
Path Simplification for Metro Map Layout

Damian Merrick1,2 and Joachim Gudmundsson2

1 School of Information Technologies, University of Sydney, Australia
dmerrick@it.usyd.edu.au

2 National ICT Australia�, Sydney, Australia
joachim.gudmundsson@nicta.com.au

Abstract. We investigate the problem of creating simplified represen-
tations of polygonal paths. Specifically, we look at a path simplification
problem in which line segments of a simplification are required to conform
with a restricted set of directions C. An algorithm is given to compute
such simplified paths in O(|C|3n2) time, where n is the number of vertices
in the original path. This result is extended to produce an algorithm for
graphs induced by multiple intersecting paths. The algorithm is applied
to construct schematised representations of real world railway networks,
in the style of metro maps.

1 Introduction

Metro maps have been used to effectively illustrate transportation networks for
many decades. They incorporate a carefully balanced trade-off between geo-
graphical accuracy and readability of the diagram. Traditionally, these diagrams
are drawn manually, and it is a significant challenge to create computer algo-
rithms that produce high-quality metro maps. A common feature of metro maps
is the logical division of the network into a set of intersecting paths, or train
lines. One may consider the simpler problem of drawing these paths individu-
ally, instead of the entire network at once.

In the field of cartography, and particularly in geographical information sys-
tems (GIS), it is an important problem to represent detailed geographical fea-
tures on a map in a simple, easily understandable form. Consequently, efficient
algorithms for simplifying lines or paths in a geographical data set are desirable.

The problem of computing a simplification of a given polygonal path where
the vertices of the simplification are required to be a subset of the input points
has been studied extensively. Imai and Iri [19–21] formulated the problem as
a graph problem. They constructed an unweighted directed acyclic graph and
then used breadth-first search to compute a shortest path in this graph. The
same approach has been used by many algorithms devoted to this problem [3,
4, 6, 7]. A widely used heuristic for path-simplification is the Douglas-Peucker
algorithm [10]. If the path is given in the plane then it can be implemented to
run in O(n log∗ n) time [17], but it does not guarantee an optimal solution.
� National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 258–269, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Path Simplification for Metro Map Layout 259

Numerous criteria have been proposed for simplifying polygonal paths. In [4,
8, 19, 21, 23] the so-called tolerance zone criterion was used. Other measurements
are the infinite beam criterion [7, 11, 29], the uniform measure criterion [2, 13],
distance preserving criterion [15] and the area preserving criterion [3].

In this paper we address a related problem. As input, a polygonal path P is
given, consisting of a sequence of points 〈p1, . . . , pn〉, with closed line segments
called links joining each pair of consecutive points. Also given is a finite set
of directions C. The problem we address is to produce a simplification of P ,
subject to some constraints, where every link li in the simplification is parallel
to some orientation c ∈ C. A path conforming to this restriction is called a C-
directed path. Requiring a C-directed path as output results in a “schematised”
approximation of the original path. Such an approximation can greatly improve
the readability of diagrams in which several paths must be drawn. The vertices
of the simplification are not restricted to be a subset of the input points.

In the case when the links are restricted to a given set of orientations Neyer [26]
proposed an algorithm that minimises the number of links in the output path.
This algorithm runs in time O(nk2 log n), where k is the number of links in
the output. The output is a path which remains within a given distance of the
original path, according to the Fréchet distance metric. Utilising Fréchet distance
in this respect, however, can produce undesirable “zig-zags” in some paths when
the set of allowed orientations is small.

The problem considered in this paper uses a more relaxed restriction on dis-
tance. For each point p in the input path P , consider its ε-circle E(p); that is,
the closed disc of radius ε centred at p. Our requirement is that a simplification
must intersect E(p) for every p ∈ P , subject to a restriction on the order of
intersections. This is equivalent to enforcing a maximal Haussdorf distance of
the path simplification from the set of input points. Compared to the Fréchet
metric, more freedom is given to the simplification at bends.

Guibas et al. [16] considered a version of this problem where the links are not
restricted to a certain set of directions. They presented a dynamic programming
algorithm that generates an optimal solution in O(n2 log2 n) time, and a 2-
approximation with running time O(n log n). In this paper we show that the
restricted direction path simplification problem can be solved in O(|C|3n2) time.

