
Automatic Verification of
Strongly Dynamic Software Systems

N. Dor1,�, J. Field2, D. Gopan3, T. Lev-Ami4, A. Loginov2,��, R. Manevich4,
G. Ramalingam5,���, T. Reps3, N. Rinetzky4, M. Sagiv4, R. Wilhelm6,

E. Yahav2, and G. Yorsh4

1 Panaya Ltd.
nurit@panayainc.com

2 IBM Research
{jfield,alexey,eyahav}@us.ibm.com

3 University of Wisconsin
{alexey,gopan,reps}@cs.wisc.edu

4 Tel Aviv University
{tla,rumster,maon,msagiv,gretay}@tau.ac.il

5 Microsoft Research
grama@microsoft.com

6 Universität des Saarlandes
wilhelm@cs.uni-sb.de

Abstract. Strongly dynamic software systems are difficult to verify. By
strongly dynamic, we mean that the actors in such systems change dy-
namically, that the resources used by such systems are dynamically al-
located and deallocated, and that for both sets, no bounds are statically
known. In this position paper, we describe the progress we have made
in automated verification of strongly dynamic systems using abstract in-
terpretation with three-valued logical structures. We then enumerate a
number of challenges that must be tackled in order for such techniques
to be widely adopted.

1 The Problem

We will use the term strongly dynamic system to refer to software in which the set
of actors in the system changes dynamically, where resources are dynamically
allocated and deallocated, and where for both sets no bounds are statically
known.

Heap allocation of data structures, which is the principal mechanism for cre-
ating structured data in modern languages, is the classical manifestation of a
strongly dynamic system. It is well known that manipulating heap-allocated
data is error-prone, due primarily to the complexity of potential aliasing rela-
tionships among pointer-valued data. However, dynamic resource manipulation

� Work done while the author was at Tel Aviv University.
�� Work done while the author was at the University of Wisconsin.

��� Work done while the author was at IBM Research.

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 82–92, 2008.
c© IFIP International Federation for Information Processing 2008

Automatic Verification of Strongly Dynamic Software Systems 83

occurs at many levels in modern software; such dynamic resources may include,
e.g., persistent data in databases, language-level threads, operating system re-
sources such as files and sockets, and web sessions.

Formally, the state of strongly dynamic systems may be viewed as a evolving
universe of entities over which the program operates. Due to its evolving char-
acter, such universes are difficult to reason about, both for programmers and for
automated reasoning tools. This in turn makes automated verification for such
programs both important and challenging.

While automatic memory allocation and garbage collection in modern pro-
gramming languages has eased the burden of correctly managing the lifetime of
heap-allocated memory, reasoning about the states of an unbounded number of
heap-allocated objects and their interrelationships remains a difficult challenge.

Frequently, strongly dynamic systems are encapsulated in abstract data types
that restrict direct access to the underlying evolving universe, and hence allow
the programmer to reason only about the data type’s interface. In such cases,
the principal verification challenge is to ensure that the implementation of the
data type correctly realizes the desired abstract properties.

However, in the case of scarce high-level system resources, such as processes,
sessions, and buffers, programmers do not have the luxury of automatic resource
management or abstract data type encapsulation; instead, they must reason
directly about resource state and resource lifetime. Verifying the correct usage
of such resources is therefore particularly challenging.

Finally, concurrency and distribution drastically complicates the problem of
program verification, since both the data and control structures of the program
operate over unbounded universes.

This position paper sketches the state of art in automatic verification of prop-
erties of strongly dynamic systems using abstract interpretation [6] with three-
valued logical structures.

1.1 Program Properties

Our focus is on verifying that programs satisfy certain specific (but not fixed)
safety and liveness properties, such as those illustrated below, as opposed to
establishing complete correctness of a program (with respect to its complete
specification). The progress made in selective “property verification” in recent
years makes us cautiously optimistic about its long-term prospects. It poses
several challenging research problems, but promises to play an important and
relevant role in industrial software-development practice within a reasonable
time frame. We are in general interested in the following safety properties:

Memory Cleanness. In this case, we wish to prove that a program does not per-
form pointer manipulations that have unpredictable effects. We call these clean-
ness properties, since they are generic to a given programming model, rather
than application-specific (although frequently, in order to show cleanness, it is
necessary to prove stronger properties as well). For sequential C-like programs,
such properties include: (i) absence of null dereferences, (ii) absence of memory

84 N. Dor et al.

leaks, and (iii) absence of double deallocations. The failure of these properties
is frequently exploited by hackers, see, e.g., [26].

