
A Real Time Vision System for Autonomous Systems:
Characterization during a Middle Size Match

H. Silva, J.M. Almeida, L. Lima, A. Martins, and E.P. Silva

LSA - Autonomous System Laboratory
Institute of Engineering of Porto

Rua Dr Antonio Bernardino de Almeida 431 4200-072 Porto, Portugal
+351 22 834 0500 (ext. 1409)

{hsilva,jma,llima,amartins,eaps}@lsa.isep.ipp.pt
http://www.lsa.isep.ipp.pt

Abstract. This paper propose a real-time vision framework for mobile robotics
and describes the current implementation. The pipeline structure further reduces
latency and allows a paralleled hardware implementation. A dedicated hardware
vision sensor was developed in order to take advantage of the proposed architec-
ture. The real-time characteristics and hardware partial implementation, coupled
with low energy consumption address typical autonomous systems applications.
A characterization of the implemented system in the Robocup scenario, during
competition matches, is presented.

1 Introduction

Artificial vision systems are primordial elements in robotics navigation, localization
and perception. This is due, to the their great sensing capabilities and low cost. Further-
more embedded solutions with hardware parallel implementation are starting to surface
allowing to solve one of the key problems in artificial vision, the high computational
resources required.

Considering robotic vision to be a real-time problem, there are certain amount of
functionalities, that the vision system must possess in order to face the highly dynamic
environmental changes and be able to track external moving objects. Namely, all robotic
vision frameworks have to deal with real time aspects and restrictions imposed on the
robot modules. System designers must balance between using time and computational
consuming methods, against more simple methods that allow low energy consumption
and still have a good degree of robustness. Finally all environmental properties must
be perceived, in order to control the vision system and allow the autonomous system to
work.

As a consequence several vision software tend to be application oriented. In order
to prevent this, a conceptual architecture is required. Most state-of-art frameworks for
real time applications are mainly concern with the image processing modules[1][2].
There are other applications like active vision systems mounted in pan-tilt heads [3][4]
or real-time human tracking methods for autonomous mobile robots[5]. Therefore, an
overall real-time framework was developed to cope not only with the need to solve the
image processing modules problems, but also through the use of a paralleled hardware

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 504–511, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Real Time Vision System for Autonomous Systems 505

implementation[6] to be able to handle problems regarding image acquisition, power
consumption and latency between frames.

One of the advantages of an modular framework, is that the different modules can be
replaced or adapted to different applications and to different environmental conditions
(indoor or outdoor, structured or not).

The modules are integrated in a pipeline structure architecture having two streams of
data. One, the main data which concerns only the main modules, and the control data
which connects the main modules with the auxiliary ones and provides the system with
other type of self-adjusting and logging capabilities.

The framework here described was developed using the Robocup Middle Size League
team ISePorto has a benchmark scenario, and has already been integrated in multiples
autonomous vehicles [7][8] in different applications scenarios operating both indoors
and outdoors.

Fig. 1. ISePorto Robot

This paper is structured in the following way. In the ensuing section, we present the
overall architecture of the system followed by a shortened explanation of the architec-
ture modules, there inputs and outputs. In section 3 the hardware embedded solution is
presented and its modules detailed, followed by results of temporal analysis and quality
of measures obtained. These results where obtained using the framework in a Robocup
scenario, some during a real Robocup match. Finally in section 5 a conclusion regarding
the overall system functionalities and future research will be presented.

2 Vision System Architecture

The proposed architecture, see Figure 2, follows an image processing pipeline approach.
Where some of the layers can be hardware or software implemented. The pipeline starts
with the acquisition layer (three left blocks) that takes care of all hardware related and
image acquisition configurations, camera settings and so on.

The system is programmed to acquire frames from different types of devices (em-
bedded, USB). It detects which type of camera is plugged in, and automatically starts to
acquire frames using that device. This layer also contains the color interpolation mod-
ule, whose function is to assigned color information to image pixels. The system can
also integrate, logarithmic scales, IR and monochromatic image types.

506 H. Silva et al.

Fig. 2. Vision System Architecture

The image processing layer is responsible for the refinement and abstraction of the
image data. After all image pixels have been given texture info, they will be segmented
using the selected method. Currently, they are segmented into previously defined color
clusters following a method proposed by[9]. Any other type of segmentation method,
based on regions, histograms, clusters, neural networks, etc, can be used due to system
modularity, by changing the segmentation module. We can for example use an hybrid
approach like[10], that combines image segmentation with extraction of edge topologi-
cal information. Afterwards, the pixels with color information will be compressed using
run length encoding (RLE).

This compression method is used due to is effectiveness in conserving the infor-
mation and reducing data size. Afterwards a run is conducted to look for previously
sanctioned color transitions. When one of this transitions occurs, a color transition is
created and stored. It will have similar information as a normal RLE: image position,
color and number of pixels, but also deals with color transactions uncertainty. These
may occur due to interpolation issues, occlusion or illumination problem.

