Biogeographic
Acronym lineagea Distributionb domain  Reservoir

Old World arenaviruses

LASV OW Nigeria, Guinea, Paleartic Mastomys 
  Liberia, Sierra  huberti
  Leonec

MOBV OW Central African  Paleartic Praomys spp.
  Republic

MOPVd OW Mozambique, Paleartic Mastomys 
  Tanzania  natalensis

IPPYV OW Central African  Paleartic Arvicanthus 
  Republic  niloticus.

LCMV OW Eurasia, USA,  Holoartic Mus musculus
  Canada

New World arenaviruses (North Central America)

BCNV e NW-rec-A/B USA, California Neartic Peromyscus 
    californicus

TAMV e NW-rec-A/B USA, Florida  Neartic Sigmodon
  Everglades  hispidus

WWAV e NW-rec-A/B Southwestern  Neartic Neotoma 
  USA  albigula

New World arenaviruses (South America)

Lineage A

ALLV e NW-A Peru Neotropic Oecomys bicolor

FLEV NW-A Brazil Neotropic Oryzomys capito

PARV NW-A Paraguay Neotropic Oryzomys 
    buccinatus

PICV NW-A Colombia Neotropic Oryzomys 
    albigularis

PIRV NW-A Venezuela Neotropic Sigmodon alstoni

Lineage B

AMAV NW-B Brazil Neotropic Oryzomys capito

CPXV NW-B Brazil,  Neotropic Oryzomys capito
  northeastern

JUNV NW-B Argentina Neotropic Calomys 
    musculinus

GTOV NW-B Venezuela Neotropic Zygodontomys 
    brevicauda

(Continued)
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Table 2 Phylogeny and rodent vector reservoir —cont’d.

 Evolutionary   Biogeographic
Acronym lineagea Distributionb domain  Reservoir

MACV NW-B Bolivia Neotropic Calomys callosus

SABV NW-B Brazil Neotropic unknown

TCRV NW-B Trinidad Neotropic Artibeus spp. 
    (bat)

Lineage C

LATV NW-C Bolivia Neotropic Calomys callosus

OLVV NW-C Argentina Neotropic Bolomys 
    obscurus

a OW Old World; NW New World
b Listed countries are included on the basis of virus isolation only, no serology
c One case was probably generated between Ivory Coast and Burkina Faso; the place of 
origin remains unknown
d Morogoro virus, which is a genotype of Mopeia virus, has recently been isolated from 
Mastomys rodents in Tanzania and is under study (Gunther et al., unpublished data)
e Recombinant lineage as previously reported (Charrel et al. 2001)

Sigmodontinae Wilson and Reeder 2005). The correspondence between the 
phylogeny of the hosts and of the viruses suggests a long association and co-
evolution (Gonzalez 1986a, 1986b; Bowen et al. 1998). TCRV isolated from bats 
is the only member of the family that is not known to be a chronic, inapparent 
infection of rodents (Fig.  2 ). 

   2
Arenaviruses and Their Natural Hosts 

 Arenavirus species and rodent species are strongly associated in a specific man-
ner, suggestive of a possible co-evolutionary process. Although the concept of 
co-evolution between rodents and arenaviruses is now largely accepted within 
the scientific community, little information has been found in terms of dat-
ing the phenomenon and detailed leading mechanisms (Gonzalez et al. 1986b; 
Bowen et al. 1997, 1998; Charrel et al. 2001) (Table  3 ). 
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   Fig. 2  The time scale of Arenavirus emergence. Each red circle represents the time of 
the first isolation of a new arenavirus; stars are those pathogenic for humans  

Table 3 Arenaviruses and their natural reservoir hosts

Virus Place of isolation
Primary hosta, Hp/ 
host reservoir, Hr

Secondary 
hosta

Hr, main 
biotope

Old World Arenaviruses

LCMV Worldwide Mus musculus Apodemus 
sylvaticus; Mus 
domesticus

Domestic 
environment

LASV Nigeria Mastomys huberti Mastomys 
erythroleucus

Savannah and 
forest galleries

IPPYV Central African 
Republic (north)

Arvicanthis niloti-
cus

Lemniscomys 
striatus

Sudanese dry 
savanna

MOBV Central African 
Republic (south)

Praomys jacksoni Mastomys 
erythroleucus

Sub-Sudanese 
wet savanna

MOPV Mozambique, 
Tanzania

Mastomys natal-
ensis

Mastomys 
huberti

Dry savannah

New World Arenaviruses (North Central America)

BCNV USA, California Peromyscus califor-
nicus

Neotoma fusci-
pes; Peromyscus 
boylii

TAMV USA, Florida 
Everglades

Sigmodon hispidus Marshes

(Continued)



Arenaviruses 261

WWAV USA, southwest Neotoma albigula Neotomys 
mexicana 
N. cinerea, 
N. micropus, 
N. fuscipes

New World Arenaviruses (South America)

ALLV Peru Oecomys bicolor Oecomys pari-
cola

AMAV Brazil, north-
eastern Amapa

Oryzomis capito Neacomys gui-
anae, Oryzomis 
gaeldi; Neaco-
mys spinosus

Amazonian 
tropical forest

CPXV Brazil, north-
eastern Amapa

Oryzomis mega-
cephalus

Oryzomys 
capito

Forest

FLEV Brazil Oryzomys capito Oryzomys spp. Tropical forest

JUNV Argentina Calomys mus-
culinus Calomys 
laucha 

Calomys mus-
culinus; Akodon 
azarae

Extensive agri-
cultural area 
(corn fields)

GTOV Venezuela Zygodontomys 
brevicaudata

Sigmodon 
alstoni; Zygodon 
longicaudatus

LATV Bolivia, Brazil Calomys callosus Low tropical 
savanna

MACV Bolivia, eastern Calomys callosus Low tropical 
savanna

OLVV Argentina Bolomys obscurus Pampa

PARV Paraguay Oryzomys buccinatus Bolomys obscurus

PICV Colombia: Cali, 
Medellin, Popaya

Oryzomys albigula-
ris

Thomasomys 
fuscatus, Zygo-
dontomys spp.