In addition to the simplification of individual lines, we enter into the problem
of simplifying multiple intersecting paths in a network. This is of particular in-
terest in metro map layout. Hong et al. [18] present some force-directed graph
drawing approaches to metro map layout, which are also used to produce metro
map layouts of non-geographical networks. Slower but more geographically ac-
curate optimisation-based methods are detailed by Stott and Rodgers [28], and
more recently by Nöllenburg and Wolff [27]. One of the main benefits of the ap-
proach we present in this paper is its fast running time. This gives the potential
to handle much larger instances than those solvable by slower methods. In ad-
dition, faster methods bring about the possibility of real-time interactivity. For
example, in a network design application or diagramming tool, a designer may
want to modify a network and immediately visualise the effect on the diagram.

260 D. Merrick and J. Gudmundsson

A second problem related to metro map layout is the schematisation of net-
works. Cabello et al. [5] give an O(n log n) time algorithm which creates a
schematised map of a given network, where intersection points remain in fixed
locations and paths between intersection points are drawn using two or three
links. This approach ensures that the topology of the network is preserved. Other
recent work investigates problems in drawing schematised layouts of trees [14].

We restrict our attention to networks induced by multiple intersecting paths,
as in metro maps. We propose an efficient method for simplifying such networks
given a restricted set of directions and an error threshold. Preservation of topol-
ogy is not guaranteed in this approach.

Section 2 formalises the path simplification problem we address, and proposes
an algorithm to solve it. The extension of the path simplification algorithm to
metro map layout is presented in Section 3, and implementation results are given
in Section 3.1. Section 4 offers some concluding remarks and acknowledgements.

Due to space constraints most details are omitted and can be found in [25].

2 C-Directed Path Simplification

The path simplification problem we address in this paper is defined as follows:

Problem 1. The C-Directed Path Simplification Problem
Input : A path P , a set of directions C and a distance threshold ε.
Output : A (C, ε)-simplification P ′ of P with the minimum possible number

of links, such that the ε-circles of all points in P are stabbed in order by P ′.

To make the problem definition clear we also need to define “order”.

Definition 1. A directed line segment � that intersects the ε-circles of a se-
quence of points S = 〈p1, . . . , pn〉 is said to follow the order of S if and only if
for every pair of points pi, pj ∈ S, i < j there exist points qi, qj on � within the
ε-circles of pi and pj respectively, for which it holds that qi is encountered before
or at the same position as qj along �.

To guarantee that a solution exists, we assume that for any direction c ∈ C, the
opposite direction c̄ is also in C.

The algorithm we propose to solve the C-directed path simplification prob-
lem is composed of two parts. First, given a path to simplify, it constructs a
boundary path (to be defined) which determines a set of minimum-link (C, ε)-
simplifications of the given path, see Fig. 1(a). In the second part, a single
minimum-link (C, ε)-simplification of the path is extracted from the boundary
path, see Fig. 1(b). We start with some necessary definitions.

Given a pair of directions (c1, c2) and a set of points S = {p1, . . . , pn} let τi

be the c1-most tangent of the ε-circle of pi with direction c2, and let αi be the
point (if any) on τi with the smallest c2-coordinate for which it holds that a line
through αi with direction c1 stabs {p1, . . . , pi} in order as shown in Fig. 2(a–
b). Let ι be the smallest value for which there is no such point αι, and let
S′ = {p1, . . . , pι−1}. For every 1 ≤ j < ι let �j be the ray with direction c1
emanating from αj .

Path Simplification for Metro Map Layout 261

p2

p5

p6

p7

p8

p4

p3

p1
p2

p5

p6
p7

p8

p4

p3

p1

(a) (b)

B1

B2

B3

B1

B2
B3

c1c2

c3

Fig. 1. (a) An example showing a sequence of eight ε-circles and three link boundaries
B1, B2 and B3 forming a boundary path. (b) Extracting a (C, ε)-simplification from
the boundary path.

Definition 2. The link boundary L of S with direction pair (c1, c2) is the
polyline described by the upper envelope in direction c2 of the set �1, . . . , �j. The
link boundary L has size j and is said to stab S′ (in order).

If the stabbing order is ignored, a single maximum link boundary B can easily
be computed in linear time with respect to the number of points stabbed by B.
In Section 2.2 we discuss in more detail how to do it in the ordered case.

