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Abstract. The crossing number cr(G) of a graph G is the minimum
number of crossings over all drawings of G in the plane. In 1993, Richter
and Thomassen [RT93] conjectured that there is a constant c such that
every graph G with crossing number k has an edge e such that cr(G −
e) ≥ k − c

√
k. They showed only that G always has an edge e with

cr(G − e) ≥ 2
5cr(G) − O(1). We prove that for every fixed ε > 0, there

is a constant n0 depending on ε such that if G is a graph with n > n0

vertices and m > n1+ε edges, then G has a subgraph G′ with at most
(1 − 1

24ε
)m edges such that cr(G′) ≥ ( 1

28 − o(1))cr(G).

1 Introduction

The crossing number cr(G) of a (simple) graph G is the minimum possible num-
ber of crossings in any drawing of G in the plane. A famous result of Ajtai et
al. [ACNS82] and Leighton [L84] states that if G is a graph with n vertices and
m ≥ 4n edges, then

cr(G) ≥ m3

64n2 . (1)

For graphs with n vertices and m ≥ 103
16 n edges, Pach et al. [PRTT04] improved

Inequality (1) by a constant factor to

cr(G) ≥ 1024
31827

m3

n2 . (2)

It is well known that for every positive integer k, there is a graph G and
an edge e of G such that cr(G) = k but G − e is planar. In 1993, Richter and
Thomassen [RT93] conjectured that there is a constant c such that for every
nonempty graph G with crossing number k, there is an edge e of G such that
cr(G − e) ≥ k − c

√
k. They showed only that G always has an edge e with

cr(G − e) ≥ 2
5cr(G)− O(1). Salazar [S00] proved that for every graph G with no

vertices of degree 3, there is an edge e of G such that cr(G−e) ≥ 1
2cr(G)−O(1).

Pach and G. Tóth [PT00] showed for every connected graph G with n vertices,
m ≥ 1 edges, and every edge e of G, that the decay is bounded by

cr(G − e) ≥ cr(G) − m + 1.
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This, combined with Inequality (2), is better than Richter-Thomassen’s bound
for graphs with n vertices and m ≥ 8.1n edges. By Inequality (1), it also confirms
the Richter-Thomassen conjecture for dense graphs, that is, for graphs with
Ω(n2) vertices.

In this paper, we show that from every graph G that is not too sparse, we can
delete a constant fraction of the edges such that the the crossing number of the
remaining subgraph G′ is at least a constant fraction of the crossing number of
G.

Theorem 1. For every ε > 0, there is a constant n0 depending on ε such that
if G is a graph with n > n0 vertices and m > n1+ε edges, then G has a subgraph
G′ formed by deleting at least εm/24 edges from G such that

cr(G′) ≥
(

1
28

− o(1)
)

cr(G).

To prove Theorem 1, we derive in Sections 3 and 4 new lower bounds on the
crossing number that improve on Inequality (1) for graphs with highly irregular
degree patterns.

2 Drawing Edges with the Embedding Method

We use the embedding method along the lines of Leighton [L83], Richter and
Thomassen [RT93], Shahrokhi et al. [SSSV97], and Székely [S04a]. The embed-
ding method generates a planar drawing (embedding) D(G) of a graph G based
on a drawing D(H) of a subgraph H ⊂ G. The drawing D(G) respects D(H) on
the edges of H and for every edge e = (v, w) ∈ G \ H , the drawing of e follows
“infinitesimally close” to a path between v and w in the drawing D(H). We can
distinguish two categories of crossings that involve edges of G\H in the drawing
D(G). A first category crossing arises infinitesimally close to a crossing in D(H).
A second category crossing arises infinitesimally close to a vertex in D(H).

We illustrate the embedding method with a bound on the minimum decay
of the crossing number after deleting one edge. This improves on the Richter-
Thomassen bound for graphs with m ≥ 7.66n edges.