Primary fog 
forest (eleva-
tion 1,500 m)

PIRV Venezuela Sigmodon alstoni Zygodontomys 
brevicaudata

SABV Brazil, central unknown unknown Secondary 
clearing forest

TCRV Trinidad Artibeus lituratus 
palmarum

Artibeus jamai-
censis trinitatus

Tropical forest

a Primary hosts are those most commonly infected in nature by the virus, secondary hosts 
are those that have been accidentally infected or have been consistently found with reactive 
antibody to specific arenaviral antigens. The habitat refers to that of the primary host

Table 3 Arenaviruses and their natural reservoir hosts —cont’d.

Virus Place of isolation
Primary hosta, Hp 
/ host reservoir, Hr

Secondary 
hosta

Hr, main 
biotope
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  2.1
Co-evolution Process 

 Specific rodents are the principal hosts of arenaviruses (Childs and Peters 1993; 
Bowen et al. 1997). Usually one rodent species, less often two closely related 
species, act as the principal host(s) (virus reservoir) of each arenavirus species, 
in which natural infection is usually a chronic mild or inapparent infection. 
The only exception is Tacaribe virus, which has only been associated with a 
chronic infection of bats. It is now widely recognized that the diversity of are-
naviruses is the result of a long-term, shared evolutionary relationship (termed 
co-evolution or co-speciation) between viruses of the family  Arenaviridae  and 
rodents of the family  Muridae  (Johnson et al. 1965; Gonzalez 1986a; Bowen 
et al. 1996). The time scale of the co-evolutionary divergence of specific arena-
viruses and their rodent hosts is still under discussion. From our observations 
and analyses, we strongly favor an ancient co-evolutionary process with sev-
eral transfers, parallel and diffuse evolution. Our hypothesis is that an ances-
tral arenavirus type was chronically infecting a common rodent ancestor before 
New World sigmodontine and Old World murids diverged, approximately 35 
million years before the present (Mybp). Each lineage (i.e., New World sigmo-
dontine and Old World murid rodents) evolved  independently with their own 
arenaviruses (co-evolution and co-speciation) resulting in a specific associa-
tion between rodent species and arenavirus type, as we see today. In addition, 
when rodent and virus phylogenies are compared, major rodent subfamilies 
( Sigmontinae  and  Murinae ) correspond with the major arenavirus clades (i.e., 
New World arenaviruses vs Old World arenaviruses). A similar association is also 
evident among South American arenavirus strains and among the South American 
neotropical  Sigmodontiae  due to the same evolutionary processes. However, dis-
crepancies from the general hypothesis of co-evolution have also been observed, 
suggesting that spillover from one species or genus to another might occur, and 
that genomic segments might also be exchanged in some instances (Gonzalez 
et al. 1986b, 1996a, 1996b; Hugot et al. 2001). Thus the emergence of new virus 
types and pathogen transmission to humans appears likely to be associated with 
specific rodent species and their ecology and behavior (Figs.  3 ,  4 ) .  

   2.2
A Brief Ancient History of Rodents 

 We use the most common theory on rodent radiation to support part of our 
hypothesis. From the Eurasian continent, cricetid rodents, ancestors of murid 
rodents, spread into the Americas, and then, from Asia, murid rodents spread 
to Europe and Africa. The term “murid” corresponds to the  Murinae   subfamily 
of the family  Muridae  (Wilson and Reeder 2005). The term “sigmodontine” 
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refers specifically to New World rodents of the subfamily  Sigmodontinae  of 
the family  Muridae  (previously classified as being in the family  Cricetidae ) 
and includes the New World rats and mice. As early as the Eocene, 65 Mybp, a 
rodent ancestor bearing  Muridae  characters,  Simimys  , was recognized within 
North America. During the Oligocene (37 Mybp), the  Muridae  distribution 
became holoartic. The New World  Sigmodontinae  colonized the Americas by 
waves of migration northward and southward. As a result, the sigmodontine 
fauna of South America derived from North America and today, the South 

Rattus
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Praomys

Mastomys

Mobala
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Mopeia

Ippy

Mus
LCMV

Apodemus

   Fig. 3   Phylogeography of Old World arenaviruses and hosts. A specific association 
between virus and rodent host is exemplified by a diffuse co-evolution process of 
Old World arenaviruses and their murid rodent hosts  
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American group can be distinguished from the less diversified sigmodontine 
rodents of genera such as  Neotoma  and  Peromyscus  of North America. 

 In Asia, murid rodents probably came from North America and were 
present during the Oligocene (35 Mybp). Arising from an original pool, 
successive waves of murids spread to Europe during the late Miocene 
(15 Mybp), but there was only a limited extension into Africa where they 
became underrepresented. 

 From Asia, murid rodents spread around the Mediterranean basin to Europe 
approximately 14 Mybp. During that period, the subfamily Murinae extended 
from Europe into North Africa and rapidly became the most widely distributed 
rodents in Africa. 

