
M. Bubak et al. (Eds.): ICCS 2008, Part III, LNCS 5103, pp. 311–320, 2008.
© Springer-Verlag Berlin Heidelberg 2008

OCL as the Query Language for UML Model Execution*

Piotr Habela3, Krzysztof Kaczmarski3,4, Krzysztof Stencel2,3, and Kazimierz Subieta1,3

1 Institute of Computer Sciences of the Polish Academy of Sciences, Warsaw, Poland
2 Institute of Informatics, Warsaw University, Warsaw, Poland

3 Polish-Japanese Institute of Information Technology, Warsaw, Poland
4 Faculty of Mathematics and Information Science, Warsaw University of Technology,

Warsaw, Poland
{habela,stencel,subieta}@pjwstk.edu.pl,

k.kaczmarski@mini.pw.edu.pl

Abstract. Despite the specification of OCL mentions “query language” as one
of its possible applications, there are rather few efforts in that direction. How-
ever, the problem becomes central where applying MDA to data intensive ap-
plication modelling is considered. Recently added UML elements of Actions
and Structured Activities make it possible to represent a level of detail similar
to the one of common programming languages, but data processing requires
adequate querying capability as well. As the OMG specification of the UML
family, the Object Constraint Language becomes the most obvious candidate to
serve this purpose. In this paper we research this role of OCL. Especially, we
address the issues of seamless integration with UML metamodel and the useful
features of query languages that are missing from OCL.

Keywords: OCL, query language, MDA, UML.

1 Introduction

The approach of model-driven software development and the MDA initiative in par-
ticular, sketch the vision of the next big step in raising the level of abstraction and
flexibility of programming tools. While any method which focuses on modelling
activities can be considered “model-driven”, the key expectation behind MDA is
achieving a productivity gain through the automating software construction based on
models. This results in a significant shift of expectations regarding modelling con-
structs – from being merely a semi-formal mean for outlining and communicating
project ideas, to machine-readable specification demanding precise semantics. Thus
MDA creates a spectrum of model applications. In this paper we focus on one of
them, namely executable models. If models are to be executable, precise semantics is
inevitable. Furthermore, executable models could blur the distinction between model-
ling and programming, since they would facilitate automatic production of executable
code.

* Supported by the EC 6-th FP, Project VIDE, IST 033606 STP.

312 P. Habela et al.

In our approach to this problem we strive to combine available standards in order
to ease the adoption of the developed solution. If most things to be learned by a pro-
spective user are relatively well-known (which should concern OO standards), the
user will be more eager to accept and employ such a solution. In our opinion UML
Structures unit seems to be rich and versatile enough to be considered as a foundation
for a data model used in the platform-independent development. A number of seman-
tic details need to be clarified to achieve that aim though. To make the model com-
plete, the means of imperative programming need to be available at the PIM level. To
raise the intuitiveness and productivity compared to the mainstream platform-specific
technologies, the statements and queries should be integrated into a single language in
a truly seamless way. We will also provide an execution engine for PIMs as a refer-
ence implementation. It is essential as a modelling tool component serving for plat-
form-neutral model validation.

Within the VIDE project [14], as a part of visual development toolset we have de-
veloped VIDE-L, which stands for VIDE language. VIDE-L is a textual language for
PIM level representation of behaviour in terms of UML Actions and Activities with
the Object Constraint Language (OCL) as an expression/query language. Most appli-
cations developed nowadays are database applications in the sense that their function-
ality highly depends on persistent and shared business data. On the PIM level we have
a chance to avoid the impedance mismatch and provide a query language seamlessly
integrated with the host language. We have chosen to use OCL as this query lan-
guage, since its specification claims that it is suitable for this purpose. In this paper
we will describe our reference implementation of OCL as a database query language
and a textual language for UML Actions and Activities as the host language. This
reference implementation of VIDE-L is based on the Stack-Based Approach to query
languages [8−10]. We use its query language (SBQL) as the assembly language un-
derlying OCL executions. OCL queries are mapped onto SBQL queries which are
eventually executed. SBA/SBQL is a well-elaborated execution framework with very
general data store model, strong typing [11] and query optimisation [12],[13]. This
solves the issue of type checking and optimisation of OCL queries. Those features
also prove that the idea of the language is realistic in terms of the requirements the
code generated from it needs to meet at the execution platforms. As a small off-topic
remark we note that SBA has also a powerful updateable view mechanism, which
makes OCL views stand just behind the corner.