Proposition 1. For every connected graph G with n vertices and m edges, there
is an edge e of G such that

cr(G − e) ≥ p

p + 2

(
cr(G) − m +

n

2

)
,

where p = � m
n−1 − 1�.

The proof of Proposition 1 follows immediately from Proposition 2 and Lemma
1 below. Nagamochi and Ibaraki [NI92] proved the following lemma, which is a
slight variant of Mader’s theorem, and shows that every graph with n vertices
and m edges has a pair of adjacent vertices with at least m

n−1 edge-disjoint paths
between them.
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Lemma 1 (Mader, Nagamochi and Ibaraki). If G is a graph with m edges
and n vertices, then there is an edge e = (v, w) of G such that there are at least

m
n−1 − 1 edge-disjoint paths between v and w in G − e.

Proof. Delete maximal spanning forests F1, F2, . . ., Fj one after the other until
all edges are deleted. If e = (v, w) is an edge of Fj , then there is a path between
v and w in Fi for every i, 1 ≤ i ≤ j. Hence, there are at least j − 1 edge-disjoint
paths between v and w that do not pass through e. Since each Fi is a forest, it
has at most n − 1 edges, and so we have m ≤ j(n − 1). Substituting, there are
at least m

n−1 − 1 edge-disjoint paths between v and w in G − e.

Proposition 2. Let G be a connected graph with n vertices and m edges, and
e = (v, w) be an edge of G such that there are p ≥ 1 edge-disjoint paths between
v and w in G − e. Then

cr(G) ≤
(

1 +
2
p

)
cr(G − e) + m − n

2
.

Proof. Let D be a drawing of G − e in the plane with cr(G − e) crossings. Let
P1, P2, . . ., Pp be p edge-disjoint paths between v and w. Consider the drawing
Dj of G in the plane that respects the drawing D of G−e and the edge e follows
infinitesimally close to the path Pj between v and w with all loops (and self-
crossings) deleted. Let kj be the number of first category crossings in Dj . Since
the paths P1, P2, . . ., Pp are edge-disjoint, the drawings D1, D2, . . ., Dp of G
jointly have at most two first category crossings at each crossing of D: at most
two crossings between edges of G − e and different drawings of e, as depicted in
Figure 1(a). Hence,

p∑
j=1

kj ≤ 2cr(G − e).

Therefore, there is an index j, 1 ≤ j ≤ p, such that kj ≤ 2cr(G − e)/p.

Pj

Pj′

(a) (b) (c) (d)

u
Pj

Fig. 1. Drawings of edge e along two edge-disjoint path Pj and Pj′ may give two first
category crossings at a crossing of D (a). If a path Pj traverses a vertex u (b), then
the edge e drawn along Pj can choose between two possible routes around u (c–d).

At each internal vertex u of a path Pj , the drawing of e in Dj can take two
possible routes, as depicted in Figure 1 (c–d). The two possible routes have a
total of deg(u)−1 second category crossings at u. We draw e along the route with
fewer second category crossings, and so there are at most 1

2 (deg(u)−1) crossing at
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vertex u. Hence, the total number of second category crossings is at most m− n
2 .

Therefore, in the drawing Dj of G, there are at most (1 + 2
p )cr(G − e) + m − n

2
crossings.

The following theorem establishes Theorem 1 for all graphs with n vertices of
degree d1, . . . , dn such that cr(G) ≥ 7

16

∑n
i=1 d2

i . For graphs that do not satisfy
this condition, we alter the proof in Sections 3 and 4.

Theorem 2. For every ε, 0 < ε < 1, there is a positive constant n(ε) such
that for every G with n > n(ε) vertices, with a degree sequence d1, . . . , dn, and
m > n1+ε edges, there is a subgraph G′ of G with at most (1 − ε

8 )m edges such
that

4cr(G′) ≥ cr(G) − 3
8

n∑
i=1

d2
i .

