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Abstract. In this paper we present an approach for a team of robots to coopera-
tively improve their self localization through collaboratively tracking a moving 
object. At first, we use a Bayes net model to describe the multi-robot self local-
ization and object tracking problem. Then, by exploring the independencies be-
tween different parts of the joint state space of the complex system, we show 
how the posterior estimation of the joint state can be factorized and the moving 
object can serve as a bridge for information exchange between the robots for 
realizing cooperative localization. Based on this, a particle filtering method for 
the joint state estimation problem is proposed. And, finally, in order to improve 
computational efficiency and achieve real-time implementation, we present a 
method for decoupling and distributing the joint state estimation onto different 
robots. The approach has been implemented on our four-legged AIBO robots 
and tested through different scenarios in RoboCup domain showing that the per-
formance of localization can indeed be improved significantly.  

1   Introduction 

Autonomous robots need to know their own positions within the environment, and the 
positions of other robots and moving objects in order to complete their tasks 
individually or in a cooperative way. However, it is not an easy job to accurately 
estimate the robot’s own position as well as the state of the moving objects, because 
the information that robots receive through their sensors is inherently uncertain, and 
the control over their actuators is also inaccurate. Additionally, the estimating 
problem is made more difficult when there are unmodeled interactions or collisions 
between the robots or the robot haven’t seen any distinct landmarks for a long time, 
which are especially typical in RoboCup domain.  

During the soccer games, ball is the focus of robot’s attention. Searching for ball, 
chasing and dribbling the ball and seeking for opportunities to kick a goal are usually 
the most important tasks of the robots. So, it is often the cases that there are few or no 
distinct landmarks in robot’s sight. As a consequence, odometry errors accumulate as 
the time goes by without compensation, and the accuracy and reliability of localization 
result is seriously affected. However, just as mentioned above, the ball is usually in the 
sight of the robots. If there are some ways to improving the robots’ self localization 
based on the ball information, much better performance can be expected. 
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Considering all of the factors mentioned above, we enable the robots to share 
information and improve their self localization cooperatively by making them track 
the moving objects collaboratively and then refine their self localization results based 
on the common knowledge of the objects. We implement this idea on a team of four-
legged AIBO robots to collaboratively track and estimate the state of a ball and use 
the ball information to improve their self localization simultaneously.  

This paper is organized as follows. After introducing the related works in the next 
section, we present our multi-robot cooperative localization and ball tracking method 
in Section 3. Experimental results are given in Section 4, followed by conclusions 
drawn in Section 5. 

2   Related Work 

In Recent years, multi-robot cooperative localization has received increasing attention 
in robotics community. Most of the works on this problem are based on the 
assumption that the robots have abilities to detect and identify each other and estimate 
their relative positions [1, 2, 3, 4, 5]. They usually requires sophisticated image 
processing methods or adding artificial marks onto the robot platform. However, these 
may not be granted in many cases, especially in RoboCup competitions. Because 
adding distinctly colored marks to the AIBO robots is not allowed by rules, so it is 
quite difficult to identify the robots or accurately estimate their relative positions, due 
to the irregular and complex shape of the robot.  

To our knowledge, the first work using moving objects’ information to improve the 
robots’ self localization is [6], in which Schmitt et al presented a method for enabling 
a team of robot to estimate their joint positions in a known environment and track the 
positions of autonomously moving objects (e.g., the ball). By using the ball’s position 
estimations received from the other robots to correct the robot’s own pose, the state 
estimators of different robots can cooperate to increase the accuracy and reliability of 
the estimation process. But this method is based on Kalman filtering, which is 
inefficient to track multiple ball hypotheses in face of false positive ball detection and 
sensor noises. In [7], Kwok and Fox presented a Rao-Blackwellised particle filtering 
method for estimating the robot’s self location as well as the ball state. It provides a 
powerful model for multiple model object tracking and also allows the robot to infer 
where it is by observing the ball. However, the cooperative localization or object 
tracking problem are not discussed in their work. In another most recent work [8], 
Göhring presented an approach to estimate the position of objects tracked by a team 
of mobile robots by using the spatial relation of the objects respect to stationary 
landmarks detected in the same camera images, and then use these objects for better 
self localization. Though the objects’ position estimation resulted by this method is 
robust to the localization errors of the robots, it requires that each robot can detect the 
ball as well as some landmarks at the same time. Moreover, only the static object 
model is considered in their work. 
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3   Multi-robot Cooperative Localization through Collaborative 
Object Tracking Using Particle Filters 

