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Abstract. This paper describes how reinforcement learning can be used
to select from a wide variety of preconditioned solvers for sparse linear
systems. This approach provides a simple way to consider complex met-
rics of goodness, and makes it easy to evaluate a wide range of precondi-
tioned solvers. A basic implementation recommends solvers that, when
they converge, generally do so with no more than a 17% overhead in
time over the best solver possible within the test framework. Potential
refinements of, and extensions to, the system are discussed.
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1 Introduction

When using an iterative method to solve a large, sparse, linear system Ax = b,
applying the right preconditioner can mean the difference between computing x
accurately in a reasonable amount of time, and never finding x at all. Unfortu-
nately choosing a preconditioner that improves the speed and accuracy of the
subsequently applied iterative method is rarely simple. Not only is the behavior
of many preconditioners not well understood, but there are a wide variety to
choose from (see, for example, the surveys in [1,2]). In addition, many precondi-
tioners allow the user to set the values of one or more parameters, and certain
combinations of preconditioners can be applied in concert. Finally, there are rel-
atively few studies comparing different preconditioners, and the guidelines that
are provided tend to be general rules-of-thumb.

To provide more useful problem-specific guidelines, recent work explores the
use of machine learning techniques such as decision trees [3], neural networks [4],
and support vector machines [5,6] for recommending preconditioned solvers. This
line of research attempts to create a classifier that uses assorted structural and
numerical features of a matrix in order to recommend a good preconditioned
solver (with parameter settings when appropriate). At a minimum, these tech-
niques recommend a solver that should be likely to converge to the solution
vector. However, each paper also describes assorted extensions: [3] attempts to
recommend a preconditioned solver that converges within some user-defined pa-
rameter of optimal, [5] attempts to give insight into why certain solvers fail,
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and [4] considers different use scenarios. In addition, [7] tries to predict the ef-
ficiency of a solver in terms of its time and memory usage, and [3] describes
a general framework within which many machine learning approaches could be
used. Other work explores statistics-based data mining techniques [8].

A drawback of the existing work is its dependence on supervised learning tech-
niques. In other words, to train the classifier they need access to a large body of
data consisting not only of matrix features, but also information on how different
preconditioned solvers perform on each matrix. If the goal is predicting conver-
gence, the database needs to keep track of whether a particular preconditioned
solver with particular parameter settings converges for each matrix. However, if
time to convergence is also of interest, the database must have consistent timing
information. Furthermore, there must be an adequate number of test cases to
allow for accurate training. These requirements may become problematic if such
techniques are to be the basis of long term solutions.

An appealing alternative is reinforcement learning, which differs from previ-
ously applied machine learning techniques in several critical ways. First, it is
unsupervised which means the training phase attempts to learn the best answers
without being told what they are. This makes it easier to consider a large variety
of preconditioned solvers since no large collection of data gathered by running
examples is necessary for training the system. Second, it allows the user to define
a continuous reward function which it then tries to maximize. This provides a
natural way to introduce metrics of goodness that might, for example, depend
on running time rather than just trying to predict convergence. Third, rein-
forcement learning can be used to actually solve linear systems rather than just
recommending a solver.

After describing how reinforcement learning can be applied to the problem
of choosing between preconditioned solvers, results of experiments using a basic
implementation are discussed. Extensions and refinements which may improve
the accuracy and utility of the implementation are also presented.

2 Using Reinforcement Learning

Reinforcement learning is a machine learning technique that tries to gather
knowledge through undirected experimentation, rather than being trained on
a specially-crafted body of existing knowledge [9]. This section describes how it
can be applied to the problem of selecting a preconditioned iterative solver.

Applying reinforcement learning to a problem requires specifying a set of
allowable actions, a reward (or cost) associated with each action, and a state
representation. An agent then interacts with the environment by selecting an
option from the allowable actions, and keeps track of the environment by main-
taining an internal state. In response to the actions taken, the environment gives
a numerical reward to the agent and may change in a way that the agent can
observe by updating its state. As the agent moves within the environment, the
agent attempts to assign a value to actions taken while in each state. This value
is what the agent ultimately wishes to maximize, so computing an accurate
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action-value function is the agent’s most important goal. Note that the reward
from taking an action in a state is different from its value: the former reflects the
immediate benefit of taking that single action whereas the latter is a long-term
estimate of the total rewards the agent will receive in the future as a result of
taking that action.