 From the Pleistocene era (2 Mybp), murid rodents were present in northern 
Africa. They then spread southward, although their species radiation was severely 
influenced by arid climate and geomorphology. During that time, speciation reached 
its highest point influenced by climate variation and physical isolation because of 
physical barriers such as the Rift Valley and the division of the African continent by 
the Sahara. More recently, humans have played an important role in the spread of 
rodents, particularly commensal species such as  Mus . Some rodent genera from 
the Pleistocene are still present in East Africa, while others from North Africa have 
disappeared. However, it likely that murid ancestors were very closely related to 
the present extant genera (Gonzalez 1996a) (Fig.  5 ). 

   Fig. 5  The rodent migration and emergence and spread of arenaviruses and their rodent 
hosts. Rodent expansion shows the path of virus dispersion. The subfamilies Murinae 
and Sigmodontinae are indicated by red and blue, respectively, by the approximate time 
of expansion and speciation. After 34 Mybp (Oligocene), the Eurasian continent became 
colder and arid with a general shrinking of forest cover; 30 Mybp, rodents probably 
emerged from Central Eastern Asia and started their Asian radiation journey through 
Europe. Temperature changes and warmer periods (15 Mybp) would have helped sepa-
rate the original rodent lineages of Asia and Europe and further their spread in Africa 
and the  Americas. However, back-migrations occurred by way of the Bering Strait and 
other land bridges such as the  Panamanian isthmus in the Americas  
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   2.3
Rodent Migration Within the Americas and an Astonishing Diversity 

 Comparative phylogenetic analyses of N and GPC proteins showed that the 
three North American arenaviruses (Whitewater Arroyo, Tamiami, Bear Can-
yon) group together; however, depending upon the gene used for analysis, these 
viruses group within different lineages. They are more closely related to lineage 
A viruses in N protein-based analyses, whereas they are more closely related to 
lineage B viruses in GPC protein-based phylograms. This suggests that WWAV, 
TAMV, and BCNV share a common ancestor, which must have been a recom-
binant of lineages A and B (Fig.  6 ). 

 According to the history of rodent migrations within America, rodents 
migrated across the Panamanian isthmus, from North America to South 
America, where rodent diversification was able to expand explosively because 
of the absence of predators and highly favorable ecological conditions. It is 
postulated that recombination events among arenaviruses most likely occurred 
in South America and the resulting chimeric viruses were then introduced 
into North America during the back migration of certain rodent populations 

   Fig. 6   Comparative New World Arenavirus phylogeny using N and GPC sequences 
demonstrating recombination processes in evolution. Left, the capsid protein (N 
gene) of TAMV and WWAV are inherited from an ancestor virus belonging to lin-
eage A; right, the GPC protein of TAMV and WWAV are inherited from an ancestor 
that belonged to lineage B  
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   Fig. 7  Rodent migration and American arenavirus recombinations. Rodent diffusion 
in the Americas. Blue arrow shows the first migration of murids from North to South 
America, corresponding to the split between Old World and New World rodents, 
estimated at 35 Mybp. First migration from North to South America estimated at 
15 Mybp. Purple ovals indicate rodent speciation in South America (an explosive 
radiation of species, 10 Mybp), and arrows indicate the back-migration (across the 
Panamanian land bridge between 10 and 8.6 Mybp) of extant rodent species into 
Central and North America harboring recombinant arenaviruses (Fig. 8)  

(e.g.,  Sigmodon  spp.) across the Panamanian land bridge. Although dating the 
period of recombination is difficult because of controversial data for time esti-
mation of rodent migrations, the paleobiogeography of sigmodontines sug-
gests that recombination could have occurred as far as back as10 Mybp (Engel 
et al. 1998) (Fig.  7 ,  8 ). 

   2.4
Mechanisms of Virus Evolution 

 There are three possible mechanisms driving the evolution of arenaviruses: 
(1) accumulation of point mutations; (2) intersegmental reassortment; 
and (3) intrasegmental recombination. 

  2.4.1
Accumulation of Mutations 

 In the  Arenaviridae  family, the accumulation of mutations appears to be the 
mechanism most often responsible for virus diversity observed between iso-
lates within a given viral species. By analogy to other RNA viruses, it is believed 
that mutations are caused  by the absence of proofreading activity of the viral 
RNA-dependent RNA polymerase during virus replication. With respect to the 
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8 Mybp : Murids / Mastomys split 

6.8 Mybp : Oryzomine / Akodontonine Phyllotine split 

Murids / Arenavirus 
common ancestors

37Mybp 15Mybp 5Mybp Present Time 

Mus sp.
LCM viral complex

Mastomys sp.
Lassa complex

Oryzomine
South American Arenavirus

American cricetids
North American Arenavirus

   Fig. 8   Proposed time scale of arenavirus and rodent co-evolution/cospeciation   

rate at which rate mutations are produced and accumulated in arenaviruses, 
experimental data generated in vitro with a partial region of the polymerase 
of LCMV suggest mutation frequencies ranging from 1.2 to 3.5×10 –4  substitu-
tions per nucleotide per genome replication (Grande-Perez et al. 2005). These 
mutations lead to the generation of virions exhibiting various fitness patterns, 
and only the best-adapted virions are presumably selected and maintained. The 
factors driving the selection are multiple and complex and change over time. 
The occurrence of mutations together with natural selection account for the 
creation of the genetic diversity observed within a virus species. 

   2.4.2
Intersegmental Recombination (Reassortment) 

 Reassortants of arenaviruses have been generated experimentally ( Lukashevich 
et al. 1992; Rivière and Oldstone 1986), with the genome of the reassortant virus 
containing one genomic segment from each parent. This mechanism has not 
been described in nature so far for arenaviruses. Experimental generation of 
a reassortant arenaviruses consisting of the L RNA segment of Mopeia virus 
and the S RNA segment of Lassa virus has demonstrated that an exchange of 
genetic material is possible despite a genetic diversity of 28% at the amino acid 
level (Lukashevich et al. 1992). It is worth noting that these reassortant viruses 
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were produced by co-cultivation on Vero cell monolayers, without the use of 
sophisticated equipment or complicated molecular techniques. During the 
current atmosphere of heightened bioterrorism surveillance, this data would 
suggest that the generation of chimeric viruses is not so complicated and may 
be attempted with very basic equipment. 