The rest of the paper is organized as follows. In Sec. 2 ODRA DBMS is presented.
Sec. 3 and Sec. 4 describe the problems solved during the implementation of OCL.
Sec. 5 gives some examples of using OCL in method bodies, ad-hoc queries and pro-
grams. Sec. 6 outlines open details and some of standards’ refinements needed. Sec. 7
shows related works while Sec. 8 concludes.

2 ODRA DBMS

ODRA (Object Database for Rapid Application development) is a database manage-
ment system which implements SBA and OCL on top of it. Users can post queries

 OCL as the Query Language for UML Model Execution 313

either in SBQL or OCL. SBQL is treated as the assembly language, so OCL queries
are compiled to and executed as SBQL queries. If the client query is formulated in
OCL, it will be mapped onto SBQL during parsing. OCL-SBQL mapper is a com-
ponent of the ODRA parser. Since SBQL is very powerful, there is no limitation on
query languages which can be implemented this way. Soon, we plan to add to
ODRA mapper components for other query languages: XQuery and RDQL. ODRA
implements type checking and query optimization. Mapping any query language
onto SBQL makes it possible to employ its optimization and strong typing
capabilities. After mapping onto SBQL the query is type checked, and optimized by
rewriting (also view expansion if possible) and exploitation of indices. Then it gets
compiled to bytecode. The compiled query is then executed by the bytecode
interpreter.

3 OCL Grammar Disambiguation

The main problem with the implementation of OCL was implied by its ambiguous
syntax. The specification [3] contains the whole chapter titled Concrete syntax. Un-
fortunately this syntax is (probably intentionally) ambiguous. Let us take a look at the
following obvious example fragments of rules taken from the specification:

OclExpressionCS ::= PropertyCallExpCS
OclExpressionCS ::= VariableExpCS
…
PropertyCallExpCS ::= ModelPropertyCallExpCS
…
ModelPropertyCallExpCS ::= AttributeCallExpCS
…
AttributeCallExpCS ::= simpleNameCS isMarkedPreCS?
…
VariableExpCS ::= simpleNameCS

If the parser has to analyze an OclExpressionCS and sees an identifier token (i.e.
simpleNameCS in the terminology of OCL) on the input, it cannot make a choice
which rule to reduce. Among the rules shown above it could be VariableExpCS
or PropertyCallExpCS. However, there are a lot of other possibilities in the
grammar for syntactical analysis of an identifier. . It is a well known fact, that the
OCL grammar as defined in the language specification is ambiguous [15]. The speci-
fication uses contextual information, which is not available during a purely syntax
based analysis (such as parsing).

Since ODRA DBMS is written in Java, we have chosen Cup from many available
LALR(1) parser generators. When run for the first time on the OCL grammar, Cup
reported 104 shift/reduce conflicts and 164 reduce/reduce conflicts. Moreover, 23
rules were never reduced, mainly due to conflicts. We strived to disambiguate this
grammar and eventually succeeded. Most of the branches of OclExpressionCS
had to be deleted or factored upwards to the rule for OclExpressionCS. We
faced the last mile problem. 20% of the effort was devoted to the first 80% conflicts,
but 80% of the effort was devoted to the last 20% conflicts. The less the number of

314 P. Habela et al.

conflicts was, the harder was to remove of remaining conflicts. We managed to retain
the weirdest part of the syntax, i.e. Smalltalk-like prefix and infix method calls:

OperationCallExpCS ::=
OclExpressionCS simpleNameCS OclExpressionCS

…
OperationCallExpCS ::= simpleNameCS OclExpressionCS

The question is why the specification [3] calls it a concrete syntax, if it is not suitable
for parsing? This rather defines an abstract syntax. The so called ‘disambiguating
rules’ require the parser to consult some meta information in a database. This is not
the way how generated LALR(1) parser make their choices.

4 Improvements Towards Data Intensive Operations

First of all, we have to agree with [18] that OCL’s syntax is not the best for database
programmers. It is not intuitive, too complicated and too elaborate. However, for the
reasons mentioned in the introduction we follow the standard.

