
Fast Node Overlap Removal—Correction

Tim Dwyer1, Kim Marriott1, and Peter J. Stuckey2

1 Clayton School of IT, Monash University, Australia
{tdwyer,marriott}@mail.csse.monash.edu.au

2 NICTA Victoria Laboratory
Dept. of Comp. Science & Soft. Eng., University of Melbourne, Australia

pjs@cs.mu.oz.au

Keywords: graph layout, constrained optimization, separation constraints.

1 Introduction

Our recent paper [1] details an algorithm for removing overlap between rect-
angles, while attempting to displace the rectangles by as little as possible. The
algorithm is primarily motivated by the node-overlap removal problem in graph
drawing. The algorithm treats x- and y-dimensions separately, each as an in-
stance of the variable placement with separation constraints (VPSC) problem:

Given n variables vi ∈ V , a weight wi ≥ 0 and a desired value di for
each variable and a set of separation constraints C over these variables
find an assignment to the variables which minimizes

∑n
i=1 wi × (vi −di)2

subject to C.

Each separation constraint c ∈ C has form u+g ≤ v where g ≥ 0 is the minimum
separation between variables u and v.

In [1] we gave a procedure, satisfy VPSC, that was intended to find a feasible
but possibly non-optimal solution to the VPSC. Unfortunately, the algorithm we
gave for satisfy VPSC contained an error which means that in rarely occurring
cases it may return an infeasible solution.

The basic approach of the algorithm satisfy VPSC was to merge variables
into larger and larger “blocks” of variables connected by active constraints. The
algorithm processed the variables from smallest to greatest based on some total
order given by the relation �C where u �C v iff there is a constraint c ∈ C of
form u + g ≤ v.

Naive implementation of this algorithm has worst-case complexity of O(|V | ·
|C|). In order to improve efficiency, the algorithm given in [1] used a priority
queue for each block b to store the block’s “in” constraints, i.e. those constraints
of form u + g ≤ v where v is in block b, ordered by their violation. When two
blocks were merged so were their priority queues. Implementing the priority
queues as pairing heaps [2] improved the amortized worst case complexity of the
algorithm to O((|V | + |C|) log |C|).

Unfortunately, we have subsequently realized that in rare cases merging of
priority queues meant that the algorithm given in [1] could return a infeasible

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 446–447, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fast Node Overlap Removal—Correction 447

solution. The problem is that when a block b is moved the violation of its “in”
constraints changes value. It was claimed in [1], that the relative ordering of the
constraints in the priority queue will not be changed as the result of a block’s
movement since all variables in the block will be moved by the same amount
and so the violation of the constraints will be changed by the same amount for
all non-internal constraints. This is true for the constraints in the priority queue
of the current active block b but may not be true for constraints in a priority
queue of a non-active block b′ whose constraints refer to variables that are in
b. This may mean that the priority queue of b′ becomes invalid and, if at some
future time b′ becomes merged with the active block, can lead to an error.

It is relatively straightforward to fix the problem. We keep a time stamp for
each block b, which is the time it last moved, and a time stamp for each constraint
c in a priority queue implemented as a pairing heap, which is the time it was
placed in the priority queue. When a constraint c is encountered in the priority
queue of the currently active block b (as the result of coming to the “top” of the
heap during a remove operation) we check that the other block b′ that it refers
to has not been moved since c was placed in the priority queue. If this is not
true, the relative placement of the constraint in the queue could be wrong, so a
down heap operation is performed on the constraint. A down heap is required
since c’s violation relative to the other constraints in the priority queue can only
have decreased as block b′ must have moved to the left. Since c’s violation has
decreased it is quite safe to lazily correct the problem.

The worst case complexity of the the corrected satisfy VPSC is now O((|V | ·
|C|) log |C|) since we might perform a down-heap operation repeatedly on the
same constraint. However, if a depth-first traversal is used to construct the total
ordering from the partial order, it is quite rare for this scenario to arise and in
this case we believe that the expected amortized time complexity is O((|V | +
|C|) log |C|). The revised algorithm is described in more detail in [3].

References

1. Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal. In: Proceedings
of the 13th International Symposium on Graph Drawing (GD’05). Volume 3843 of
LNCS. (2006) 153–164

2. Weiss, M.A.: Data Structures and Algorithm Analysis in Java. Addison Wesley
Longman (1999)

3. Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal correction. Available
from: www.csse.monash.edu.au/∼tdwyer/FastNodeOverlapRemovalCorrection.pdf
(2006)

	Introduction