 Recently, fatal cases of acute hemorrhagic fever in Kenya and Somalia have 
been attributed to a reassortant bunyavirus—the family  Bunyaviridae  contain 
tri-segmented genomes—comprising genomic segments from Bunyamwera 
virus and from a novel bunyavirus; both were previously unknown as etiologic 
agents of hemorrhagic fever (Gerrard et al. 2004; Bowen et al. 2001). Bunya-
virus reassortment under laboratory conditions had previously documented 
that exchange of M segments of LaCrosse (LACV) and Snowshoe Hare (SSH) 
viruses created chimeric viruses; those containing the M segment of LACV, 
irrespective of S and L segments of SSHV, showed an enhanced capability to 
disseminate and be transmitted by  Aedes trisereriatus  mosquitoes (Beaty et al. 
1982; Beaty et al. 1981). These field and laboratory findings highlight the ability 
of viral reassortment in creating a chimeric new virus that exhibits increased 
pathogenicity for humans (as compared to the two parental strains) or specific, 
novel biologic properties (not displayed by the parental strains). 

 To identify virus reassortment, complete sequence characterization of viral 
genomes is a necessary prerequisite. Until recently, the lack of genetic data for 
the L segment of arenaviruses in all but a handful of virus species hampered the 
quest for identifying natural reassortment. Recently, however, large genomic 
programs dedicated to arenaviruses have provided significant sequence data 
sets containing the complete genomes of almost all arenaviruses. Subsequent 
sequence analyses and phylogenetic studies, however, were unable to detect any 
evidence of the natural occurrence of reassortment among arenavirus species, 
despite an exhaustive search using full-length genomes. Thus, although dem-
onstrated experimentally, it is believed that reassortment may not play a major 
role in evolution of the  Arenaviridae.  

   2.4.3
Intrasegmental Recombination 

 Intragenic recombination is one of the well-documented mechanisms of evo-
lution of positive-strand, double-stranded and negative-strand RNA viruses 
(Lai 1992; Hahn et al. 1998; Worobey et al. 1999; Desselberg et al. 1986; Suzuki 
et al. 1998; Bergman et al. 1992; Orlich et al. 1994; Sibold et al. 1999). Intraseg-
mental recombination was recently demonstrated for the three North Ameri-
can arenaviruses (WWAV, TAMV, and BCNV) (Charrel et al. 2001, 2002, Archer 
and Rico-Hesse 2002), indicating common derivation from a recombinational 
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event between ancestors in both lineage A and lineage B viruses. Analysis of 
complete genome sequences for all recognized members of the genus  Arena-
virus  suggest that there are no other examples of intrasegmental recombina-
tion. Since these three viruses possess a common ancestor as demonstrated by 
phylogeny, recombination most likely occurred in this ancestor. It is impor-
tant to note that recombinant arenaviruses are able to infect humans (Kosoy et 
al. 1996). Whether they cause disease in infected individuals is still not clearly 
established; however, three cases of fatal human infections associated with 
Whitewater Arroyo virus have been reported in California (CDC 2000). 

   2.4.4
Evolutive Significance of Interspecies Recombination 

 The evidence for recombination deduced from the genetic analysis of the 
genomic S RNA raises major questions concerning the nature of situations that 
may be conducive to intragenic recombination: 

  2.4.4.1
Co-infection of the Same Rodent by Two Different Arenaviruses 
Belonging to Distinct Phylogenetic Lineages 

 In nature, since arenaviruses can establish chronic infections among their 
rodent hosts, the more likely scenario for interspecific genome recombina-
tion would involve superinfection of a rodent already chronically infected 
with one arenavirus by a second distinct arenavirus. This hypothesis requires 
the co-existence of distinct arenaviruses in the same geographic area and 
this situation is present within several regions of a number of countries. For 
example, the principal hosts of OLLV, JUNV, and LCMV are rodents of the 
species  Necromys benefactus  (formerly  Bolomys obscurus;  Wilson and Reeder 
2005),  Calomys musculinus  and  Mus musculus , respectively. These three spe-
cies and three other common rodent species exist sympatrically in rural 
regions of Argentina (Mills et al. 1996). Studies of the dynamics of OLLV infec-
tion among rodents indicate that dual infections by JUNV and OLLV viruses 
may occur at low frequency among three species of rodents ( N. benefactus ,  
Akodon azarae  , and  M. musculus ) based on comparative IFA titers obtained 
against specific arenaviral antigens. 

 Additionally, there is evidence that the principal host for a specific arenavirus 
can be naturally infected with a different arenavirus associated with a sympat-
ric rodent species. For example,  Sigmodon alstoni  , the principal host of PIRV 
(lineage A) can naturally be infected with GTOV (lineage B) (Fulhorst et al. 
1999b). Moreover, experimental data have shown that immunization of rodents 
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with a virus belonging to a given lineage is poorly protective against infection by 
viruses belonging to different lineages ( Weissenbacher et al. 1975). Consequently, 
although mixed infections of rodents with distinct arenaviruses have not been 
reported in the literature, field and experimental data suggest that infections by 
arenaviruses of different lineages are plausible. 