The use of garbage collection in modern languages eliminates some of the
problems that occur when programmers manage memory allocation and deallo-
cation manually. However, garbage collection does not eliminate the possibility
of premature resource depletion due to delayed deallocation.

Similar resource-management problems are possible with other kinds of re-
sources; e.g., database connections, buffers, files, and sockets. In our experience,
many serious problems in large applications arise from resources that are freed
too late.

Establishing Data-Structure Invariants. Data structures built using pointers can
be characterized by invariants describing their “shape” at stable states, i.e.,
between operations defined by their external interfaces. These invariants are
usually not preserved by the execution of individual program statements, and
it is challenging to prove that data-structure invariants are reestablished after a
sequence of statements executes [15].

Conformance of Library Specifications. In cases where a library’s interface is
accompanied by a formal specification of key assumptions and guarantees, it is
useful to statically verify that a particular client satisfies, or conforms to the in-
terface properties. One can then choose to verify that a library’s implementation
satisfies its interface specification (thus enabling modular reasoning and analy-
sis of full systems), or simply treat the interface specification as presumptively
correct (thus limiting the scope of verification to the client). While significant
progress has been made in client-component conformance verification (e.g., see
[5,8,12,11,2,25,10,7]), doing precise verification that can scale to large and com-
plex programs is challenging.

Concurrency. Concurrent programs introduce a number of challenging verifi-
cation issues, particularly when the number of concurrent threads may be un-
bounded. In this context, data and control are strongly related: thread-scheduling
information may require an understanding of the structure of the heap (e.g.,
the structure of the scheduling queue). Also, heap analysis requires information
about thread scheduling, because multiple threads may be manipulating the heap
simultaneously. In addition to verifying the absence of “generic” concurrency
anomalies, such as races and deadlocks, one often wishes to prove application-
specific properties of concurrent protocols that are required to hold under arbi-
trary thread interleavings.

2 What Has Been Achieved So Far

This section summarizes the progress our group has made on property verifica-
tion using abstract interpretation with three-valued logical structures [30] and
the TVLA system [18], a general-purpose abstract-interpretation engine based
on three-valued logic.

Automatic Verification of Strongly Dynamic Software Systems 85

Abstract interpretation can be used for verification by generating an over-
approximation to the set of states that can arise in any valid program execution;
the property of interest is established if the over-approximation demonstrates
that no undesirable state can be reached. Typically, problems are cast as a set
of equations over a semi-lattice of program properties, and solved by means of
successive approximation, possibly with extrapolation.

In [30], we showed that first-order logic can be viewed as a parametric frame-
work for defining both the semantics of a program and for expressing a variety of
properties to be verified. In this framework, concrete program states are repre-
sented by logical structures. Three-valued logic, which adds an “unknown” value
to the Boolean values of ordinary two-valued logic, is a natural framework for
defining sound, finitary abstractions of two-valued structures for the purpose of
abstract interpretation.

Memory Cleanness. The first application of TVLA was to show memory clean-
ness of C programs [9]. The algorithm is rather precise in the sense that it yields
very few false alarms but it was only applied to small programs.

Interprocedural Analysis. [27] handles procedures by explicitly representing
stacks of activation records as linked lists, allowing rather precise analysis of
recursive procedures. However, it does not scale very well. [17] handles proce-
dures by summarizing their behavior. [28] presents a new concrete semantics
for programs that manipulate heap-allocated storage which only passes “local”
heaps to procedures. A simplified version of this semantics is used in [29] to
perform more modular summarization by only representing reachable parts of
the heap.

Concurrent Java Programs. [33] presents a general framework for proving safety
properties of concurrent Java programs with an unbounded number of objects
and threads. In [36] this approach is applied to verify partial correctness of
concurrent-queue implementations.

Temporal Properties. [35] proposes a general framework for proving temporal
properties of programs by representing program traces as logical structures. A
more efficient technique for proving local temporal properties is presented in [31]
and applied to compile-time garbage collection in JavaCard programs.