In this section, we will first describe the multi-robot localization and object (ball) 
tracking problem using Bayes net. Then, through formal analysis, we will show how 
this joint state estimation problem can be factorized and tackled using particle filters. 
Finally, we conclude that the moving ball can serves as a bridge to realize cooperative 
localization, and an efficient distributed implementation method is presented. 

3.1   Problem Description Using Bayes Net 

Without loss of generality, we consider a system consisting of a pair of robots and a 
ball. Let 1 2, ,k k kb r r< >  denote the state of the system at time k. , , , ,k b b b b bb x y x y m=< >  
denotes the state of the ball in global coordinates, where , , ,b b b bx y x y  represent ball 
location and velocity and {0,1, 2}bm ∈  indicates the interaction model of the ball and 
robots. 0bm =  means the ball is not grabbed by any teammate of the robots, while 

bm = 1 or 2 indicates that the ball is grabbed by robot 1 or 2 respectively. 
, ,j j j j

k r r rr x y θ=< > , 1, 2j = , is the robot location and orientation on the field. Moreover, 
denote the observations of the ball and landmarks made by robot j as j

kz , which is 
provided in relative bearing and distance. 

A graphical model description of the state estimation problem of the system is 
given in Fig.1, where the nodes represent different random variables and the arrows 
indicate dependencies between these variables. The model shows the following 
relationships: 

1)  Robot-j’s location at time k, j
kr , only depends on the previous location 1

j
kr −  and 

the robot motion control 1
j

ku − .  
2) The observations j

kz  consist of ,j L
kz  and ,j B

kz , which describe landmark 
observations and ball observations respectively. ,j L

kz  only depend on the current 
robot location j

kr  (since the map of field is given); relative ball observations ,j B
kz  

only depend on the current ball and robot positions. 
3)  The location, velocity and interaction model of the ball kb  typically depend on the 

previous ball state 1kb − , the actions of all robots, 1
1ku − , 2

1ku − , and the robots 
location 1

kr , 2
kr . However, just as the dashed arrows indicate, the existence of the 

relationship between robot location, motion control and ball state depends on 
which robot grab the ball, i.e. the component bm  in kb . For example, if bm = 1, 
i.e. ball is grabbed by robot 1, then the ball location is tightly attached to the robot 
location 1

kr  and the arrow from 1
kr  to kb  exists.  

3.2   Factorizing the Joint State Space Posterior of Multi-robot Cooperative 
Localization and Object Tracking 

Since the dependencies between different parts of the joint state space are defined based 
on Bayes net description, we can address the problem of filtering, which aims to 
compute the posterior over the joint state vector 1 2, ,k k kb r r< >  conditioned on all sensor 
measurements obtained so far, i.e. to compute: 

1 2 1 1 2 2
1: 0: 1 1: 0: 1( , , | , , , )k k k k k k kp b r r z u z u− −                                            (1) 
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Fig. 1. Bayes net for multi-robot localization and ball tracking. The nodes in this graph 
represent the different parts of the dynamic system at consecutive time instances, and the edges 
represent dependencies between the individual parts of the state space. Filled circles indicate 
system state variable nodes, while the other circles stand for observations and motion control. 