We are also conscious that database community would welcome modification of
several operations. One of them would be a Cartesian product operator, which is too
limited in its abilities. Another candidate for extension would be introduction of a
transitive closure operation, which is as important for modern databases as recursion
for programming languages. Its lack, even if justified in OCL, certainly limits queries
possible to be expressed.

For basic consistency with database systems we added some features, which are
not modifying the language syntax and would be obvious for any programmer. OCL
defines only two aggregation functions: size and sum. Using them we can compute
the number of employees of a department or the total salary in a department, e.g.:

Dept->allInstances()->select(name=’toys’).employs
 ->size()

Dept->allInstances()
 ->select(name=’toys’).employs.salary->sum()

We added min, max and avg aggregation, so that more statistics can be computed:

Dept->allInstances()
 ->select(name=’toys’).employs.salary->avg()

Dept->allInstances()
 ->select(name=’toys’).employs.salary->min()

Dept->allInstances()
 ->select(name=’toys’).employs.salary->max()

The rest of the implementation of OCL was relatively easy, since SBQL (the query
language we mapped OCL onto) is quite powerful compared to OCL. There were
almost no problems in finding this mapping.

 OCL as the Query Language for UML Model Execution 315

Fig. 1. Example database schema

5 Examples

In this section we will show some examples of the code written in VIDE-L (OCL is
seamlessly embedded in VIDE-L). We use the database schema from Fig. 1. The
schema also contains multiple inheritance which is smoothly implemented in ODRA.
VIDE-L with OCL will be used in method bodies and ad-hoc queries.

Let us start from definitions of some methods. Of course we have to augment the
OCL context phrase, since it was not originally intended to define arbitrary method
bodies. We will use the keyword body to indicate that a particular context phrase
introduced a method body. Here are the methods of the class Person (apart from the
method getIncome which will be discussed later):

context Person::getFullName() : String
 body { return fName + ‘ ‘ + lName; }

context Person::adjustAge(amount : Integer)
 body { age += amount; }

context Person::setLastName(newLastName : String)
 body { lName := newLastName; }

The method raiseScholarship is rather straightforward:

context Student::raiseScholarship(amount : Integer) :
Integer body { scholarship += amount;
 return scholarship; }

316 P. Habela et al.

The method raiseSalary is more complex since we have check if a subobject salary
exists, because it is optional. If it does not exist, it must be created and inserted by
appropriate UML Action represented in textual syntax. Note the smooth integration of
the OCL query and VIDE-L.

context Emp::raiseSalary(amount : Integer) : Integer
 body { if (self.salary->size() = 0)
 self.salary insert amount;
 else self.salary := amount;
 return self.salary; }

The getIncome method is overridden in all classes in the hierarchy of class Person:

context Person::getIncome() : Integer
 body { return 0; }

context Student::getIncome() : Integer
 body { return scholarship; }

context Emp:: getIncome() : Integer
 body { return
 if salary->size() = 0 then 0 else salary endif; }

context EmpStudent:: getIncome() : Integer
 body {
 return scholarship
 + if salary->size() = 0 then 0 else salary endif;}

These methods and multiple inheritance are properly handled by the ODRA run-time,
so to compute the total income of all persons in the database we issue the query:

Person->allInstances()->collect(getIncome())->sum()

We can also find the average salary for each department by means of the following
query which reminds a dependent join:

Dept->allInstances()->collect(d |
 Tuple { dept = d,
 totalSal = d.employs.getSalary()->avg() })

Now we will show some examples of ad-hoc imperative statements which can be
executed against such a database. The first one assigns minimal salary in a department
to all employees of this department who do not have established salaries yet:

Emp->allInstances()->select(salary->size()=0) foreach
 { e | e.raiseSalary(e.worksIn.getSalary()->min()); }

The next one moves all employees from the Toys department to the Research depart-
ment. We will show two ways of finding all subject employees. The first one starts
from the Toy department (Dept) and collects all its employees:

Dept->allInstances()->select(name=‘Toys’)
 ->collect(employees) foreach { e |
 e unlink worksIn;
 e link worksIn to Dept->allInstances()
 ->select(name = ‘Research’); }

 OCL as the Query Language for UML Model Execution 317

The second one starts from employees (Emp) and selects those who work in the toy
department. The body of the loop is the same.