The agent learns the action-value function through a training process con-
sisting of some number of episodes. In each episode, the agent begins at some
possible starting point. Without any prior experiences to guide it, the agent
proceeds by performing random actions and observing the reward it receives
after taking such actions. After performing many actions over several episodes,
the agent eventually associates a value with every pair of states and actions. As
training continues, these values are refined as the agent chooses actions unlike
those it has taken previously. Eventually the agent will be able to predict the
value of taking each action in any given state.

At the end of the training the agent has learned a function that gives the best
action to take in any given state. When the trained system is given a matrix to
solve, it selects actions according to this function until it reaches a solution.

2.1 Application to Solving Sparse Linear Systems

Reinforcement learning can be applied to the problem of solving sparse linear
systems by breaking down the solve process into a series of actions, specifying
the options within each action, and defining the allowable transitions between
actions. Fig. 1 shows an example which emphasizes the flexibility of the frame-
work. For example, the two actions labelled “scale” and “reorder,” with transi-
tions allowed in either direction between them, can capture the following (not
unusual) sequence of actions: equilibrate the matrix, permute large entries to
the diagonal, scale the matrix to give diagonal entries magnitude 1, apply a
fill-reducing order. The implementation simply needs to allow all those matrix
manipulations as options within the “scale” and “reorder” actions. Similarly,
the single “apply iterative solver” step could include all the different iterative
methods described in [10] as options. And every action can be made optional by
including the possibility of doing nothing. Of course, increasing the flexibility in
the initial specification is likely to increase the cost of training the system.

The state can be captured as a combination of where the agent is in the
flowchart and assorted matrix features. These features should be cheap to com-
pute and complete enough to represent the evolution of the matrix as it under-
goes assorted actions. For example, features might include the matrix bandwidth
or a matrix norm: the former is likely to change after reordering and the latter
after scaling.

While the framework in Fig. 1 does allow for unnecessary redundant actions
such as computing and applying the same fill-reducing heuristic twice, a well-
chosen reward function will bias the system against such repetition. For exam-
ple, a natural way to define the reward function is to use the time elapsed in
computing each step. This not only allows the algorithm to see the immediate,
short-term effects of the actions it plans to take, but also allows it to estimate
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Fig. 1. One set of actions that could be used to describe a wide variety of solvers for
sparse linear systems

the remaining time that will be required once that action is completed. In other
words, the algorithm should be able to learn that taking a time-consuming ac-
tion (e.g., computing a very accurate preconditioner) could be a good idea if it
puts the matrix into a state that it knows to be very easy to solve. Notice that
this means the framework gracefully allows for a direct solver (essentially a very
accurate, but expensive to compute, preconditioner). In addition, if there are ac-
tions that result in failures from which there is no natural way to recover, those
could be considered to result in essentially an infinite amount of time elapsing.
If later a technique for recovery is developed, it can be incorporated ino the
framework by adding to the flowchart.

Training the system consists of giving it a set of matrices to solve. Since the
system must explore the space of possibilities and uses some randomness to do
so, it should attempt to solve each matrix in the training set several times.

2.2 Implementation Details

The general framework for applying reinforcement learning to this problem is
described above; important details that are specific to the implementation dis-
cussed in this paper are presented here.

First, the set of steps and allowable actions are restricted to those shown in
Fig. 2. There are fewer actions than in Fig. 1, and the options within each action
are restricted to the following:

– Equilibrate: The matrix can be initially equilibrated, or left alone.
– Reorder: The rows and columns of the matrix can be left unpermuted (nat-

ural), or one or the other could be reordered using a permutation computed
using: MC64 [11,12], Reverse Cuthill-McKee [13], or COLAMD [14,15].

– Precondition: The preconditioner is restricted to the ILUTP Mem [16]
variant of incomplete LU, with one of 72 combinations of parameter settings:
lfil between 0 and 5 inclusive, a droptol of 0, .001, .01, or .1, and a pivtol
of 0, .1, or 1.

– Solve: The iterative solver is restricted to GMRES(50) [17] with a maximum
of 500 iterations and a relative residual of 1e − 8.