One of the key points of the method is that the number of RLE transitions are not
directly attached to the number of image pixels, but are attached to the number of image
RLE. In our system is about 1/8 of the total computational cost of the RLE module and
only stores 1/15 of the RLE data. After all types of RLE have been processed, the con-
nected RLE will be grouped into similar color regions (BLOBS). Once all the RLE are
grouped into BLOBS further processing is done in the top architecture layer, the high
level data layer (Object Recognition block). The high level data layer is constituted by
the modules that detect features for the robot localization and navigation sub-systems,
thus closely related with the application. Lower level layers are relatively application
independent and can be used in multiple autonomous scenarios. Image information
at this stage already contains edge and blob identification, allowing particular object
search. Besides the data processing modules, the system also has some auto-calibrations
tools, that are used to help the vision system dealing with environmental changes. In
our system a white balance calibration is done to allow perception of the illumination

A Real Time Vision System for Autonomous Systems 507

changes, some of the segmentation and color interpolation parameters are sent to a cal-
ibration module, that detects color clusters shifting. Statistical analysis on mean value
for color pixels provides information for controlling camera parameters.

The architecture high level modules are being continually improved. Currently high
level stereo is under development, this module will not work at pixel level but will
merge high level objects information provided by the acquisition devices, leading to a
change in some of the higher architecture modules. This method is less time consuming
than merging camera information at pixel level.

3 Hardware Vision Sensor

The hardware embedded sensors are an emergent solution in robotics and autonomous
systems applications. This is due to their hardware reconfiguration capabilities, low cost
implementation, low energy consumption and low hardware concentration.

The vision systems built with reconfigurable and embedded hardware have some
advantages over a standard vision system namely: cost, size, energy, computational
resources and latency. It also possess some disadvantages like: processing capabilities,
development cost and fixed point arithmetic.

These devices are a solution when dealing with hardware costs issues, several solu-
tions exists using CCD and CMOS technologies. This one has the advantage of allow-
ing more sensors addiction and with the use of field programmable gate arrays (FPGA)
achieve low level processing with a low energy cost, taking advantages of the inner
parallel processing architecture of this devices.

Fig. 3. Hardware Image Sensor Architecture

So taking this issues in consideration, the embedded vision sensor BOAVISTA was
developed to free system resources from processing the most heaviest data. In order to
do so, a FPGA platform is used to process the image on the fly from the CMOS sensor.

This sensor allows the implementation of lower architecture levels at a fraction of
power required in standard CPUs by taking advantage of the inherent parallel nature
of image information and architecture pipeline structure. The substantial power reduc-
tion constitutes a fundamental advantage to the use in autonomous systems namely in
Robocup fields technology.

508 H. Silva et al.

It is thus possible to implement advanced sensing capabilities in low power systems
and widen the range and scope of applications. This image processing layer within
the FPGA is divided into different modules, allowing access of the overall system to
different kinds of data. As a result, the vision sensor can provide four types of data: raw
data, RGB mode data, segmented data and RLE data.

In figure 4, an information processing pipeline time diagram description is pre-
sented. A maximum latency of 500 µs is achieved from the initial pixel acquisition
in the CMOS sensor to the processed data reception at the user level application. This
maximum latency includes processing and communication delays (USB bus). The in-
terpolation, segmentation and RLE modules are similar to the software ones, for more
information see[6].

Fig. 4. Time diagram of the Embedded Hardware Vision Sensor

4 Results

The results presented in this paper where taken during a set of live Robocup Matches,
and allows to establish and understand the type of data and resources that are needed
to cope with a Robocup Vision System. This enables the use of this scenario has a
benchmark scenario for other robotics applications.

The first experiment was to monitor the amount of data that each module of the vision
system pipeline would generate during a match and how much time each processing
modules consume. In order to do so we monitored the image processing modules during
a Robocup Match. We can see the time analysis of each module by frame.

Table 1. Image Processing Modules Time Statistics (ms) during a Robocup Match

Image R.(320x240) Seg+RLE Color T Edges Blobs

Mean 6.045 0.345 0.425 0.708
St.deviation 2.032 0.375 0.696 0.979

A Real Time Vision System for Autonomous Systems 509

These experiments were made during a live Robocup Match, with a robot with two
cameras Head and Kick (2.8mm, F1.4,maxvision MVL2810M) both at 320x240 reso-
lution, placed at a vertical height of 60 cm and 50 cm accordingly.

The most time consuming module is the segmentation/RLE module. Which is never
under 5 ms, due to the minimum computational time required to perform segmentation
and run length encoding operations, to an image with a 320x240 resolution in a PIII
1.2Ghz Tualatin.

The other modules, have residual time consuming performances and do not influence
significatively the overall performance of the robot vision system.

The second experiment is intended to characterized the amount of data generated in
each of the processing modules. This tests are important, in order to understand which
parts of the system should or should not be integrated in embedded hardware and what
advantages could come from that migration. This experiment shows how the informa-
tion flows through the pipeline. We can see that the most heaviest data is processed in
the early stages of the pipeline. Which enforce our choice of migrating these modules
to an hardware embedded solution, thus achieving the same results at a fraction of the
power consumption cost.