Correctness of Sorting Implementations. In [19], TVLA is applied to analyze
programs that sort linked lists. It is shown that the analysis is precise enough
to discover that (correct versions) of bubble-sort and insertion-sort procedures
do, in fact, produce correctly sorted lists as outputs, and that the invariant “is-
sorted” is maintained by list-manipulation operations such as merge. In addition,
it is shown that when the analysis is applied to erroneous versions of bubble-sort
and insertion-sort procedures, it is able to discover the error. In [20], abstraction
refinement is used to automatically derive abstractions that are successfully used
to prove partial correctness of several sorting algorithms. The derived abstrac-
tions are also used to prove that the algorithms possess additional properties,
such as stability and anti-stability.

86 N. Dor et al.

Conformance to API Specifications. [25] shows how to verify that client programs
using a library conform to the library’s API specifications. In particular, an anal-
ysis is provided for verifying the absence of concurrent-modification exceptions
in Java programs that use Java collections and iterators. In [34], separation and
heterogeneous abstraction are used to scale the verification algorithms and to
allow verification of larger programs (several thousands lines of code) that use
libraries such as JDBC.

Computing Intersections of Abstractions. [1] considers the problem of computing
the intersection (meet) of heap abstractions, namely the greatest lower bound of
two sets of 3-valued structures. This problem proves to have many applications
in program analysis such as interpreting program conditions, refining abstract
configurations, reasoning about procedures [17], and proving temporal properties
of heap-manipulating programs, either via greatest-fixed-point approximation
over trace semantics or in a staged manner over the collecting semantics. [1]
describes a constructive formulation of meet that is based on finding certain
relations between abstract heap objects. The enumeration of those relations is
reduced to finding constrained matchings over bipartite graphs.

Efficient Heap Abstractions and Representations. [21] addresses the problem of
space consumption in first-order state representations by describing and eval-
uating two new representation techniques for logical structures. One technique
uses ordered binary decision diagrams (OBDDs); the other uses a variant of a
functional map data structure. The results show that both the OBDD and func-
tional implementations reduce space consumption in TVLA by a factor of 4 to
10 relative to the original TVLA state representation, without compromising
analysis time.

[22] presents a new heap abstraction that works by merging shape descriptors
according to a partial isomorphism similarity criterion, resulting in a partially
disjunctive abstraction. This abstraction provides superior performance com-
pared to the powerset heap abstraction, without any loss of precision, for a suite
of TVLA benchmark verification problems.

[23] provides a family of simple abstractions for potentially cyclic linked lists.
In particular, it provides a relatively efficient predicate abstraction that allows
verification of programs that manipulate potentially cyclic linked lists.

Abstracting Numerical Values. [13] presents a generic solution for combining
abstractions of numeric and heap-allocated storage. This solution has been in-
tegrated into a version of TVLA. In [14], a new abstraction of numeric values
is presented, which like canonical abstraction tracks correlations between ag-
gregates and not just indices. For example, it can identify loops that perform
array-kills (i.e., assign values to a an entire array). This approach has been
generalized to define a family of abstractions (for relations as well as numeric
quantities) that is more precise than pure canonical abstraction and allows the
basic idea from [13] to be applied more widely [16].

Assume-Guarantee Reasoning. One of the potential ways to scale up shape anal-
ysis is by applying it to smaller pieces of code using specifications. [37] presents

Automatic Verification of Strongly Dynamic Software Systems 87

a new algorithm that takes as input a shape descriptor (describing some set of
concrete stores X) and a precondition p, and computes the most-precise shape
descriptor for the stores in X that satisfy p. This combines abstract interpreta-
tion and theorem provers in a novel way. A prototype has been implemented in
TVLA, using the SPASS theorem prover.

Safety Properties of Mobile Ambients. The mobile ambient calculus was intro-
duced in [3]. In [24], TVLA was applied to prove safety properties programs
in the ambient calculus. The main idea is to code the ambient calculus using
two-valued logic, and then use TVLA to obtain a sound over-approximation by
reinterpreting the logical formulas in Kleene’s three-valued logic.

3 Some Remaining Challenges

We have found the framework of abstract interpretation based on three-valued
logic to be remarkably powerful, both in its ability to provide a natural for-
mal framework for reasoning about dynamic resource manipulation, and as a
substrate for developing efficient data structures and algorithms for verification
of such properties. We believe that the formal and practical strengths of this
framework should provide a strong base for further research in verification of
strongly dynamic systems in the future. In this section, we outline some of the
remaining research challenges in this framework.