Based on the posterior estimation resulted from previous step, (1) can be written in a 
recursive form: 

1 2 1 1 2 2
1: 0: 1 1: 0: 1( , , | , , , )k k k k k k kp b r r z u z u− −  

1 2
1 1 1

1 2 1 2 1 1 2 2
1 1 1 1 1

, ,

( , , | , , , , , , )
k k k

k k k k k k k k k k

b r r

p b r r b r r z u z u
− − −

− − − − −= ⋅∫∫∫  

1 2 1 1 2 2 1 2
1 1 1 1: 1 0: 2 1: 1 0: 2 1 1 1( , , | , , , )k k k k k k k k k kp b r r z u z u db dr dr− − − − − − − − − −                        (2) 

The second term in (2) is the previous posterior, and the first term can be further 
factorized by employing the dependencies and independencies described in Bayes net 
model presented above. First, it can be factorized as: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2
1 1 1 1 1 1 1 1 1 1( | , , , , , , , , ) ( , | , , , , , , )k k k k k k k k k k k k k k k k k k kp b r r b r r z u z u p r r b r r z u z u− − − − − − − − − −=    (3) 

Since when 1 2 1 2
1 1 1, , , ,k k k k kr r b u u− − −  are given kb  can be determined, (3) can be written as: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 1 2 2 1 2 1 2 1 1 2 2
1 1 1 1 1 1 1 1( | , , , , , , ) ( , | , , , , , , )k k k k k k k k k k k k k k k k kp b r r b z u z u p r r b r r z u z u− − − − − − − −=                 (4) 

Then, according to Bayes rule, we have: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 1 2 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1( | , , , , , , ) ( , | , , , , , , )k k k k k k k k k k k k k k k k kp b r r b z u z u p z z r r b r r u u− − − − − − − −∝ ⋅  

1 2 1 2 1 2
1 1 1 1 1( , | , , , , )k k k k k k kp r r b r r u u− − − − −      (5) 
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Since 1
kr  only depends on 1 1

1 1,k kr u− − , and 2
kr  only depends on 2 2

1 1,k kr u− − , the rightmost 

term in (5) can be factorized as: 

1 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1 1 1( , | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k kp r r b r r u u p r r u p r r u− − − − − − − − −=                              (6) 

Exploiting the dependencies in the graph model, we know that 1 2,k kz z  are conditional 

independent from 1 2
1 1,k kr r− − , so the second term in (5) can be written as: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1( , | , , , , , , ) ( , | , , , , )k k k k k k k k k k k k k k k kp z z r r b r r u u p z z r r b u u− − − − − − − −=                     (7) 

Substituting (6) and (7) into (5), we have: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 1 2 2 1 2 1 2 1 2
1 1 1 1 1 1( | , , , , , , ) ( , | , , , , )k k k k k k k k k k k k k k kp b r r b z u z u p z z r r b u u− − − − − −∝ ⋅  

1 1 1 2 2 2
1 1 1 1( | , ) ( | , )k k k k k kp r r u p r r u− − − −  

1 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1( , , | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k k kp b z z r r b u u p r r u p r r u− − − − − − −=  

1 2 1 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1( , | , , ) ( | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k k k k k kp z z r r b p b r r b u u p r r u p r r u− − − − − − −=  

1 1 2 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1( | , ) ( | , ) ( | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k k k k k k kp z r b p z r b p b r r b u u p r r u p r r u− − − − − − −=  

(8) 

Substituting (8) into (2) we get: 

1 2 1 1 2 2
1: 0: 1 1: 0: 1( , , | , , , )k k k k k k kp b r r z u z u− −  

1 2
1 1 1

1 1 2 2 1 2 1 2 1 1 1
1 1 1 1 1

, ,

( | , ) ( | , ) ( | , , , , ) ( | , )
k k k

k k k k k k k k k k k k k k k

b r r

p z r b p z r b p b r r b u u p r r u
− − −

− − − − −∝ ⋅∫∫∫  

2 2 2 1 2 1 1 2 2 1 2
1 1 1 1 1 1: 1 0: 2 1: 1 0: 2 1 1 1( | , ) ( , , | , , , )k k k k k k k k k k k k kp r r u p b r r z u z u db dr dr− − − − − − − − − − − −  

(9) 

It is clearly shown in equation (8) that, the variable kb  (ball) serves as a linkage 

between the states of the robots, 1
kr  and 2

kr , which allows the information flow to 

travel from one robot to another and vice versa to achieve cooperative localization.  