   2.4.4.2
Co-infection of One Cell by Two Viruses 

 Experiments performed in cell cultures have clearly established that co-
infection of a single cell by two distinct arenaviruses is possible (Bishop et al. 
1980; Rivière et al. 1985; Rivière and Oldstone 1986; Whitton et al. 1988; 
Lukashevitch 1992). This co-infection could potentially allow the generation 
of recombinant RNA molecules by template switching of the RNA polymerase. 
According to this mechanism, the RNA polymerase would jump from one tem-
plate to another during RNA processing, generating a chimeric RNA molecule 
including sequences inherited from the two parental strains. 

 Thus, in summary, our current knowledge concerning the ecology of rodents 
infected by arenaviruses and the natural circulation of these viruses in the New 
World, together with experimental data, would suggest that recombination 
between arenaviruses belonging to different lineages could potentially occur in 
nature. Furthermore, the recombinant nature of the genome of the 3 arenavi-
rus indigenous to North America (WWAV, TAMV, BCNV) suggests that their 
ancestor may have been endowed with a selective advantage, facilitating the 
maintenance and transmission of the recombinant over time. This finding rein-
forces the fact that future phylogenetic analyses of arenaviruses should be based 
on complete genomic sequences to allow the identification of recombination 
and/or reassortment events and therefore a better understanding of the processes 
of co-speciation and the occurrence of crossing-over or reciprocal recombination. 

      3
From Enzootic to Epidemic:   Arenavirus   Ecology and Human Health 

 Persistent infection of the rodent host appears to be a crucial phenomenon 
in the long-term persistence of the arenaviruses in nature. Infection in the 
rodent host is associated with a chronic or sporadic viremia and/or viruria and 
sometimes a life-long shedding of the virus into the environment. The course 
of the infection is determined by factors such as the age, genetic make-up, 
immunological resistance, and history of prior infection within the rodent 
host, but also by the infecting virus strain. Neonatally infected rodents 
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usually become chronic carriers of virus and excrete the virus for a long time 
(throughout life) in their urine. Virus transmission within rodent popula-
tions can occur through three mechanisms: (1) vertical (dam to progeny) 
transmission, (2) horizontal transmission through direct or indirect con-
tacts, and (3) a balanced combination of both mechanisms. Female rodents 
infected as neonates with certain arenaviruses (JUNV, MACV) may show 
reduced fertility or suffer decreased litter sizes (Childs and Peters 1993; Webb 
et al. 1975); additionally, neonates born to infected dams may experience 
stunted growth. Accordingly, the persistence of these arenaviruses within a 
rodent population requires some degree of horizontal transmission. In con-
trast, other arenaviruses that do not cause infertility, such as certain strains 
of LCMV (Childs and Peters 1993), can be maintained in a rodent population 
exclusively by vertical transmission. 

 Humans usually become infected by arenaviruses through direct contact 
with infected rodents, including bites, through inhalation of infectious rodent 
excreta and secreta. The domestic and peridomestic behavior of several spe-
cies of rodent reservoir hosts is a major contributing factor facilitating viral 
transmission from rodent to human. Transmission of arenaviruses to humans 
occurs following recreational or agricultural incursions into environments 
providing critical habitat for rodent hosts. Additionally, professionals han-
dling infected rodents in the field or laboratory are at increased risk of infec-
tion (Sewell 1995). Modifications of the environment driven either by human 
activities, such as modern farming practices, or ecological changes, such as 
flooding, have been implicated in the emergence of human disease caused by 
arenaviruses. 

 Nine arenaviruses are associated with human diseases. LASV, JUNV, MACV, 
GTOV, and SABV are known to cause a severe hemorrhagic syndrome, in west-
ern Africa, Argentina, Bolivia, Venezuela, and Brazil, respectively (Peters et  al. 
1996). They are highly infectious, virulent pathogens and all are listed on the 
Category A Pathogen List (as defined by the CDC); such agents can only be 
handled in Biosafety Level 4 (BSL-4) laboratories. Infection by LCMV can 
result in acute central nervous system disease and congenital malformations 
(Barton and Hyndman 2000; Barton et al. 1993). Very little is known about 
the health consequences of infection with the other arenaviruses: PICV infec-
tion has resulted in numerous seroconversions among humans without any 
notable clinical significance; FLEV has resulted in two symptomatic labora-
tory infections and should be regarded as dangerous (F. Pinheiro, unpublished 
data); TCRV virus has caused a single case of a febrile disease with mild CNS 
symptomatology (J. Casals, unpublished data) (Peters et al. 1996; Karabatsos 
1985; Buchmeier et  al. 1974). WWAV has recently been associated with three 
fatal cases of infection in California (CDC 2000). 
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  3.1
Lymphocytic Choriomeningitis Virus 