Scalability and Precision. For most of the properties discussed in prior sections,
automatic verification of a software system of significant size (e.g., web servers,
operating systems, or a compiler) remains infeasible. The main problem is the
scalability of the existing techniques. We believe that we are likely to make
steady advances in the scalability of our techniques by (1) exploiting locality
in abstractions (e.g., for interprocedural analysis), (2) exploiting composition-
ality, i.e., exploiting proven properties of small components or ADTs in verifi-
cation of large systems, (3) dealing with state explosion caused by interleaving
of concurrent threads, and (4) developing improved algorithms for manipulating
first-order structures.

Determining the properties that are relevant to the verification problem and
identifying the objects that need to be reasoned about at any given program
point is key to scalable verification using abstract interpretation. This fundamen-
tal problem of “choosing the right set of abstractions” appears to be shared by
other verification techniques (including deductive approaches) as well. We believe
that machine-learning techniques provide one promising automated approach to
this problem [20]. We are also investigating the use of counterexample-guided
abstraction refinement [4] to address this problem in an automated fashion.

Another approach to effective abstraction selection is to induce programmers
to annotate programs with information about properties or abstractions rele-
vant to the problem at hand. Currently, programmers have little incentive to
add annotations defining properties or abstractions of interest, since the benefit
of doing so using current verification technology is low. However, as the power

88 N. Dor et al.

of verification techniques to perform state-space exploration begins to scale to
programs of realistic size, a cycle of positive reinforcement will arise: program-
mers will be encouraged to annotate their program with properties of utility
to verifiers, because by doing so they will receive accurate and precise feedback
on critical aspects of program correctness, which will in turn make them more
productive programmers. Strong type systems provide a precedent: while pro-
grammers were initially skeptical of the benefits of strong typing, there is now
little disagreement over its value.

Usability. Even in cases where automated verification is sufficiently scalable,
there are a number of usability challenges: (1) For automatic verification to be-
come an accepted part of everyday programming, it must provide useful feedback
as quickly as current compilers generate type errors. (2) In cases where verifi-
cation fails, counterexamples and error explanations must guide programmers
quickly to potential sources of errors. (3) Particularly in safety-critical systems,
the trusted code base used by a verifier must itself be verified.

Hybrid Verification Techniques. Theorem proving techniques, e.g., [11], have
proved extremely useful for verifying properties of programs equipped with user-
specified annotations (e.g., procedure pre- and post-conditions, and loop invari-
ants). The power of such techniques derives from their ability to reason precisely
about large collections of program states using symbolic techniques. However,
such approaches are less successful in the absence of annotations, particularly
when induction is required. Some initial steps have been taken at combining
theorem proving and abstract interpretation (or model checking), e.g., [25]; fur-
ther work aimed at exploiting the complementary strengths of these approaches
seems desirable.

Combined Static and Dynamic Analysis. Although dynamic analysis (i.e., in-
strumentation of code execution to detect anomalies at runtime) cannot by itself
prove a program correct, the results of dynamic analysis could be used to suggest
certain properties, e.g., loop or class invariants, which would then be statically
verified as a component of a larger verification problem.

Restricted Specification Formalisms. While it is tempting to allow program prop-
erties of interest to be specified using highly expressive formalisms such as first-
order logic, by focusing on a more limited set of properties (e.g., typestate prop-
erties [32]), it is possible that more precise and scalable verification techniques
could be developed for this class of properties than would be possible in the
more general setting.

Other Issues. Some of the other challenges in making verification tools useful in-
clude: (1) The need to deal with missing source code (e.g., proprietary libraries)
(2) Analyzing open programs and modeling the environment (3) Verifying dis-
tributed applications.

Automatic Verification of Strongly Dynamic Software Systems 89

References

1. Arnold, G.: Combining heap analyses by intersecting abstractions. Master’s thesis,
Tel Aviv University (October 2004)

2. Ashcraft, K., Engler, D.: Using programmer-written compiler extensions to catch
security holes. In: Proc. IEEE Symp. on Security and Privacy, Oakland, CA (May
2002)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. Computer Aided Verification, pp. 154–169 (2000)

5. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., R.,, Laubach, S., Zheng, H.:
Bandera: Extracting finite-state models from Java source code. In: Proc. Intl. Conf.
on Software Eng, June 2000, pp. 439–448 (2000)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proc. Symp. on Principles of Prog. Languages, pp. 269–282. ACM Press, New
York (1979)

7. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: Proc. Conf. on Prog. Lang. Design and Impl, pp. 57–68 (June
2002)

8. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software. In:
Proc. Conf. on Prog. Lang. Design and Impl. pp. 59–69 (June 2001)

9. Dor, N., Rodeh, M., Sagiv, M.: Checking cleanness in linked lists. In: Proc. Static
Analysis Symp. Springer, Heidelberg (2000)

10. Field, J., Goyal, D., Ramalingam, G., Yahav, E.: Typestate verification: Abstrac-
tion techniques and complexity results. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 439–462. Springer, Heidelberg (2003)

11. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: Proc. Conf. on Prog. Lang. Design and Impl.
Berlin, pp. 234–245 (June 2002)

12. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proc. Conf.
on Prog. Lang. Design and Impl. Berlin, pp. 1–12 (June 2002)

13. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with sum-
marized dimensions. In: Tools and Algs.for the Construct.and Anal.of Syst. pp.
512–529 (2004)

14. Gopan, D., Reps, T., Sagiv, M.: Numeric analysis of array operations. In: Proc.
Symp. on Principles of Prog. Languages (2005)

15. Hoare, C.A.R.: Recursive data structures. Int. J. of Comp. and Inf. Sci. 4(2), 105–
132 (1975)

16. Jeannet, B., Gopan, D., Reps, T.: A relational abstraction for functions. In: To
appear in Proc. 12th Int. Static Analysis Symp. (September 2005) (to appear)

17. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interproce-
dural shape analysis. In: Proc. Static Analysis Symp. Springer, Heidelberg (2004)

18. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In:
Proc. Static Analysis Symp. pp. 280–301 (2000)

19. Lev-Ami, T., Reps, T., Sagiv, M., Wilhelm, R.: Putting static analysis to work for
verification: A case study. In: Int.Symp.on Softw.Testing and Analysis, pp. 26–38
(2000)

20. Loginov, A., Reps, T., Sagiv, M.: Learning abstractions for verifying data-structure
properties. In: Int.Conf.on Computer Aided Verif. (2005)

90 N. Dor et al.

21. Manevich, R., Ramalingam, G., Field, J., Goyal, D., Sagiv, M.: Compactly repre-
senting first-order structures for static analysis. In: Proc. Static Analysis Symp.
pp. 196–212 (2002)

22. Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially disjunctive heap
abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279.
Springer, Heidelberg (2004)

23. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and
canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, Springer, Heidelberg (2005)

24. Nielson, F., Nielson, H.R., Sagiv, M.: A Kleene Analysis of Mobile Ambients. In:
Smolka, G. (ed.) ESOP 2000 and ETAPS 2000. LNCS, vol. 1782, pp. 305–319.
Springer, Heidelberg (2000)

25. Ramalingam, G., Warshavsky, A., Field, J., Goyal, D., Sagiv, M.: Deriving spe-
cialized program analyses for certifying component-client conformance. In: Proc.
Conf. on Prog. Lang. Design and Impl. pp. 83–94 (2002)

26. Reig, F.: Detecting security vulnerabilities in C code with type checking (extended
abstract) (2003), http://www.cs.nott.ac.uk/∼fxr/

27. Rinetskey, N., Sagiv, M.: Interprocedural shape analysis for recursive programs.
In: Wilhelm, R. (ed.) CC 2001 and ETAPS 2001. LNCS, vol. 2027, pp. 133–149.
Springer, Heidelberg (2001)

28. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for pro-
cedure local heaps and its abstractions. In: Proc. Symp. on Principles of Prog.
Languages (2005)

29. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free
programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, Springer,
Heidelberg (2005)

30. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

31. Shaham, R., Yahav, E., Kolodner, E.K., Sagiv, M.: Establishing local temporal
heap safety properties with applications to compile-time memory management. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 483–503. Springer, Heidelberg
(2003)

32. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Trans. Software Eng. 12(1), 157–171 (1986)

33. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued
logic. In: Proc. Symp. on Principles of Prog. Languages, pp. 27–40 (2001)

34. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and het-
erogeneous abstractions. In: Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation, pp. 25–34. ACM Press, New
York (2004), doi:10.1145/996841.996846

35. Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying temporal heap properties
specified via evolution logic. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003.
LNCS, vol. 2618, pp. 204–222. Springer, Heidelberg (2003)