3.3   Particle Filtering for Joint Estimation 

To implement the idea presented in the previous subsection, we have to specify the 
representation of the posterior distribution. We utilize particle filtering, which 
represent posteriors by sets of weighted samples, or particles: 

( ) ( ){ , |1 }i i
k k kS s w i N= < > ≤ ≤  

where each particle ( ) ( ) 1( ) 2( ), ,i i i i
k k k ks b r r=< >  and N  is the total number of samples. The 

task is to generate samples distributed according to (1) based on the samples drawn 
from the posterior at k-1, denoted by 1kS − . We generate the different components of 

( )i
ks  stepwise according to (8). In the first step, a sample ( ) ( ) 1( ) 2( )

1 1 1 1, ,i i i i
k k k ks b r r− − − −=< >  is 
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drawn from 1kS − , and then we draw new robot pose 1( )i
kr  and 2( )i

kr  for robot 1 and 

robot 2 respectively, according to:  

                                              1( ) 1( ) 1( ) 1
1 1( | , )i i i

k k k kr p r r u− −∼                                                (10) 

                                              2( ) 2( ) 2( ) 2
1 1( | , )i i i

k k k kr p r r u− −∼                                               (11) 

This gives us ( ) 1( ) 2( )_, ,i i i
k k ks r r=< > , where _ denotes uninitialized value. Then, the 

sample’s ball state ( )i
kb  is estimated: 

                                   ( ) ( ) 1( ) 2( ) ( ) 1 2
1 1 1( | , , , , )i i i i i

k k k k k k kb p b r r b u u− − −∼                                      (12) 

Finally, the importance weight of the sample ( )i
kw  is calculated as: 

( ) 1 1( ) ( ) 2 2( ) ( )( | , ) ( | , )i i i i i
k k k k k k kw p z r b p z r bη= ⋅                                    (13) 

where η  is a normalizing factor which ensures all of the importance weights sum up 

to 1. Note that, since the observations j
kz  are composed of landmarks detection 

,j L
kz and ball detection ,j B

kz , equation (13) can be further factorized as: 

( ) 1, 1, 1( ) ( ) 2, 2, 2( ) ( )( , | , ) ( , | , )i L B i i L B i i
k k k k k k k k kw p z z r b p z z r bη= ⋅  

1, 1( ) 1, 1( ) ( ) 2, 2( ) 2, 2( ) ( )( | ) ( | , ) ( | ) ( | , )L i B i i L i B i i
k k k k k k k k k kp z r p z r b p z r p z r bη= ⋅                 (14) 

where the facts that, when the robots’ pose ( )j i
kr  and ball state ( )i

kb  are given the 

landmarks detection and ball detection are independent, and the landmark observation 
only depends on the robot location (as the map of the environment is already known), 
are used.  

3.4   Distributed Implementation 

There are different ways to implement our multi-robot cooperative localization and 
ball tracking method. The most intuitive one is to make every robot maintain and 
estimate the full joint state vector 1 2, ,k k kb r r< > . But, unfortunately, it requires a large 

amount of particles to achieve satisfying estimation result, due to the high dimension 
of the joint state space. As the members of the robots increase, this problem becomes 
more serious. It will be computationally too demanding for the AIBO robots. 

Here we present a distributed method in which each robot only have to estimate its 
own self location and ball state, then through communication the information are 
shared and cooperative localization and ball tracking is achieved. 

Introducing two affiliated factors 1
kb  and 2

kb , which correspond to the ball 

estimation made by robot 1 and 2 respectively, the third term in equation (9) can be 
transformed as: 
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1 2 1 2
1 1 1( | , , , , )k k k k k kp b r r b u u− − −  

1 2

1 2 1 2 1 2 1 2
1 1 1

,

( , , | , , , , )
k k

k k k k k k k k k k

b b

p b b b r r b u u db db− − −= ∫∫  

1 2

1 2 1 2 1 2 1 2 1 2
1 1 1

,

( | , ) ( , | , , , , )
k k

k k k k k k k k k k k k

b b

p b b b p b b r r b u u db db− − −= ∫∫  

1 2

1 2 1 1 1 2 2 2 1 2
1 1 1 1

,

( | , ) ( | , , ) ( | , , )
k k

k k k k k k k k k k k k k

b b

p b b b p b r b u p b r b u db db− − − −= ∫∫                 (15) 

This is attractive, since it allows each robot to estimate the ball state individually and 
then through an information fusion process the team ball estimation kb  is obtained.  