Definition 3. A boundary path is a sequence of link boundaries that stabs a
sequence of points S. A size k maximal boundary path of S is a boundary path
containing k link boundaries that stabs the maximal start sequence of S.

2.1 A High-Level Description

In this section we give an overview of the algorithm. The idea is to construct
a boundary path B where each link boundary, denoted B1, . . . , Bk, along B
corresponds to a segment in the final path simplification P ′ of P , and then
extract a path from B. The algorithm is given as pseudocode below.

Building the boundary path. The boundary path is built by incrementally
adding a link boundary. Let βk(ci, cj) denote a maximal boundary path of size
k whose last link boundary has direction pair (ci, cj). In each iteration of the
algorithm, O(|C|2) active candidate boundary paths are maintained together
with a counter k of the number of iterations, i.e., the size of all the boundary
paths. Initially, βk(ci, cj) is the maximal single link boundary path of S with
direction pair (ci, cj), and k = 1. If any of the O(|C|2) boundary paths stabs the
entire sequence S then we are done, otherwise continue iteratively as follows.

For every triple of directions (ci, cj, c�) in C extend βk(ci, cj) with a link bound-
ary of direction pair (cj , c�), excluding cases where ci is parallel to cj or cj is
parallel to c�. Consider all the maximal boundary paths with k + 1 links whose
last link boundary has direction pair (cj , c�), and save the boundary path that
stabs the longest sequence of S in βk+1(cj , c�). Finally, increment the value of k.
The process ends when a boundary path stabs S. The first boundary path that
stabs S is denoted Δ(S) and has size k.

262 D. Merrick and J. Gudmundsson

(a) (b)

p1
p2

p3

c1

c2

τ1
τ2 τ3

α1

α2
α3

p4

τ4

α4

c1

c2
α1

α2
α3α4

�1

�2

�4

�3

�0
p2

p3

p4

(c)

p1

Fig. 2. (a) τi is the c1-most tangent of the ε-circle of pi with direction c2. (b) The link
boundary with direction pair (c1, c2) of 〈p1, . . . , p4〉. (c) A potential problem when two
link boundaries are joined; the truncation of one of the links at the bends results in p3

not being stabbed.

Constructing a path from the boundary path. Given the boundary path
Δ(S) containing a sequence of link boundaries 〈B1, . . . , Bk〉, construct the (C, ε)-
simplification P ′ = 〈p′1, p′2, . . . , p′k+1〉 as follows. Let p′k+1 be the point within
pn’s ε-circle that is furthest along Bk in Bk’s primary direction. Let �k be the
line through the last ray of Bk. Set p′k to the intersection of �k and Bk−1, and
let �k−1 be the line through p′k in the primary direction of Bk−1. Continue this
process for every point p′i back to p′2, setting p′i to the intersection of �i and Bi−1.
Finally, let p′1 be the point within p1’s ε-circle lying on B1 that is backmost in
B1’s primary direction.

Algorithm StabbingPath

1. done:= false
2. for i = 1 to |C| do
3. for j = 1 to |C| do
4. for k = 1 to n do
5. βk(ci, cj) :=null
6. k := 0
7. while not done do
8. for i = 1 to |C| do
9. for j = 1 to |C| do
10. for � = 1 to |C| do
11. tmp:=ExpandBoundaryPath(βk(ci, cj), c�, S)
12. βk+1(cj , c�) :=SelectBestBoundaryPath(βk+1(cj , c�),tmp)
13. if βk+1(cj , c�) stabs S then
14. Δ(S) := βk+1(cj , c�)
15. done:=true
16. k := k + 1
17. endwhile;
18. Return ComputePath(Δ(S),S)

Consider each of the steps of the algorithm. Steps 1–6 of the algorithm require
O(|C|2n) time and step 18 requires O(n) time. It remains to study the body
within the three loops in steps 11–12. Step 12 can easily be performed in linear
time since one only has to decide which of the two boundary paths that stabs

Path Simplification for Metro Map Layout 263

q1

B

p1
p3

p2

r

Bk

(a)

cj

ci, c�
cj

ci, c�

γ

γx

(b)

Fig. 3. (a) The boundary-restricted stabbing interval I(〈q1〉, cj , B) (shaded). (b) The
boundary-restricting stabbing interval I(〈p2, p3〉, cj , Bk) (shaded). The left bounding
ray r of this interval is the backmost ray starting on Bk that ensures all points remain
stabbed, and forms the first ray of Bk+1.

the most ε-circles. That leaves step 11, which is the step that will dominate the
running time of the algorithm.