 The first arenavirus to be isolated was LCMV, which was discovered in 1933 
during the investigation of an epidemic of St. Louis encephalitis in the USA. 
In regions where LCMV is known to exist, infection in the two closely related 
reservoir species hosts,  Mus domesticus  and  M. musculus , is highly focal (Lehm-
ann-Grube 1971). Studies conducted in Baltimore, Boston, and Washington, 
DC, revealed a spotty distribution of virus-positive mice in houses (Farmer et 
al. 1942; Childs et al. 1991, 1992). Similarly, in Germany, much higher infec-
tion rates prevail among  Mus  in the west-central region than in the southern 
or northern portions of the country (Ackermann et al. 1964). Human cases 
of LCMV infection are most common in autumn. This pattern is the result 
of peak seasonal population densities of rodents and the movement of house 
mice into homes and barns with the onset of cold weather. In addition, sea-
sonal variation in infection rates of  Mus  sp. may occur. Situations associated 
with transmission of virus from infected wild mice to humans include sub-
standard housing such as mobile homes or inner city dwellings, the cleaning of 
rodent-infested barns or outbuildings, and the autumn entry of wild mice into 
dwellings. Most human LCMV infections occur among young adults, although 
persons of all ages have been affected. The mode of transmission in most spo-
radic human infections is not definitely known; however, experimental and 
epidemiologic observations implicate aerosols, direct contact with rodents, and 
rodent bites (in that order) as the most likely vehicles (Enria et al. 1999; Farmer 
et al. 1942; Hinman et al. 1975). Although most sporadic LCM cases are attrib-
uted to contact with infected wild mice, outbreaks of disease have been traced 
to infected laboratory mice and Syrian hamsters   (Mesocricetus auratus ) (Dyke-
witz et al. 1992). Individual cases or outbreaks of LCM in the United States and 
Europe have resulted from exposures to infected pet hamsters (Biggar et al. 1975; 
Ackermann et al. 1972). Recently, a case of LCMV infection in France was traced 
back to a population of urban  Mus musculus ; virus isolates were obtained from 
60% of the mice trapped in the patient’s home (R. Charrel et al). 

 Although LCMV infection may occur worldwide wherever the house mouse 
has been introduced, human infection has been conclusively demonstrated only 
in Europe and the Americas (Lehmann-Grube 1971). LCM cases present most 
commonly as febrile illnesses with headache and systemic symptoms; leukope-
nia and thrombocytopenia are usually noted (Peters et al. 1995). After 3–5 days 
of nonspecific illness, the fever subsides, but it frequently recurs in 2–4 days 
with several days of even more severe headache. Patients may exhibit meningi-
tis during this second febrile period. In approximately one-third of the cases, 
cerebrospinal fluid (CSF) exhibits lymphocytic pleocytosis, an elevated protein 
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content, and hypoglycorrhachia. Sometimes there is more severe damage to the 
central nervous system (CNS) and transient hydrocephalus has been described. 
 Chorioretinitis and congenital hydrocephalus may occur in fetal infections. The 
second febrile episode, as well as some of the complications of convalescence, 
have long been thought to represent immunopathologic phenomena, and anti-
bodies detectable by immunofluorescence appear at about this time (Peters et al. 
1995). The prevalence of antibody to LCMV is approximately 5% among adults 
living in large cities of the United States (Childs et  al. 1991). Both CNS and con-
genital infections caused by LCMV may be more common than appreciated and 
are undoubtedly underdiagnosed (Enria et al 1999; Barton 1996, 2001). 

 In 2005, LCMV caused an outbreak of infection among four patients who 
had received solid organ transplants from an infected donor. Severe illness 
developed in all four patients, three of whom died (CDC 2005). The donor was 
probably infected from his pet hamster. 

  3.1.1
South American Arenaviral Hemorrhagic Fever 

 The clinical picture of the South American arenaviral hemorrhagic fever is 
almost identical regardless of the virus responsible for the disease. Argentine, 
Bolivian, and Venezuelan arenaviral hemorrhagic fevers are remarkably simi-
lar clinically, and mortality in each is about 15%–30% (Sabattini et al. 1970; 
 Maiztegui et al. 1975; Stinebaugh et al.1966). The disease caused by all three 
viruses can include neurological symptoms, hemorrhage, and shock; these clin-
ical findings herald a poor prognosis. 

  3.1.1.1
Argentine Hemorrhagic Fever: Junin Virus 

 The rodent host reservoir of JUNV is   Calomys musculinus , a small field rodent 
of Argentina (Sabattini and  Maiztegui 1970).  Calomys  populations reach their 
highest densities in cornfields and the surrounding weedy fence lines during the 
austral fall. In the 1950s, a new disease (Argentinean Hemorrhagic Fever, AHF) 
emerged in the Buenos Aires province of Argentina, a rich farming region, and 
was associated with intensive deforestation and intensive agricultural practices 
that considerably increased the contacts between humans and rodents. Most 
of the infected persons were male agricultural workers engaged in harvest-
ing corn. Transmission from the rodent is by inhalation of infected aerosols 
produced from rodent excreta or from rodents caught and shredded in mechanical 
harvesters (Maiztegui 1975). As a consequence, infection with JUNV is strongly 
seasonal and peaks during the harvest season in autumn. Since the emergence 
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of AHF, a progressive geographic expansion of epidemic outbreaks, occurring a 
variable intervals, has been observed (Maiztegui 1975; Maiztegui et al. 1986). After 
its first isolation in 1959, human cases were initially recorded within a 16,000-
km 2  area of the rich agricultural pampas north of Buenos Aires province, but 
AHF progressively expanded to become endemic in a 150,000-km 2  area in south-
ern of Santa Fé, southeastern Cordoba, and northeastern La Pampa provinces 
(Enria and  Feuillade 1998). To date, the human population at risk is estimated to 
be about 5 million. Several hypotheses were proposed to explain this expansion. 
Since 1958, cases have been annually recorded, ranging from several hundred to 
3,500. An epidemic outbreak of human AHF in southern Santa Fé and northern 
 Buenos Aires provinces was shown to coincide, with a lag of 1–2 months, with the 
peak density in a rapidly increasing population of  C. musculinus . The maximum 
prevalence of JUNV antigen-positive rodents, approximately 25% of adult 
 C. musculinus , coincided with peak rodent population density (Mills et al. 1992). 