Table 2. Image Processing Modules Dimensions Statistics during a Robocup Match

Image R.(320x240) RLE Color T Edges Blobs

Mean 1988 468.3 96.2 140.2
St.deviation 758.9 196.7 41.2 78.2

Furthermore, this statistical results obtained during a live Robocup Match, can also
be used to help the vision system to obtain self-adjusting capabilities. When the RLE
statistical numbers increase dramatically to an unexpected number during a large quan-
tity of frames, that would indicate that the segmentation parameters were off-balanced
and that the robot should re-adjust his camera settings or color configurations.

In a Robocup scenario there are some statical objects that can be used by the robot
has landmarks in order to achieve self-localization. One of them are the field goals. In
the third experiment bearing measures to a field goal were taken during a match.

In figure 5 bearing measures observed are shown for a 5 minute period of match. We
can see that there are only seven false positive occurrences during that period. These
false positive are ignored by the vision system due to the fact, that all bearing measures
have a reliability factor that in the case of the field goal, is the bearing variation of the
vertical post of the goal. This variation (see figure 5) is much higher in the false positive
cases, more than 2 degrees that the normal standard deviation of a goal post inferior to
1 degree.

Other landmarks present in a Robocup field are the corner posts and the field lines.
In figure 6a we can see a histogram, with the different range distances detection to a
corner post. There is a great deal occurrences in the 2 meters area probably due to the
robot movement.

In figure 6b a histogram showing field lines t-junction distance range of detections is
displayed.

510 H. Silva et al.

Fig. 5. Bearing measures to a goal post and standard deviation

Fig. 6. Max. Distance Range to a corner post in a Robocup field and distance measures observed
to a t-junction

5 Conclusion

In this work we presented a real-time vision system for mobile robotics and autonomous
systems applications. The presented framework architecture allows latency reduction in
sensor data reception. Very low power consumption solutions can be integrated. Our
proposed organization allows a hardware and software transparent implementation.

A dedicated hardware vision sensor was developed to implement the more time con-
suming processing steps, taking advantage of image information parallelism. A high
performance programmable logic device (FPGA) was used to process data from a
CMOS sensor capable of VGA resolutions at 60 fps. This vision sensor can use dif-
ferent image sensors with a higher frame-rate, resolutions and High Dynamic Range
Image capabilities for used in outdoors applications.

The presented results, taken from a Robocup Match, allowed a overall evaluation of
performance of the system, as well as, the characterization of the output data from each
one of the vision processing modules.

Power consumption reduction was significant. It is now possible to segment and
compress image for less than 1W. Information coherence is maintained through differ-
ent levels of abstraction in the architecture with ploughable module integration. The

A Real Time Vision System for Autonomous Systems 511

vision architecture provided clear advantages to mobile robot navigation and advanced
image perception systems, having also been applied to fire detection with Unmanned
Aerial Vehicles.

References

1. CMVision, http://www.cs.cmu.edu/∼jbruce/cmvision
2. Hager, G., Toyama, K.: X-Vision: A Portable Substrate for Real-Time Vision Applications.

In: Computer Vision and Image Understanding, January, vol. 69(1), p. 2337 (1998)
3. Hai, Z., Kui, Y., Jindong, J.: A Fast and Robust Vision System for Autonomous Mobile

Robots. In: Proceedings of IEEE Intelligent Conference on Robotics, Intelligent Systems
and Image Processing 2003, China (2003)

4. Peiig, J., Skrikaew, A., Wilkes, M., Kawamura, K., Peters, A.: An active vision system for
Mobile Robots. In: Proceedings of IEEE Intelligent Conference on Robotics, Intelligent Sys-
tems and Image Processing 2000, Takamatsu, Japan (2000)

5. Doi, M., Nakakita, M., Aoki, Y., Hashimoto, S.: Real Time Vision System for autonomous
mobile robotics. In: IEEE International Workshop on Robot and Human Interaction Com-
munication (2001)

6. Lima, L., Almeida, J.M., Martins, A., Silva, E.P.: Development of a dedicated hardware vi-
sion system for mobile robot navigation. In: Robotica 2004 International Conference (2004)

7. Martins, A., Almeida, J.M., Silva, E.P., Pereira, F.L.: Vision-based Autonomous Surface Ve-
hicle Doccking Manoeuvre. In: MCMC 2006 7th IFAC Conference on Manoeuvring and
Control of Marine Craft, Lisbon, Portugal (September 2006)

8. Martins, A., Almeida, J.M., Silva, E.P., Santos, F., Bento., D.: Forest Fire Detection with a
Small Fixed Wing Autonomous Aerial Vehicle. IAV (submitted, 2006)

9. Bruce, J., Balch, T., Veloso, M.: Fast and Inexpensive Color Image Segmentation for Inter-
active Robots. In: IEEE/RSJ International Conf. On Intelligent Robots and Systems, vol. 3,
pp. 2061–2066 (2000)

10. Pavlidis, T., Liow, L.: Integrating Region Growing and Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 12(3) (March 1990)

http://www.cs.cmu.edu/~jbruce/cmvision

	A Real Time Vision System for Autonomous Systems: Characterization during a Middle Size Match
	Introduction
	Vision System Architecture
	Hardware Vision Sensor
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