The reinforcement learning framework allows for many more combinations of
preconditioners than earlier studies which also restrict the solver to restarted
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Fig. 2. Possible transitions between steps and their associated actions

GMRES and/or the preconditioner to a variant of ILU [4,5,6,7,18]. Observe, for
example, that equilibration is now optional. Hence a total of 576 preconditioned
solvers are described by the above framework; this is notably more than used to
evaluate systems based on other machine learning techniques [3,4,5]. A system
for automatically selecting from amongst so many options is particularly valuable
given previous work that shows the difficulty of presenting information accurately
comparing different preconditioned solvers across a range of metrics [19].

Note that because the state keeps track of where the program is in the
flowchart, the system can restart the entire preconditioned solve if and only
if the incomplete factorization breaks down or if GMRES fails to converge. As a
result, the final system will be more robust since it can try different approaches
if the first fails. While such step-based restrictions are not strictly necessary, in-
corporating domain knowledge by requiring the agent to perform computations
in a logical order should reduce the training time and improve the accuracy of
the trained system.

The state also keeps track of 32 structural and numerical features derived
from the matrix itself. These are the same features as those used in [4], which
are a subset of those used in [3,18]. Since each action changed the values of some
of the features, this allowed the agent to observe the changes it made to the
matrix during the computation and to react to those changes.

Finally, since the overall goal is minimizing the total time required to solve the
matrices in the training set, the reward function used is the negative of the time
required to complete that step. To bias the system against actions which are very
fast but do not lead to a successful solve, the agent receives an additional reward
(penalty) if GMRES fails to converge or if the ILU preconditioner cannot be com-
puted. Without this safeguard, the agent might repeatedly take an action that
cannot succeed and thus make no progress in learning the action-value function.
The action-value function is initialized to 0, even though all true action values
are negative. This is the “optimistic initial values” heuristic described in [9] that
has the beneficial effect of encouraging exploration during early iterations of the
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algorithm. Since the agent is effectively expecting a reward of 0 for each action,
it will be continually “disappointed” with each action it takes after receiving a
negative reward, and will thus be encouraged to experiment with a wide range
of actions before eventually learning that they will all give negative rewards.

The high-level reinforcement learning algorithm was implemented in C++,
with C and Fortran 77 used for the matrix operations. The code was compiled
using g++, gcc, and g77 using the -O2 and -pthread compiler flags. The testing,
training, and exhaustive solves were run on a pair of Mac Pro computers each
running Ubuntu with 2 GB of RAM and four 2.66 GHz processors.

3 Experimental Results

The system described above was tested on a pool of 664 matrices selected from
the University of Florida sparse matrix collection [20]. So that the results could
be compared against the best results possible, all 576 preconditioned solvers
allowed for by Fig. 2 were run on each matrix. However, due to time constraints,
only 608 of the 664 matrices completed all 576 runs. Fig. 3 plots the number of
matrices (out of 608) that converged for a given number of runs; note that each
bar represents a decile. Every matrix converged for at least one setting, and
7 converged for all settings. Overall, 42% of the tested preconditioned solvers
converged. For each matrix the fastest time taken to solve it was also saved so
that the results using the trained system could be compared to it.

Fig. 3. Convergence results from testing all 576 possible preconditioned solvers on
608 of the matrices in the test suite. The y-axis gives the number of matrices which
converged for some number of the solvers, the x-axis partitions 576 into deciles.

3.1 Methodology

The following protocol for training and testing was repeated 10 times.
The system was trained on 10% of the matrices, chosen at random, by solving

each of those matrices 40 times. Since the framework restarts if the ILU fac-
torization fails or GMRES does not converge, potentially many more than 40
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attempts were made. As demonstrated in Fig. 3, every matrix can be solved by
at least one solver so eventually repeated restarts should result in finding the
solution.

After the training phase, the algorithm was tested on two sets of matrices.
The first was equivalent to the training set; the second contained all 664 ma-
trices. From each testing set the number of matrices successfully solved on the
algorithm’s first attempt (without a restart on failure) was calculated. Next, the
ratio of the time taken to solve the matrix was divided by the fastest time possi-
ble within the framework described in Section 2.2. If the reinforcement learning
algorithm did a good job of learning, this ratio should be close to 1. If it equals
1 then the algorithm learned to solve every matrix in the best possible way.