 Although human cases present with either neurologic or hemorrhagic mani-
festations (or a combination of both), molecular studies of JUNV have not asso-
ciated either syndrome with a particular JUNV genotype (Albarino et al. 1997). 
Studies of the genetic diversity among JUNV strains circulating in central Argen-
tina demonstrated a high degree of genetic similarity among isolates from the 
same locale. However, no cluster of related JUNV strains was associated with clin-
ically different forms of AHF (Garcia et al. 2000). Mortality among patients with 
confirmed AHF was 14%–17% before the routine initiation of immune plasma 
was implemented (Maiztegui et al. 1979); treatment has reduced the mortality to 
less than 1%. Introduction of an effective vaccine, using a live-attenuated virus 
(Candidate#1) (Maiztegui et al. 1998), has decreased the incidence of the AHF to 
fewer than 100 cases per year (Enria et al. 2002). 

   3.1.1.2
Bolivian Hemorrhagic Fever: Machupo Virus 

 The rodent species  Calomys callosus  is the reservoir host of MACV, the agent 
of Bolivian hemorrhagic fever (BHV) ( Johnson et al. 1966). As with JUNV, the 
dynamics of the rodent population determine the epidemiological features of 
disease outbreaks among humans (Mercado et al. 1975). In contrast to the rodent 
host of JUNV,  C. callosus  invades houses during the rainy season, resulting in 
human cases with identical attack rates among all ages. However, on remote 
ranches and in fields, adult male patients predominate. A series of outbreaks from 
1962 to 1964 in the sparsely populated province of El Beni in northeast Bolivia, 
involved more than 1,000 patients, 180 of whom died; an increase of rodents 
invading small towns was coincidentally reported . Transmission was interrupted 
by a targeted campaign to reduce the rodent population within affected towns. 
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Bolivian hemorrhagic fever is restricted to the tropical savanna of Beni province 
and recent investigations have shown that the populations of rodents responsible 
for the maintenance and transmission of MACV are an independent monophy-
letic lineage, different from those in other areas of South America (Salazar-Bravo 
et al. 2002). 

 The incidence of BHF cases is greatest between April and July (late rainy and 
early dry season), but the dominant epidemiologic feature is that of small out-
breaks in different villages and ranches, with several years of quiescence thereafter. 
Transmission is thought to occur by aerosols from infected rodents or possibly by 
contact with food contaminated by infected rodent urine. Most of the recorded 
infections were acquired by direct contact with  C. laucha  or by aerosol through 
infected excreta. However, nosocomial transmission of MACV has been clearly 
demonstrated (Peters et al. 1971; Kilgore et al. 1995). Nosocomial outbreaks have 
been associated with a single index case who had visited a BHF endemic region. 
The only recognized hospital-based outbreak resulted in four secondary cases 
followed by a tertiary case acquired from a necropsy incident; all but one person 
died. Recently, an epidemic was reported in which seven members of the same 
family were infected, six of whom died (CDC 1994). 

   3.1.1.3
Venezuelan Hemorrhagic Fever: Guanarito Virus 

 In 1989, cases of hemorrhagic fever in the central plains of Venezuela were 
associated with a new  Arenavirus , designated Guanarito virus after the region 
where the first outbreak occurred (Salas et al. 1991). The main affected popula-
tion was settlers moving into cleared forest areas to practice small-scale agri-
culture. Since its discovery, GTOV has been responsible for at least 200 cases of 
VHF. For unknown reasons, the number of reported human cases has spontane-
ously dropped since 1992, although rodent infection can still be readily demon-
strated within and beyond the boundaries of the original endemic zone (Weaver 
et al. 2001). Natural and experimental data initially suggested that two differ-
ent rodent species were involved in the transmission cycle of GTOV in nature; 
the cane rat (  Zygodontomys brevicauda ) and the cotton rat (  Sigmodon alstoni ) 
(Fulhorst et al. 1999a, 1999b; Tesh et al. 1993). Recently,  Z. brevicauda  has been 
shown to be the primary reservoir host as it develops a persistent infection with 
lifelong viruria, accompanied by either low or undetectable levels of antibody. 
In contrast, the cotton rat has characteristics of an intermediate host infected 
by spillover of GTOV from cane rats, as it produces neutralizing antibodies and 
excretes virus for only a limited time. 

 Research undertaken to better understand the geographic distribution and 
potential variation in GTOV circulating in the VHF-epidemic area of western 
Venezuela resulted in the genetic sequencing of 29 isolates of GTOV obtained 
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from rodents and humans (Weaver et al. 2000). Nine genotypes of GTOV were 
distinguished, all of which, with the exception of the dominant genotype, were 
restricted to very small geographic areas. All but one of the strains obtained 
from humans belonged to the dominant genotype. Closely related strains of the 
dominant GTOV genotype were obtained from a large area covering approxi-
mately 75,000 km 2  (Tesh et al. 1993, 1999). A single rodent could be infected 
by a virus population varying less than 0.5% at the nucleotide level<CHFAN 
(a low-diversity quasispecies). In contrast, the dominant GTOV strain infecting 
humans was invariant. Human disease was not associated with a unique geno-
type restricted to a particular rodent host species. However, overall, the avail-
able data are insufficient to conclude whether or not certain genotypes are more 
pathogenic and/or infectious for humans than others. The limited mobility of 
rodents in isolated metapopulations could account for the coexistence of inde-
pendent virus lineages without mixing and competitive exclusion. 

   3.1.1.4
Brazilian Hemorrhagic Fever: Sabia Virus 

 Sabia virus has caused a single natural human infection that was fatal, and also 
two none fatal laboratory infections (Coimbra et al. 1994; Barry et al. 1995). No 
reservoir host has yet been identified. 