Proof. Erdős and Simonovits [ES82] proved that for every integer r > 1, there
is a constant cr such that every graph G with n vertices and m > crn

1+ 1
r edges

contains a cycle of length 2r. This implies that for 0 < ε < 1, there is a positive
integer r satisfying 1

ε < r ≤ 2
ε so that every sufficiently large graph G with

m > n1+ε edges contains a family C of edge-disjoint cycles of length 2r that
cover at least half of the edges of G. Let G′ be a subgraph of G formed by
deleting an arbitrary edge ej from each cycle Cj ∈ C. The remaining edges of
cycle Cj form a path Pj . Hence, the number of edges of G \ G′ is at least ε

8m.
Let us denote the vertices of G by vi, i = 1, 2, . . . , n, such that the degree of vi

is di in G and d′i in G′. Let hi = di − d′i, which is the number of edges incident
to vi in G \ G′.

Consider a drawing D′ of G′ in the plane with cr(G′) crossings. We generate a
drawing D of G based on D′ by applying the embedding method. In particular,
for every edge ej of cycle Cj ∈ C, we draw ej along the path Pj . Since the paths
Pj with Cj ∈ C are edge-disjoint, D has at most 4 crossings at every crossing of
D′. Therefore, the total number of crossings of D′ and first category crossings
of D is at most 4cr(G′).

Next we estimate the number of second category crossings. Each of the hi

edges incident to vi in G \ G′ is drawn, in a neighborhood of vi, close to one
of the d′i edges incident to vi in G′. The vertex vi with degree d′i in G′ is an
internal node of at most 	(d′i −hi)/2
 paths Pj . For every such path Pj , the edge
ej is drawn along one of two possible routes, as depicted in Figure 1(c-d), with
the minimum number of crossings with the edges of G incident to the vertex vi.
Every edge ej ∈ G \ G′ passing though a small neighborhood of vi has at most
	(d′i + hi − 1)/2
 second category crossings with edges of G incident to vi. Each
pair of edges passing through a small neighborhood of vi cross at most once. So
the total number of second category crossings at vi is at most

⌊
d′i − hi

2

⌋
·
⌊

d′i + hi − 1
2

⌋
+

(
	d′i − hi/2


2

)
<

3
8
d′2i ≤ 3

8
d2

i .

Summing over all vertices, we have at most
∑n

i=1
3
8d2

i second category crossings.
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Hence, we have

cr(G) ≤ 4cr(G′) +
3
8

n∑
i=1

d2
i . �

3 The Sum of Degree Squares and the Crossing Number

The bisection width, denoted by b(G), is defined for every simple graph G with
at least two vertices. b(G) is the smallest nonnegative integer such that there is
a partition of the vertex set V = V1 ∪∗ V2 with 1

3 · |V | ≤ Vi ≤ 2
3 · |V | for i = 1, 2,

and |E(V1, V2)| ≤ b(G). Extending the Lipton-Tarjan separator theorem [LT79],
Gazit and Miller [GM90] established an upper bound on the bisection width in
terms of the sum of degree squares.

Theorem 3 (Gazit and Miller). Let G be a planar graph with n vertices of
degree d1, d2, . . . , dn. Then

b2(G) ≤ 5 + 2
√

6
4

·
n∑

i=1

d2
i .

Pach, Shahrokhi, and Szegedy [PSS96] used Theorem 3 to relate the bisection
width with the crossing number.

Theorem 4 (Pach, Shahrokhi, and Szegedy). Let G be a graph with n
vertices of degree d1, d2, . . . , dn. Then

40cr(G) ≥ b2(G) − 5
2

·
n∑

i=1

d2
i (G).

Pach, Spencer and Tóth [PST00] have further exploited the connection between
the bisection width and the crossing number. They have established lower bounds
on the crossing number of graphs with some monotone graph property in terms
of the number of edges and vertices of the graph. A simplified version of their
proof method yields the following bounds.