3.2 Results

Table 1 gives both the percentages of matrices that the system successfully solves
on its first try and the time it took to solve them. These numbers are given both
when the algorithm is tested on matrices in its training set and when it is tested
on a more diverse set of matrices.

Table 1. Percent of systems successfully solved, and the median ratio of the time
taken to solve those systems vs. the fastest solver possible, both when the testing and
training sets are equivalent and when the testing set is larger and more diverse

testing = training testing = all matrices
percent solved 81.8% 56.4%
ratio of time 1.14 1.16

As expected, convergence results are best when the training and testing set are
identical, with a success rate of 81.8%. When tested on the entire set of matrices,
56.4% of matrices were successfully solved (note that both of these percentages
should go up if restarts are allowed). As was done for Fig. 3, Fig. 4 plots the
number of matrices that were successfully solved in a given number of trials.
Note that there were 10 trials overall and that, on average, a matrix should only
be in the training set once. Comparing Fig. 4 to Fig. 3, observe that matrices
were more likely to be solved in a greater percentage of cases, and that a larger
number of cases converged overall (56% vs 42%). This indicates that the system
has learned an action-value function that appropriately penalizes preconditioned
solvers which cannot solve a system.

Since the time taken to solve each matrix must be compared to the optimal
time (as computed through exhaustive search), the second row in Table 1 takes
the ratio of solved time to best possible time and gives the median of those ratios.
Note that this ratio could only be computed for the 608 matrices on which the
full set of exhaustive runs was completed. While the results were slightly better
when the training and testing sets were equivalent, overall half the matrices
that were solved were done so with no more than 16% overhead over the fastest
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Fig. 4. The number of matrices which were correctly solved on the first try for a given
number of trials (out of 10)

solution possible regardless of whether the matrix was in the testing set as well
as the training set.

4 Discussion

This paper describes a framework for using reinforcement learning to solve sparse
linear systems. This framework differs from that of previous sytems based on
other machine learning techniques because it can easily factor running time into
the recommendation, it makes it practical to consider a far larger number of
potential preconditioned solvers, and it actually solves the system. In addition,
the framework is extensible in the sense that it is simple to add new operations
such as a novel iterative solver or a new choice of preconditioner.

An initial implementation that focussed on solving systems using ILU precon-
ditioned GMRES is described. And while the convergence results presented in
Section 3 are not as good as those in papers such as [4], the problem being solved
here is more complex: rather than predicting if any of a set of preconstructed
solvers would be likely to solve a particular matrix, this architecture creates its
own solver as an arbitrary combination of lower level operations. Furthermore,
the results are based on the system’s first attempt at solving a problem — there
was no possibility of a restart on failure since, without learning (which injects
some randomness) in the final trained system, a restart without some matrix
modification would result in the same failure. Note that either incorporating
randomness (say by enabling learning) and allowing a restart after any kind of
failure, or trying something more complex such as adding αI to A [21] upon
a failure to compute the ILU preconditioner, should improve the convergence
results. Of course, restarts would take time, so the ratio of time solved to best
possible time would increase.

The fact that the code had trouble solving general-case matrices when the
testing set is much more diverse than the training set suggests that the algo-
rithm may not be generalizing sufficiently. This is a known issue in reinforcement
learning (and all other machine learning techniques), and there are standard
ways to attempt to improve this. Possibilities include a more sophisticated state
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encoding (e.g., Kanerva Coding [22]), or reducing the set of matrix features used
to define the state to those that are particularly meaningful (work on deter-
mining these features is currently underway). As with other machine learning
techniques, there are also many opportunities to find better constants in the
implementation. For the tested implementation values for parameters such as
the number of training episodes, the learning rate, the eligibility trace decay, the
size of tiles, and the number of tilings were chosen based on general principles
and were experimented with only slightly.

An intruiging direction for future work is exploring alternative reward func-
tions. Even within the current implementation a modified reward function that,
say, punished failure more might improve the behavior of the trained system.
But, in addition, the reward function could be modified to use any metric of
goodness. For example, a function that depended on a combination of space and
time usage could be used to build a recommendation system that would take
into account both. And, in fact, one could imagine a personalized system for
solving sparse linear systems that allows users to define a reward function which
depends on the relative utilities they assign to a wide variety of resources.
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