36. Yahav, E., Sagiv, M.: Automatically verifying concurrent queue algorithms. In:
Workshop on Software Model Checking (2003)

37. Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract op-
erations for shape analysis. In: Tools and Algs.for the Construct.and Anal.of Syst.
pp. 530–545 (2004)

http://www.cs.nott.ac.uk/~fxr/

Automatic Verification of Strongly Dynamic Software Systems 91

A Discussion on Thomas Reps’s Presentation

Bertrand Meyer

In your list reversal example: the only way I know to teach this kind of algorithm,
to understand it properly and (as I have tried to do in my own work) to prove
it, is to have a loop invariant that basically says: If you are at a certain point
in the list, halfway through the algorithm, then the first part of the list up to
that point is the corresponding part in the original list, reversed, and the second
part is unchanged from the original. In other words, the mirror image of the first
part concatenated with the second part is, in some precise sense, equivalent to
the original list.

Does this fundamental property of the algorithm follow from your description?
And, if you knew that property, if the programmer had written it in the code,
would it help your analysis at all?

Thomas Reps

The answer to the first part is that if we were trying to prove functional cor-
rectness of the list-reversal program, you would have to introduce not just the
n-relation, but also the n0-relation. You basically want to freeze the initial n-
relation on input in the n0-relation, so that you can make a comparison between
the two. The property that you would want to show at the end of the program is
that, for all pairs of individuals, if they were related by the n0-relation, n0 (v1,
v2), you now have n (v2, v1), i.e., that you have reversed all the links.

If you were to look at the descriptors that appear at, say, the head of the
loop, for each one of those you would see that in the list pointed to by y you
would have that relationship, and in the list pointed to by x you would have
that the n-relation would match the n0-relation - those links were not reversed.
So what you stated as the property can be found by examining the structures
at the head of the loop. But you don’t have to state the property explicitly; it
just comes out of the abstract interpretation.

Bertrand Meyer

It does not help you, if the programmer tells you.

Thomas Reps

Well, since you do not need it, I have not thought about, whether it would help
you. There might be ways of allowing it to help you, but in this case, you do not
need it.

Patrick Cousot

I have a semi-technical question. What is nice with TVLA is that you can find
a good abstraction by experimentation, in fact: by refining the semantics, intro-
ducing relationships, and so on. The inconvenience is that it does not scale up

92 N. Dor et al.

very, very large. But maybe, there is a way. That would be to make this exper-
iment and then to extract the abstraction function automatically. This is given
to people as the specification of the algorithm that they have to write in some
efficient way. You see, you can do the same when you have found the proper
abstraction; you can reprogram it, using very efficient data structures, and so
on. And this could be a way to add efficiency.

Thomas Reps

Well, what we are trying to do is, we are trying to allow the abstractions to
follow the hierarchical decomposition of the program, so that if you prove low-
level things, then you can get some abstract transformer that you can use at
higher level, at higher. Bertrand Jeannet, Mooly, one of my students, and I did
some work that was at SAS 2004 a couple of years ago that aims towards this,
where you end up using the abstract structures themselves as characterizations
of the summary transformers. And once you have that, that allows you to sort of
walk up the levels of the hierarchical decomposition of the software. But, there
is a problem is with nested data structures, so the problem is not solved.

Greg Nelson

[Question not recorded.]

Thomas Reps

If you have a binary search tree, you would be interested in showing that sort-
edness properties are maintained, and we can do that.

Let me also mention another thing that doesn’t involve insertion and deletion,
but it was mentioned yesterday-something about the Deutsch-Schorr-Waite al-
gorithm for traversing a tree without the use of a stack, by temporarily stealing
pointer fields of the tree’s nodes to serve in place of a stack. So we have actually
applied this to Deutsch-Schorr-Waite and shown that the tree that comes in is
reestablished at the end. It took 40 hours of TVLA running time on a 3GHz
machine. And, of course, TVLA itself is part of the trusted computing base, so
I am not sure I trust this answer. But anyway we claim to have been able to
handle Deutsch-Schorr-Waite, and not just to say that it is a tree that goes in
and a tree that comes out, but to say that the tree that comes out is identical
to the tree that went in.

	Automatic Verification of Strongly Dynamic Software Systems
	The Problem
	Program Properties

	What Has Been Achieved So Far
	Some Remaining Challenges
	Discussion on Thomas Reps's Presentation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