Lemma 2. Let G(V, E) be a graph with n vertices of degree d1, d2, . . . , dn, and
m ≥ 8n7/5 log2/5 n edges. Then

cr(G) ≥ 1
24

n∑
i=1

d2
i .

This bound is better than the classical lower bound (1) due to Ajtai et al.
[ACNS82] and Leighton [L84] for graphs of irregular degree patterns and m =
O(n3/2) edges. Consider the complete bipartite graph Ka,b with n = a+b vertices
and m = ab edges, where a ≤ b. For this graph, our Lemma 2 gives cr(G) =
Ω(ab2), which is a tighter than the classical Ω(m3/n2) = Ω(a3b) bound for
(8 + o(1))b2/5 log2/5 b ≤ a ≤

√
b, where the o(1) term goes to 0 as b → ∞.

Similar bounds have also been deduced by Pach, Solymosi, and Tardos [PST06].
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Proof of Lemma 2. We decompose the graph G by the following recursive algo-
rithm into induced subgraphs such that every subgraph is either a singleton or
its squared bisection width is at least five times the sum of its degree squares.
In an induced subgraph H ⊆ G, we denote by degH(v) the degree of a vertex
v ∈ V (H).

1. Let S0 = {G} and i = 0.
2. Repeat until |V (H)| = 1 or b2(H) ≥ 5

∑
v∈H deg2

H(v) for every H ∈ Si.
Set i := i + 1 and Si+1 := ∅. For every H ∈ Si, do

• If b2(H) ≥ 5
∑

v∈H deg2
H(v) or |V (H)| ≤ (2/3)i|V |, then let Si+1 :=

Si+1 ∪ {H};
• otherwise split H into graphs H1 and H2 along an edge separator of

size b(H), and let Si+1 := Si+1 ∪ {H1, H2}.
3. Return Si.

First, we show that the algorithm is correct. In every round, every graph
H ∈ Si that does not satisfy the end condition has at most |V (H)| ≤ (2/3)i · |V |
vertices. The algorithm terminates in t ≤ log(3/2) n rounds, and it returns a set St

of induced subgraphs. By Theorem 4 and the end condition of the decomposition
algorithm, for every H ∈ St we have 40cr(H) ≥ (5/2)

∑
v∈H deg2

H(v). So

40cr(G) ≥ 40
∑

H∈St

cr(H) ≥ 5
2

·
∑

H∈St

∑
v∈H

deg2
H(v) ≥ 5

2
·
∑
v∈V

deg2
H(v,t)(v), (3)

where H(v, i) denotes the graph H ∈ Si containing vertex v ∈ V .
Next, we count the number of edges deleted during the recursive decomposi-

tion. Following an argument of [PST00], we count separately the edges deleted
in each step of the decomposition algorithm. Let S′

i = {H : H ∈ Si, H �∈ Si+1},
that is, S′

i consists of those subgraphs in Si that are decomposed at step i. No-
tice that |S′

i| < (3
2 )i+1 since every subgraph of Si that splits has more than

(2/3)i+1|V | vertices. Let Vi = {v : v is a vertex of a graph H ∈ S′
i}.

In step i, when some of the subgraphs in Si are decomposed in Si+1, the total
number of deleted edges is at most

∑
H∈S′

i

√
5

∑
v∈H

deg2
H(v).

Using the Cauchy-Schwartz inequality, we have

∑
H∈S′

i

√
5

∑
v∈H

deg2
H(v) ≤

√
5|S′

i|
√ ∑

v∈Vi

deg2
H(v,i)(v) ≤

√
5

(
3
2

)i+1√ ∑
v∈Vi

deg2
H(v,i)(v).