Now, we present our method for performing the joint estimation in a distributed 
form: first each robot only estimate the joint state vector ,j j

k kb r< > , i.e. the individual 

ball state and self location, based on its own observations; then they send their 
estimation results to their teammates as well as receive the information coming from 
their teammates; whereafter, the team ball state kb  is estimated and the partial joint 

state , j
k kb r< >  maintained by each robot is finally updated. 

Additionally, we enable each robot to use two kinds of ball model: egocentric ball 
model and global ball model. The egocentric ball model represents the ball state in 
robot-centric coordinate. It is more robust against global localization errors, and its 
uncertainty is much smaller than global ball state so that fewer particles are needed to 
represent its probabilistic distribution. The global ball model represents the ball state 
in global allocentric reference coordinate, which is used for communicating 
information to other robots. By associating egocentric ball state with robot’s self 
location, the global ball state can be calculated. And the global ball estimation 
resulting from all robots are fused to get the team ball estimation. It is none other but 
this team ball estimation that enables the robots to act harmoniously and position 
themselves strategically on the field, and further to improve their self localization 
cooperatively.  

Suppose, for any robot j, we use ,b Ln  particles ( )l j i
kb , ,[1, ]b Li n∈ to represent the 

probabilistic distribution of egocentric ball state, and rn particles ( )j
kr

τ , [1, ]rnτ ∈  for 

self localization. The procedure of the cooperative localization and ball tracking 
algorithm running on each robot j is as follows: 

1) Predict self location: generate robot pose ( ) ( ) ( )
1 1( | , )j j j j

k k k kr p r r uτ τ τ
− −∼ ; 

2) Update self localization using landmark measurement: if any landmark is 
detected, the weights ( )j

kw τ  of the samples ( )j
kr

τ  are calculated as 
( ) , ( ) ( )

1( | )j j L j j
k k k kw p z r wτ τ τ

−= ⋅ , if the sum of the weights is smaller than a given 

threshold, substitute the low-weight samples by new samples randomly drawn 
according to the observations (similar to the sensor resetting method presented in 
[9]); else, if no landmark is detected, go to next step; 

3) Predict egocentric ball state: if the ball is grabbed by robot j, the relative 
position of the ball ( )l j i

bx , ( )l j i
by  in all particles ( )l j i

kb  are set to zero; else, if the 
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ball is not grabbed by robot j, the state of the ball is predicted as 
( ) ( ) ( ) 1

1 1( | , )l j i l j i l j i
k k k kb p b b u− −∼ , and the weights of these particles are set to be equal; 

4) Egocentric ball update: a) if the ball is neither seen nor grabbed by the robot, 
go to the final step; b) if the ball is grabbed, go to next step; c) if the ball is seen, 
update the weights of egocentric ball particles as ( ) , ( ) ( )

1( | )l j i j B l j i l j i
b k k k b kw p z b w −= ⋅ , 

and then normalize these weights; 
5) Generate robot pose hypotheses: calculate robot pose hypotheses by clustering 

the particles ( )j
kr

τ  of the self location, and then pick out hn three robot pose 

hypotheses with the highest probabilities; 
6) Generate ball particles in the global coordinate: associate the ,b Ln  egocentric 

ball particles ( )l j i
kb  with each of the robot pose hypotheses resulting from the last 

step to generate ,h b Ln n× particles in global coordinate ( )g j i
kb ; calculate the 

weights ( )g j i
b kw  of ( )g j i

kb  by multiplying the weights of the egocentric ball 

particles and the probability of the robot pose hypotheses; 
7) Subsample global ball particles to obtain representative particles: in this 

step we follow the method presented in [10], i.e. first the soccer field is 
recursively split into cells to form a quad-tree with a maximum depth of maxd ; 

then for each cell a representative particle is calculated as the weighted average 
of the particles contained in that cell, and the weight of the representative 
particle is the sum-weight of the involved particles; finally, the repn  

representative particles with the highest weights are chosen with their weights 
normalized; 