Guibas et al. [16] showed that one can compute a line that stabs the longest
possible prefix of a sequence of unit discs in the correct order in O(n log n) time.
However, their problem has two main differences to ours. First, we only need to
consider one direction. Second, when Bk+1 is joined to the end of the boundary
path βk(ci, cj) then Bk is truncated at its point of intersection with Bk+1. Hence
we must ensure that after the truncation all points in Sk are either still stabbed
by Bk or by Bk+1. Figure 1(c) illustrates this problem.

In the next section we will discuss how step ExpandBoundaryPath can be
implemented to run in O(n2) time.

2.2 Extending a Boundary Path with a Link Boundary

Consider the algorithm described in the previous section. Let B1, . . . , Bk be
the link boundaries in βk(ci, cj), and let Sk = 〈pf(k), . . . , pl(k)〉 be the sequence
of S stabbed by Bk. Thus the sequence of S that remains to be stabbed is
S′ = 〈pf(k+1), . . . , pn〉, where f(k + 1) = l(k) + 1.

We need to be very careful when joining two link boundaries. To facilitate this
we define boundary-restricted stabbing intervals (Figs. 3(a), (b) give examples).

Definition 4. Given a sequence of points S, a direction c, and a link boundary
B, the boundary-restricted stabbing interval I(S, c, B) is the region in the plane
for which it holds that a c-directed ray starting on B lies inside the region if and
only if it stabs S in order.

Initialisation. The task of the initialisation step is to construct the first ray in
Bk+1. If the turn from ci to cj is in the same direction as the turn from cj to
c�, e.g. both are left hand turns, then we add to Bk+1 the cj directed ray that
is at ∞ according to ci. If the turns are in different directions, i.e. one is a left
hand turn and one is a right hand turn, then we need to find the cj-directed ray
that starts as far back as possible on Bk and ensures Sk remains stabbed. Note

264 D. Merrick and J. Gudmundsson

that this ray starts as far back along Bk as possible, while still ensuring that all
points are stabbed by either Bk or the ray itself. Hence, it forms the backmost
bound for all possible rays in Bk+1. An example of this is illustrated in Fig. 3(b).

Extending Bk+1 to Stab a New Point. Once the initialisation has been
completed, the main loop commences. At each iteration, the algorithm attempts
to extend the set of points stabbed by βk(ci, cj) and the link boundary Bk+1.

Consider the points in S not stabbed by βk(ci, cj), denoted S′ = 〈q1, q2, . . .〉.
Process the points in S′ in order, starting with q1. In a generic step assume we
are about to process qm. Compute the stabbing interval I(〈q1, . . . , qm〉, cj , Bk).
If the interval is empty then we stop since there is no cj-oriented line that can
stab q1, . . . , qm in order. If the interval is non-empty let γ be the bounding line
of the stabbing interval with the smallest c�-value. Find the intersection point x
between γ and Bk, and let γ be the ci-directed ray starting at x. Process every
point p in Sk in reverse order as follows.

If γ cut the ε-circle of p into two pieces then Bk no longer stabs p, and it must
be stabbed by Bk+1. Set γ to be the bounding line of I(〈p, . . . , qm〉, ci, Bk) with
the smallest c�-value. If the stabbing interval is empty then we are finished, as
Bk+1 cannot stab p, . . . , qm or any further points. Otherwise, continue iterating.

Once the backtracking has completed, all points in the sequence Sk and
〈q1, . . . , qm〉 are stabbed by either Bk or γ. Now consider the last ray γ′ in
Bk+1. If γ′ is positioned at ∞, remove it from Bk+1 and replace it with the ray
along γ that starts on Bk. Otherwise, let t be the cj-most c�-directed tangent
to the ε-circle of pm. Add t and γ to Bk+1, and truncate γ′, t and γ at their
pairwise intersection points. The point pm is now stabbed by Bk+1, and can be
removed from S′ and added to Sk. Iteration continues until S′ is empty or a
point is found that cannot be stabbed.