Since |V (H)| ≤ (2
3 )i|V | for each subgraph H ∈ S′

i, we conclude that√
5

(
3
2

)i+1√ ∑
v∈Vi

deg2
H(v,i)(v) ≤

√
5

(
3
2

)i+1√
max
v∈Vi

degH(v,i)(v) ·
∑
v∈Vi

degH(v,i)(v)

≤

√
5

(
3
2

)i+1
√(

2
3

)i

n(2m) ≤
√

15mn.
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Since the algorithm terminates in at most log n/ log(3/2) steps, the total num-
ber of edges deleted throughout the decomposition algorithm is at most

√
15

log(3/2)
√

mn log n < 7
√

mn log n.

If we increase the degree of a vertex by one, the degree square increases by at
most 2n− 1 < 2n. By putting back the deleted edges, the sum of degree squares
increases by less than 28m1/2n3/2 log n. From Inequality (2), we have

8cr(G) ≥ 8 · 1024
31827

· m3

n2 ≥ 28m1/2n3/2 log n, (4)

if m ≥ 8n7/5 log2/5 n. Summing Inequalities (3) and (4), we obtain

24cr(G) ≥
∑
v∈V

deg2
H(v,t)(v) + 88m1/2n3/2 log n ≥

n∑
i=1

d2
i .

This completes the proof of Lemma 2. �

We are now ready prove Theorem 1 for the case that m ≥ 8n7/5 log2/5 n.

Theorem 5. For every ε > 0, there is a constant n0 depending on ε such that
if G is a graph with n > n0 vertices and m > 8n7/5 log2/5 n edges, then G
has a subgraph G′ formed by deleting at least m/20 edges from G such that
cr(G′) ≥ 1

13cr(G).

Proof. Combining Theorem 2 and Lemma 2, we obtain

cr(G) ≤ 4cr(G′) +
3
8

n∑
i=1

d2
i ≤ 4cr(G′) + 9cr(G′) = 13cr(G′).

�

4 Proof of Theorem 1

Theorem 5 leaves us with the case that n1+ε ≤ m < 8n7/5 log2/5 n. Instead of
Lemma 4, we employ the following bounds.

Lemma 3. Let G be a graph with n vertices of degree d1, d2, . . . , dn, and m
edges. For any δ, 0 < δ < 1, let Δ=Δ(δ) be the integer such that

∑n
i=1 min(di, Δ)

< 2δm but
∑n

i=1 min(di, Δ + 1) ≥ 2δm. The crossing number of G is bounded
by the sum of truncated degree squares. If m ≥ 45(1 − δ)−2n log2 n, then

cr(G) ≥ 1
16

n∑
i=1

(min(di, Δ))2.



On the Decay of Crossing Numbers 181

Lemma 4. Let G be a graph with n vertices and m edges, and let d1 ≤ d2 ≤
. . . ≤ dn denote the degree sequence sorted in monotone increasing order. Let
� be the integer such that

∑�−1
i=1 di < 4m/3 but

∑�
i=1 di ≥ 4m/3. The crossing

number of G is bounded by a prefix sum of the degree squares. If m = Ω(n log2 n),
then

cr(G) ≥
(

1
64

− o(1)
) �∑

i=1

d2
i .

Proof of Lemma 3. Run the recursive decomposition algorithm described in the
previous section on graph G. We have shown that during the algorithm at most
(
√

15/ log 3
2 )√

mn log n edges are deleted. This is less than (1−δ)m if m ≥ 45(1−δ)−2n log2 n.
We are now ready to estimate

∑
v∈V deg2

H(v,t)(v). Since the number of edges
decreased by at most (1 − δ)m, the sum of degrees decreased by at most (2 −
2δ)m. The sum of degree squares decreases maximally if the highest degrees are
truncated to at most Δ, and so we have

∑
v∈V

deg2
H(v,t)(v) ≥

n∑
i=1

(min(di, Δ))2 . (5)

This completes the proof of Lemma 3. �

Proof of Lemma 4. We extend the argument of the previous proof with δ = 5
6 .