8) Send/receive representative ball particles to/from teammates: representative 
global ball particles resulting from the last step are sent to/received from the 
teammates through wireless communication; 

9) Calculate the entropy of robot pose estimation: based on the particles and 
weights resulting from step 1) and 2), the entropy of the robot pose is calculated 
as a metric of the underlying uncertainty in the pose estimation; 

10) Estimate team ball location hypotheses based on the fused information: a) if 
the entropy of robot pose is within a certain range, go to the final step; b) 
otherwise, if the entropy is higher than the given threshold, the robot will 
calculate the global ball position hypotheses by utilizing the received 
representative particles together with its own representative particles; these 

repn n×  particles ( n  is the total number of robots) are classified into clusters 

following a clustering method similar to step 5), and the location hypothesis 
with the highest probability t

kb  is selected out; 

11) Update self localization using team ball estimation: update the particle set 
representing the robot pose (resulting from step 1) and 2)) by calculating the 
weights as ( ) , ( ) ( )( | , )j j B j t j

k k k k kw p z r b wτ τ τ← ⋅ ; if the sum-weight of particles is 

smaller than a given threshold, substitute some of the lowest-weight samples by 
new samples drawn according to the team ball location t

kb  and ball observation 
,j B

kz  (similar to the method used in Step 2)); 
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12) Particle weight normalization: at this final step of iteration, the weights of the 
particles representing the robot pose ( )j

kw τ  are normalized ensuring them sum up 

to 1. 

4   Experiments and Results 

To verify the effectiveness of the multi-robot cooperative localization and ball 
tracking method, we conduct experiments on Sony AIBO robots on the field of 
RoboCup Soccer 4-legged League. Our method is compared with the reference 
method presented in [11], which has been adopted by more than 6 different teams in 
RoboCup Soccer 4-legged League and its source code is publicly available. 

We set up two scenarios in our experiments, both of which went on RoboCup 2006 
Four-legged League soccer field. Throughout all of the experiments, the rule that ‘the 
robot should not carry ball for longer than 3 seconds at one time’ is obeyed. The 
parameters in the algorithm presented in the previous section are set as: nb,L = 40, nr = 
100, nh = 3, dmax = 6, nrep = 12. 

4.1   Scenario A: 1 Team of 4 Robots, RoboCup 2006 Field 

In our first test scenario, a team of 4 robots are placed on the field, without opponents 
or other obstacles. This scenario represents a “best case” scenario to evaluate the 
performance of the two localization methods, because there is no collision between 
the robots, and the chances that the ball be occluded from the sight of the robots are 
smaller. During the experiment, robots NO.1~ NO.3 are expected to stay at the fixed 
points on the field (shown as the small solid black squares in Fig. 2(a)). They 
concentrate on tracking the ball, but also have to periodically distract their attention 
from it in order to see the landmarks and localize themselves. The positions of these 
three robots keep not changed, but their orientations can be adjusted by themselves so 
as to face directly to the moving ball and keep tracking of it. Robot NO.4 (its 
localization results are examined) can walk freely, chase the ball and carry ball to go 
toward 5 appointed locations (the small solid red squares labeled L#1~L#5 in  
Fig. 2(a)) sequentially. When the robot gets quite near to an appointed location, the 
experimenter would tap the back button on the robot manually so as to conduct it to 
change its destination and go to the next appointed location.  

We compare the performance of the reference method with our cooperative 
localization method by running them in parallel on the robots and making them 
process exactly the same sensor data. The entropy [12, 13] of robot NO.4’s pose 
estimations resulting from the two methods are automatically recorded in a log file 
one time per second by the robot. The ground truth of robot positions are obtained as 
follows: every ten seconds, the robot and localization algorithms pause; the real 
position of the robot is measured manually with the current localization results of the 
two methods recorded; then, by tapping the head button of the robot manually, it 
continue to move.  