Emp->allInstances()->select(worksIn.name = ‘Toys’)
foreach { e |
 e unlink worksIn;
 e link worksIn to
 Dept->allInstances()->select(name = ‘Research’); }

The last example program gives 10% raise to all students which are also employees of
departments located in Warsaw. Note that the selection of departments by location is
slightly more complex because it is a multi-valued attribute.

EmpStudent->allInstances()
 ->select(worksIn.location->exists(l | l = ‘Warsaw’))
foreach { es | es.raiseSalary(es.getSalary * 0.1)); }

As we can see even complex tasks can be solved by relatively simple OCL queries.
Furthermore, imperative constructs of VIDE-L embed OCL queries in a very natural
way. VIDE-L has statements which handle collections (like the foreach statement)
returned by OCL queries. Each expression in this language is a query and vice versa.
The impedance mismatch is mostly eliminated this way.

6 Improving the Integration with the Imperative Part

Despite the obvious benefit of reusing popular specification (that is, OCL) for the
purpose of a model-level query language, a number of issues arise resulting from the
fact this purpose was not fully foreseen at the time OCL was designed. Some of the
problems can be removed by updating UML and OCL specifications to fully integrate
them and to reduce redundancy between UML Actions and OCL expressions. To this
extent the postulates would include:

• Completing the UML expressions metamodel part with the means of accessing
local variables defined by UML – e.g. inside method bodies.

• Reducing the number of UML actions by those that overlap with OCL (various
“read” actions dealing with: properties, variables, extents, links, and self variable).

• Unifying a type system between OCL and UML to assure bidirectional interopera-
bility (so that not only OCL can read any UML-defined features, but also that OCL
expression results can be consumed by UML actions and activities).

To illustrate, how the pragmatic features of the language are dependent on unifying
the types between UML and OCL, consider the case of tuple results. The example
below illustrates, how the style of coding changes (for a pure query method), depend-
ing whether the tuple results are allowed for UML methods.

The example (see Fig. 2 for its schema) assumes producing a nested data structure
retrieved from objects of several different classes. This may be needed for construct-
ing report or e.g. for feeding a GUI forms. The first version (getOrderDetailsObjects
operation) uses objects being created inside a method. The second version (getOr-
derDetailsTuples) attempts to take full advantage of the OCL, and hence is imple-
mented by a single OCL expression.

318 P. Habela et al.

Although, due to the way UML class diagrams can describe nested structures, the
both approaches are similarly complex in terms of their static model, the difference of
method behaviour code is significant.

Consider the first variant that assumes that Tuple types are supported only inside
OCL expressions and (accordingly to straightforward understanding of UML Actions
validity constraints) each assignment deals with a single value.

ShopModule.getOrderDetailsObjects(in cName : String) :
OrderDetailsClass [0..*] {
 oList : Bag [0..*] (OrderDetailsClass);
 order->select(customer.name=cName) foreach { o |
 oDetail : OrderDetails =
 OrderDetailsClass create { id := o.ID;
 custName := o.customer.name;
 comments := o.comments };
 o.items foreach oDetail.item insert
 ItemInfoClass create { prodName := product.name;
 prodQuantity := quantity};
 oList insert oDetail; }
 return oList;}

Now we can compare it with the variant in which tuples are allowed to be used in
operation result declarations.

ShopModule.getOrderDetailsTuples(in cName : String) :
OrderDetailsTuple [0..*] {
 return order->select(customer.name=cName)
 ->collect(o | Tuple { id = o.ID,
 custName = o.customer.name, comments = o.comments,
 item = o.item->collect(Tuple { prodName =
 product.name, prodQuantity = quantity}) }); }

Fig. 2. Exemplary schema involving tuple results

 OCL as the Query Language for UML Model Execution 319

As can be seen, allowing the use of Tuple types in method signatures can spare us a
number of statements. In this particular example, two variable declarations, two
foreach loops (realized by UML’s ExpansionRegion construct), two object creation
actions and several respective assignment actions are avoided.