If each stabbing interval is computed from scratch, a straight-forward imple-
mentation would require O(n2) time. This follows since the order restriction has
to be checked for every pair of ε-discs in the sequence. However, since the above
approach incrementally adds new points at the end of the sequence this can be
improved as stated in Theorem 1 below (see [25] for details). The concluding
result for this section follows in Theorem 2.

Theorem 1. There is a data structure of size O(n) that answers boundary-
restricted stabbing interval queries in constant time and allows additions of points
to the end of the sequence in O(n) time.

Theorem 2. ExpandBoundaryPath(βk(ci, cj), c�, S) can be computed in
O((|Sk|+ |Sk+1|)2) time, where Sk and Sk+1 are the sets of points stabbed by Bk

and Bk+1, respectively, in the produced boundary path.

2.3 Complexity Analysis

Time Complexity. Recall from Section 2.1 that the running time of algorithm
StabbingPath is dominated by step 11, i.e. ExpandBoundarypath. Assume

Path Simplification for Metro Map Layout 265

that a minimum link path contains k links, using Theorem 2 gives that the total
running time is bounded by:

C3 ·
(

|S1| +
k−1∑
i=1

(|Si| + |Si+1|)2
)

< C3 · 6
(

k−1∑
i=1

|Si|2 +
k−1∑
i=1

|Si+1|2
)

= O
(
C3n2) .

The final step of extracting a minimum-link (C, ε)-simplification from the bound-
ary path takes O(n) time, therefore the entire algorithm needs O(|C|3n2) time.

Space Complexity. At each iteration of the algorithm, O(|C|2) paths are
stored, each containing up to k boundaries. Each link boundary uses linear space
and every input point is stabbed by at most a constant number of link bound-
aries per boundary path, thus it follows that the algorithm requires O(|C|2n)
space.

2.4 Proof of Correctness

Lemma 1. Given a starting point q, a preceding link boundary Bi−1 and direc-
tions ci−1, ci and ci+1, the pair of link boundaries (Bi, Bi+1) constructed by the
algorithm stabs the furthest point of P possible.

Theorem 3. Algorithm StabbingPath(P, ε) computes a minimum link (C, ε)-
simplification of P .

Lemma 1 and Theorem 3 are proved in [25].

3 Extension to Metro Map Layout

A major motivation for this paper is the automatic visualisation of metro maps.
For this purpose, we extend the C-directed path simplification algorithm of Sec-
tion 2 to handle multiple intersecting paths.

We adopt the graph-based model of Hong et al. [18] to describe a metro
network; a metro map graph consists of a graph G and a set of paths covering
all vertices and edges of G. We assume we are given a metro map graph with a
set of initial coordinates for each vertex, representing the geographical locations
of stations in the metro network.

The first step taken by the algorithm is to sort the set of paths according
to a given measure of importance. Importance may be manually defined, or
calculated automatically by some heuristic function. For our purposes, we define
the importance of a path to be the number of vertices on the path that are also
a part of some other path in the metro map graph.

Once the paths are sorted, the most important path is taken from the set and
simplified using the algorithm of Section 2. Once the path simplification has been
computed, the points of the path must be placed on the simplification. This may
be achieved by simply projecting each original point onto the link in the path
simplification that stabs it. Alternatively, the points may be redistributed along

266 D. Merrick and J. Gudmundsson

the line segment such that the distance between every adjacent pair of points
is equal. This may result in a distance greater than ε between each original
point and its counterpart on the simplification. However, it is useful for reducing
clutter and making the final diagram clearer. Once placed, the points in the
simplification are fixed in their positions.

The next most important path is then taken and split into subpaths around
any sequences of fixed vertices, such that each subpath contains at most one
fixed vertex at either end. Each of these subpaths is simplified in turn, and all
of the points in the resulting simplifications are fixed.

A small modification must be made to the path simplification algorithm to
ensure that the simplified path runs exactly through any fixed points. This is
achieved by restricting the allowed interval for each fixed point to the single line
in each direction that passes exactly through that point.

The algorithm repeats the above steps, each time taking the next most im-
portant path from the set, splitting it and simplifying, until there are no paths
left to be simplified. A complete layout has then been generated.