   3.1.1.5
Lassa Fever: Lassa Virus 

 Lassa fever is named after a small town in Nigeria, where the first epidemic 
was described in 1969 (Buckley and Casals 1970). LASV is associated with 
rodents belonging to the genus  Mastomys  (sometimes referred to as  Praomys ), 
which are widely distributed in sub-Saharan Africa. In the regions where LASV 
is endemic, up to 30% of  Mastomys  rodents can carry the virus (Keenlyside 
1983). Lassa virus is responsible for an estimated 100,000–300,000 infections 
and approximately 5,000 deaths annually (McCormick et al. 1987). To date, 
cases have been reported from Nigeria, Liberia, Sierra Leone, Guinea, Burkina 
Faso, Ivory Coast, Ghana, Senegal, Gambia, and Mali. Among hospitalized 
patients, mortality is estimated at 15%–20% (Webb et al. 1986). Serologic sur-
veys suggest that subclinical cases also occur (McCormick et al. 1987). Lassa 
fever occurs through direct or indirect contact with infected rodents. A number 
of cases acquired by local residents have been associated with the capture and 
handling of rodents for consumption (Ter Meulen et al. 1996). 

 Imported cases of LASV infection among travelers returning from endemic 
locations have been reported from England, Germany, Japan, the Netherlands, 
Israel, and the United States. 
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 Nosocomial transmission is a common feature of Lassa fever, and many 
 hospital-based outbreaks have been described (Keenlyside et al. 1983, Fischer-
Hoch et  al. 1995). However, it is apparent that this aspect of Lassa fever has been 
overestimated in reports based on infections in hospitals. The additional risk to 
hospital workers within the endemic zone is not great, as judged by serosur-
veys, providing that basic hygiene measures are maintained in hospitals deal-
ing with suspected cases (Helmick et al. 1986). Nosocomial cases have been 
reported only in hospital settings where basic hygiene measures were not 
enforced. Arenaviruses readily invade the fetus, whether in their natural rodent 
reservoir, laboratory animals, or humans. Pregnant women infected with LASV 
often abort and have a high mortality rate; similar observations have been made 
for Argentinian and Bolivian HFs (Price et al. 1988). 

      4
Prevention and Control 

 Prevention of arenaviral disease consists of interrupting the transmission of 
virus from rodents to humans, from humans to humans, and from infected 
specimens to laboratory personnel. Strategies for reducing contact between 
rodents and humans have been effective in the control of outbreaks of BHF; 
trapping and removal of  C. callosus  in towns reduced the incidence of disease 
to essentially zero. Rodent intervention strategies have proven more difficult 
for preventing AHF as conditions under which human exposure occurs are pri-
marily rural and associated with the harvesting of corn. The geographic distri-
bution  C. musculinus  (reservoir host of JUNV) is much wider than  C. callosus  
(reservoir of MACV), and Argentinian agricultural practices continue to place 
workers at risk of exposure to reservoir hosts. 

 A collaborative effort undertaken by the US and Argentine governments led 
to the production of a live attenuated Junín virus vaccine named Candid#1. Its 
efficacy was proven in a double-blind trial in 15,000 agricultural workers at risk 
to natural infection in Argentina. Subsequently, more than 100,000 people were 
immunized with JUNV vaccine in Argentina. A prospective study conducted 
over two epidemic seasons among 6,500 male agricultural workers in Argentina 
showed that Candid #1 vaccine efficacy was greater or equal to 84%, and no 
serious adverse effects were detected (Maiztegui et al 1998). 

 Recent animal protection studies suggest that the JUNV vaccine could be 
protective against MACV infections as well. However, attenuated JUNV strains 
do not protect experimental animals against GTOV challenge. Rhesus mon-
keys ( Cercopithecus aethiops ) challenged with purified inactivated LASV devel-
oped humoral antibody responses comparable to that among humans who 
recovered from Lassa fever. However, these monkeys were not protected when 
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challenged with LASV and died following exposure. A naturally attenuated 
strain of MOPV from Mozambique protects rhesus monkeys against LASV 
challenge, but field studies are required to establish the extent and nature of 
natural human infections with this virus before it can seriously be considered a 
candidate for human vaccine development. Alternative approaches, including 
the use of vaccinia virus vectors bearing the LASV GPC or N genes, are being 
actively investigated and show promising preliminary results. 

   5
Conclusion 

 Arenaviruses and their rodent hosts share a common ancient history and the 
extant diversity of arenaviruses probably evolved through the processes of co-
evolution, co-speciation and virus recombination. One can clearly distinguish 
four major clades of extant arenaviruses which are distributed either in the Old 
World (including Europe, Africa, and Asia) or the Americas. These observations 
are congruent with the ancient history of rodents mirroring the ancient paths and 
spread of  Arenavirus  ancestors. Such a model of co-evolution between parasite 
and specific hosts appears to apply to other viral groups such as the hantaviruses 
(Gonzalez 1996a) and Simian immunodeficiency virus (Kuhman et al. 2001).  
Two new arenaviruses have been recently discovered in Africa: the Morogoro 
virus isolated from Mastomys natalensis in Tanzania, and related to Mopeia virus, 
and the Kodoko virus detected in pigmy mice (Mus Nannomys minutoides) from 
Guinea. This findings together with the fact that arenavirus have coevolved with 
their rodent hosts strongly supports that many arenaviruses remain to be discov-
ered not only in Europe, Americas and Africa, but also in Asia and Oceania.

 Arenaviruses infect a variety of rodent hosts in which they are often nonpatho-
genic, whereas several are highly pathogenic for humans, resulting in severe hem-
orrhagic or neurological syndromes in that accidental host. Since their discovery 
in the early 1930s, new arenaviruses have been discovered and/or have emerged as 
human pathogens. As co-evolution and co-speciation occur over a long geological 
period, recombination appears more likely to occur in the short term and may be 
potentially most important in giving rise to human pathogenic strains.   
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