If d� ≤ Δ, then the right hand side of (5) must clearly be at least
∑�

i=1 d2
i and

our proof is complete. Let us assume that Δ < d�. Refer to Figure 2.

n

n − 1

�

d�

Δ

i

di

Fig. 2. The monotone increasing degree sequence of a graph G

Recall that
∑n

i=1 di = 2m. We have assumed that
∑n

i=�+1 di ≤ 2m
3 <

∑n
i=� di,

and for δ = 5
6 we have

∑n
i=1 min(di, Δ) < 5m

3 ≤
∑n

i=1 min(di, Δ + 1). It follows
that (n − � + 1)(Δ + 1) > m

3 . Since Δ < n and n = o(m), we conclude that
(n − �)Δ > (1 − o(1))m

3 .
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Observe that (n − �)d� ≤
∑n

i=�+1 di ≤ 2m
3 , and so m ≥ 3

2 (n − �)d�. Fur-
thermore, observe that

∑�
i=1 max(0, di − Δ) ≤

∑n
i=1 max(0, di − Δ) ≤ n +∑n

i=1 max(0, di − (Δ + 1)) ≤ n + m
3 = (1 + o(1))m

3 . Putting these simple obser-
vations together, we obtain

n∑
i=�+1

(min(di, Δ))2 = (n − �)Δ2 >

(
1
3

− o(1)
)

mΔ ≥
(

1
2

− o(1)
)

(n − �)d�Δ

≥
(

1
6

− o(1)
)

d�m ≥
(

1
2

− o(1)
)

d�

�∑
i=1

max(0, di − Δ)

≥
(

1
2

− o(1)
) �∑

i=1

(max(0, di − Δ))2.

We can now estimate the right hand side of Inequality (5).
n∑

i=1

(min(di, Δ))2 =
�∑

i=1

(min(di, Δ))2 +
n∑

i=�+1

(min(di, Δ))2

≥
�∑

i=1

(min(di, Δ))2 +
(

1
2

− o(1)
) �∑

i=1

(max(0, di − Δ))2

≥
(

1
2

− o(1)
) �∑

i=1

(min(di, Δ))2 + (max(0, di − Δ))2

≥
(

1
4

− o(1)
) �∑

i=1

d2
i .

Comparing the above inequality with Inequalities (3) and (5), we obtain cr(G) ≥
( 1
64 − o(1))

∑�
i=1 d2

i . �

We can now prove Theorem 1 in general. Order the vertices v1, v2 . . . vn of G
such that their degree sequence d1, d2, . . . , dn monotone increases. Let � be the
integer such that

∑�−1
i=1 di < 4m

3 but
∑�

i=1 di ≥ 4m
3 . Consider the graph G0

induced by the vertices v1, v2, . . . , v�. Notice that G0 has at least m
3 edges. We

choose a family C of edge-disjoint cycles of length at most 4
ε from G0 so that at

least half of the edges of G0 are covered by cycles of C. Let G′ be a subgraph
of G formed by deleting an edge ej from each cycle Cj ∈ C. We have deleted at
least 1

2 · ε
4 · m

3 = ε
24m edges. Let m′ be the number of edges of G′ and d′i be the

degree of vi in G′. We have d′i ≤ di for 1 ≤ i ≤ � and d′i = di for i > �. It follows
that

∑�−1
i=1 d′i < 4m′

3 . By Lemma 4, we have cr(G′) ≥
( 1

64 − o(1)
) ∑�

i=1 d′2i . If we
apply the embedding method to draw graph G based on the drawing of G′ with
cr(G′) crossings and drawing each ej along Pj , we obtain

cr(G) ≤ 4cr(G′) +
3
8

�∑
i=1

d′2i .

Hence, we have cr(G) ≤ 4cr(G′) + 3
8 (64 + o(1))cr(G′) = (28 + o(1))cr(G′). �
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[PST00] J. Pach, J. Spencer, and G. Tóth: New bounds on crossing numbers, Dis-
crete Comput. Geom. 24 (2000), 623–644.
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