Fig.2 depicts the results for this scenario. At beginning, robot NO.4 was placed at 
the start point (small red solid circle in Fig. 2(a)), then every ten seconds its real 
position was recorded (magenta ☆ in Fig. 2(a)). The estimated positions of our 
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Fig. 2. Results for scenario A: (a) robot’s real positions and the estimated positions of the two 
methods. (b) Localization errors. (c) Entropy of pose estimations at different time instances. 

method and reference method are shown by green △ and blue * respectively. Note 
that, the colored lines linking the recorded positions in Fig. 2(a) do not stand for the 
trajectories, but only show the sequential order of the positions. 

The localization errors, which are measured by the distance between the real 
positions and estimated positions, are shown in Fig. 2(b). In Fig. 2(c), the entropy of 
pose estimation resulting from the two methods is visualized. It is clear that both the 
localization errors and entropy of our cooperative localization method are 
significantly smaller than that of the reference method. 

4.2   Scenario B: Real Game, 2 Teams of 6 Robots, RoboCup 2006 Field 

This scenario aims to deal with the real game situation: two teams of robots play 
competitively on a standard RoboCup 2006 field. Through this scenario, we can 
examine that to what level our cooperative localization method can promote the 
performance of robot’s self localization.  
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Since we only have 6 AIBO robots at hand, we can only assign 3 members for each 
team. Moreover, because it is a real soccer game, the ground truth of robots’ positions 
are difficult to measure manually. But, the entropy of robot pose is a useful metric to 
measure the uncertainty of the robot’s state. So, in this scenario, we evaluate the 
performance of the two methods by focusing on comparing the resulted entropy.  

The experiment lasted for 5 minutes. Each team has 3 robots: goalie, defender and 
attacker. Since the attacker is the most active role in the team, it has more chances to 
collide with opponent robots when chasing the ball or seeking for opportunity to 
shoot. So, its self localization results can to some extent provide a “worst case” 
scenario for localization algorithms’ performance. Therefore, we recorded the red 
attacker’s pose estimation entropy during the game. The entropy was written into a 
log file by the robot at a rate of one record per second. Fig.3 depicts the results. 
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Fig. 3. Entropy of pose estimation at different time instances in Scenario B 

It is clear that our cooperative localization method outperforms the reference 
method again. And, by examining the result carefully, we found that the difference 
lying in the performances of the two methods becomes less significant after the time 
instance labeled by the dashed line in Fig.3. This is due to the fact that there were 
more collisions between the attacker and the opponent robots and the ball was usually 
occluded by the robots. There were fewer chances for the red attacker’s teammates to 
see the ball and provide accurate team ball estimation. So, the improvement made by 
utilizing ball information to promote self localization was affected, and became less 
significant. This is reasonable and consistent with our common knowledge. 

5   Conclusion 

In this paper we presented a probabilistic method for multi-robot cooperative 
localization and object tracking. By viewing the object and robots as a whole system, 
a Bayes net model is established to describe the joint state estimation problem. Then, 
through exploring the independences between different parts of the state space, we 
show how the posterior estimation of the joint state can be factorized and tackled 
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using a particle filtering method. Finally, in order to improve computational 
efficiency and achieve real-time implementation, we distributed the joint state 
estimation task to different robots: first, each of the robot estimate their self location 
and ball state based on their own sensor data; then, by exchanging information 
between the robots the ball state estimation is refined; at last, each robot use the 
refined ball state estimation to correct their self localization.  

By utilizing the proposed method, the state estimation modules of different robots 
can cooperate to increase the accuracy and reliability of their self localization and ball 
state estimation. It is capable of dealing with multiple hypotheses lying in the state of 
both the ball and robots. The experimental results show that the proposed method is 
effective and can evidently improve the robots’ self localization in RoboCup domain. 
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