7 Related Work

Although our VIDE-L seems to be the first application of OCL as a database query
language, there were other OCL based tools which should be mentioned. Most of
them implemented OCL in version 1.4 or 1.5. We know of only two that are compli-
ant with the latest specification. Dresden OCL Toolkit [16] provides an OCL 2.0
parser and interpreter but is a metamodel based solution. It provides an API to define
and execute constraints of UML models in version 1.5. It is not intended to be a data-
base query engine, thus it does not provide any kind of optimizations and it does not
define any database specific operators. Another implementation of OCL is MDT-OCL
(Eclipse Model Development Tools) plug-in [17]. It provides a single metamodel
integrated from UML 2.1 and OCL 2.0 plus OCL parser and interpreter. Its main
purpose is to evaluate UML model constraints, thus to work on M2 meta-level, but
may also be used to query data stored as a model instance. It is probably one of the
best OCL based tools but still cannot be accepted as a database solution.

8 Conclusions

In this paper we described the implementation of OCL as a database query language.
We presented the problems which were solved during this work (especially with am-
biguous grammar) and augments which have been added to OCL so that it could be
called a query language. Our implementation efforts have a wider purpose. OCL was
embedded into a high level programming language VIDE-L. In our opinion this em-
bedding is perfectly smooth and allows formulating even complex queries and pro-
gram quite compactly. This creates a good starting point for further research which
aims at development of modeling tools which follow MDA philosophy of creating
machine-readable executable specifications to be executable on PIM level. Since
these tools will use standards like OCL and UML Actions and Activities, it can be
easier adopted by the community of developers and modellers.

References

1. Object Management Group: Unified Modeling Language: Superstructure version 2.1.1
(February 2007), http://www.omg.org/cgi-bin/doc?formal/2007-02-05

2. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley, Reading (2004)

3. Object Management Group: Object Constraint Language version 2.0 (May 2006),
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

4. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal: Model-Driven Software Development 45(3) (2006)

320 P. Habela et al.

5. Ambler, S.W.: A Roadmap for Agile MDA. Ambysoft (2007), http://www.agilemodeling.
com/essays/agileMDA.htm

6. Thomas, D.A.: MDA: Revenge of the Modelers or UML Utopia? IEEE Software 21(3),
15–17 (2004)

7. Warmer, J., Kleppe, A.: Object Constraint Language, The: Getting Your Models Ready for
MDA. Addison-Wesley, Reading (2003)

8. Subieta, K.: Stack-Based Approach (SBA) and Stack-Based Query Language (SBQL)
(2008),http://www.sbql.pl

9. Subieta, K., Kambayashi, Y., Leszczyłowski, J.: Procedures in Object-Oriented Query
Languages. In: Proc. VLDB Conf., pp. 182–193. Morgan Kaufmann, San Francisco (1995)

10. Subieta, K.: Theory and Construction of Object-Oriented Query Languages. Editors of the
Polish-Japanese Institute of Information Technology (2004) (in polish)

11. Lentner, M., Stencel, K., Subieta, K.: Semi-strong Static Type Checking of Object-
Oriented Query Languages. In: SOFSEM, pp. 399-408 (2006)

12. Płodzień, J., Kraken, A.: Object Query Optimization through Detecting Independent Sub-
queries. Inf. Syst. 25(8), 467–490 (2000)

13. Płodzień, J., Subieta, K.: Query Optimization through Removing Dead Subqueries. In:
Caplinskas, A., Eder, J. (eds.) ADBIS 2001. LNCS, vol. 2151, pp. 27–40. Springer, Hei-
delberg (2001)

14. Visualize all moDel drivEn programming, http://www.vide-ist.eu/
15. Akehurst, D., Patrascoiu, O.: OCL 2.0 - Implementing the Standard for Multiple Metamod-

els. In: Proceedings of the Workshop OCL 2.0 - Industry Standard or Scientific Playground?
November 2, Electronic Notes in Theoretical Computer Science, vol. 102, pp. 21–41 (2004)

16. Dresden OCL Toolkit, http://dresden-ocl.sourceforge.net
17. Model Development Tools OCL, Eclipse Foundation, http://wiki.eclipse.org/MDT
18. Vaziri, M., Jackson, D.: Some Shortcomings of OCL, the Object Constraint Language of

UML. In: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS 34’00), pp. 555–562. IEEE Computer Society, Los Alamitos (2000)

	OCL as the Query Language for UML Model Execution
	Introduction
	ODRA DBMS
	OCL Grammar Disambiguation
	Improvements Towards Data Intensive Operations
	Examples
	Improving the Integration with the Imperative Part
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