We found that two extensions to the path simplification algorithm were useful
to improve the results: restricting the maximum turning angle at bends, and
enforcing a minimum link length.

Maximum bend angle. Allowing turns of large angles between links in a
simplification can result in undesirable sharp bends. Given an angle α, one may
want to ensure that no turn of more than α degrees is made in the simplified path.
To implement this, simply ignore any pairs of consecutive directions separated
by more than α degrees. Theorem 3 still holds in this case, i.e. the simplification
produced will have the minimum number of links of any (C, ε)-simplification
subject to the same restriction.

Minimum link length. The algorithm enforces no restriction on the length of
links in the simplification. This can cause a restriction on the maximum bend
angle to be less effective, as the extra links produced may be of zero length. We
enforce a minimum length lmin for each link when constructing a link boundary,
by trimming all boundary-restricted stabbing intervals to a distance of lmin from
the start of the previous link boundary. Problems can occur where a link needs
to be shorter than lmin in order to stab a point. To avoid this, we decrease lmin

on any iteration in which no further points are stabbed by any link boundary. If
this continues to occur for several iterations, we set lmin to zero. This approach
ensures that a solution will be computed, but the number of links in the solution
may not be the minimum.

3.1 Results

We applied the method of Section 3 to the central part of the Sydney Cityrail
railway network [9], and the London Underground network [22]. The Sydney
graph has 173 vertices and 182 edges, and London has 266 vertices and 308 edges.
We created a Java implementation as a plugin to the graph editor jjGraph [12].

Path Simplification for Metro Map Layout 267

Fig. 4. (a) The original Cityrail geometry, and simplifications using (c) 4, (e) 6 and
(g) 8 directions. (b) The original London geometry, and simplifications using (d) 4, (f)
6 and (h) 8 directions.

268 D. Merrick and J. Gudmundsson

The input geometry for the Cityrail network was taken directly from its ge-
ographical layout, shown in Fig. 4(a). The original geography of the London
network is quite dense in the centre and sparse in the exterior, so we scaled it
using the centrality-based scaling technique of Merrick and Gudmundsson [24]
before applying our algorithm. The scaled geometry is shown in Fig. 4(b). The
scaling used betweenness centrality, with parameters α = 10, β = 50 and γ = 2,
and the scaling took 6445 ms to execute. Refer to the literature for details on
the scaling method and its associated parameters [24].

We ran our implementation on both networks with varying parameters, and
show selected results. Figs. 4(c), (e) and (g) show the Cityrail network simplified
with |C| = 4, 6 and 8 respectively. The respective running times were 154, 201
and 268 ms. Figs. 4(d), (f) and (h) show the London network simplified with
|C| = 4, 6 and 8 respectively. The running times to obtain these results were
282, 423 and 573 ms. All results were produced on a computer with a Pentium
4 3.0 GHz processor and 1GB of RAM, running Windows XP. Running times
were averaged over 10 runs. Values of ε were chosen by trial and error and varied
between the datasets; at this stage the possibility of automatically choosing an
appropriate value for ε remains as future work.

4 Concluding Remarks and Acknowledgements

Consider a k-link (C, ε)-simplification of a path P produced by the algorithm
of Section 2. It might be that there exists a k-link (C, ε′)-simplification of P
where ε′ is much smaller than ε. In [25] we present a fully polynomial-time
approximation scheme (FPTAS) to the dual of the problem, i.e. given k compute
a (C, ε)-simplification of P that minimises ε. The FPTAS produces a (1 + δ)-
approximation for any given δ > 0.

We thank Martin Nöllenburg and Alexander Wolff for the London data.

References

1. H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Proc.
8th Annual Symposium on Computational Geometry, p. 102–109, 1992.

2. P. K. Agarwal and K. R. Varadarajan. Efficient Algorithms for Approximating
Polygonal Chains. Discrete & Computational Geometry, 23(2):273–291, 2000.

3. J. Bose, O. Cheong, S. Cabello, J. Gudmundsson, M. van Kreveld and B. Speck-
mann. Area-preserving approximations of polygonal paths. J. Discrete Alg., 2006.

4. G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich and J. Snoeyink. Efficiently
approximating polygonal paths in three and higher dimensions. Algorithmica,
33(2):150–167, 2002.

5. S. Cabello, M. de Berg, and M. van Kreveld. Schematization of networks. Com-
putational Geometry and Applications, 30:223–238, 2005.

6. W. S. Chan and F. Chin. Approximation of polygonal curves with minimum
number of line segments or minimum error. IJCGA, 6:59–77, 1996.

7. D. Z. Chen and O. Daescu. Space-efficient algorithms for approximating polygonal
curves in two-dimensional space. IJCGA, 13:95–111, 2003.

Path Simplification for Metro Map Layout 269

8. D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge, N. Mi and J. Snoeyink.
Polygonal path simplification with angle constraints. CGTA, 32(3):173–187, 2005.

9. CityRail network map. Web page:
http://www.cityrail.info/networkmaps/mainmap.jsp (Accessed 6th Sept 2006).

10. D. Douglas and T. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. The Canadian Cartographer
10(2):112–122, 1973.

11. D. Eu and G. T. Toussaint. On Approximating Polygonal Curves in Two and Three
Dimensions. CVGIP: Graphical Model and Image Processing, 56(3):231–246, 1994.

12. C. Friedrich. jjGraph. Personal communication.
13. M. T. Goodrich. Efficient piecewise-linear function approximation using the uni-

form metric. Discrete & Computational Geometry, 14:445–462, 1995.
14. J. Gudmundsson, M. van Kreveld and D. Merrick. Schematisation of Tree Draw-

ings. Submitted to Graph Drawing, June 2006.
15. J. Gudmundsson, G. Narasimhan and M. H. M. Smid. Distance-Preserving Ap-

proximations of Polygonal Paths. To appear in CGTA, 2006.
16. L. J. Guibas, J. Hershberger, J. S. B. Mitchell and J. Snoeyink. Approximating

Polygons and Subdivisions with Minimum Link Paths. IJCGA, 3(4):383–415, 1993.
17. J. Hershberger and J. Snoeyink. Cartographic line simplification and polygon CSG

formulæ in O(n log∗ n) time. Computational Geometry – Theory & Applications,
11(3-4):175–185, 1998.

18. S.-H. Hong, D. Merrick, and H. A. D. do Nascimento. The metro map layout
problem. In Proc. Graph Drawing 2004, p. 482–491, 2005.

19. H. Imai and M. Iri. Computational-geometric methods for polygonal approxima-
tions of a curve. Comp. Vision, Graphics and Image Processing, 36:31–41, 1986.

20. H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of Information Processing, 9(3):159–162, 1986.

21. H. Imai and M. Iri. Polygonal approximations of a curve-formulations and al-
gorithms. In Computational Morphology, G. T. Toussaint (ed.), North-Holland,
Amsterdam, 1988.

22. London Underground network map. Web page: http://www.tfl.gov.uk/tube/maps/
(Accessed 6th Sept 2006).

23. A. Melkman and J. O’Rourke. On polygonal chain approximation. In Computa-
tional Morphology, G. T. Toussaint (ed.), North-Holland, Amsterdam, 1988.

24. D. Merrick and J. Gudmundsson. Increasing the readability of graph drawings
with centrality-based scaling. In Proc. APVIS 2006, p. 67–76, 2006.

25. D. Merrick and J. Gudmundsson. C-Directed Path Simplification for Metro Map
Layout. http://www.dmist.net/metromap.pdf (Accessed 6th Sept 2006).

26. G. Neyer. Line simplification with restricted orientations. In Proc. 6th Interna-
tional Workshop on Algorithms and Data Structures, p. 13–24, 1999.

27. M. Nöllenburg and A. Wolff. A mixed-integer program for drawing high-quality
metro maps. In Proc. 13th International Symposium on Graph Drawing, 2005.

28. J. Stott and P. Rodgers. Metro map layout using multicriteria optimization. In
Proc. 8th Interational Conference on Information Visualisation, p. 355–362, 2004.

29. G. T. Toussaint. On the Complexity of Approximating Polygonal Curves in the
Plane. In Proc. of the International Symposium on Robotics and Automation
(IASTED), pages 311–318, 1985.

	Introduction
	\mathcal{C}-Directed Path Simplification
	A High-Level Description
	Extending a Boundary Path with a Link Boundary
	Complexity Analysis
	Proof of Correctness

	Extension to Metro Map Layout
	Results

	Concluding Remarks and Acknowledgements
	References

