
Using Explicit State to Describe Architectures*

Antónia Lopes and José Luiz Fiadeiro

Department of Informatics
Faculty of Sciences, University of Lisbon
Campo Grande, 1700 Lisboa, PORTUGAL

{mal,llf}@di.fc.ul.pt

Abstract. In order to achieve higher levels of abstraction in architectural
design, we investigate extensions to parallel program design based on the
use of explicit state variables to accommodate the action-based discipline of
interaction that is typical of architecture description languages. Our study
focus on primitives that support non-determinism, choice and fairness in
guarded-command based languages, and on refinement principles that are
compositional with respect to interconnection.

1 Introduction

Formal approaches for describing software architectures tend to use process-based
languages. Typical examples are the architecture description languages WRIGHT [2],
based on CSP, Darwin [16], based on the π-calculus, and Rapide [15], based on par-
tially ordered sets of events. The fact that software architectures address the structure
of systems in terms of components and interconnection protocols between them sug-
gests the adoption of formalisms in which interaction is event-based. For instance,
the ability to specify if a given action of a component is under the control of the
component or the environment is paramount for the definition of connector roles –
e.g. the fact that, in a client-server architecture, the choice of service is under the con-
trol of the client. This form of behaviour has been modelled using external and inter-
nal choice operators as, for instance, in WRIGHT [2].

However, such process description languages are notably lacking in abstraction
mechanisms. Their primitives are directed to structuring the flow of control in an
explicit way and, hence, there are crucial properties of protocols that cannot be cap-
tured at a higher level of abstraction. For instance, the description of a pipe-filter
architecture with a particular discipline on the pipe (e.g. FIFO), or a client-server
architecture with fairness requirements, typically requires a rather involved encoding
[2].

In contrast, formalisms that use an explicit notion of state, such as Unity [3], TLA

* This work was partially supported through contracts PCSH/OGE/1038/95 (MAGO) and

2/2.1/TIT/1662/95 (SARA).

J.-P. Finance (Ed.): FASE’99, LNCS 1577, pp. 144-160, 1999.
 c Springer-Verlag Berlin Heidelberg 1999

[12] or fair transition systems [17], provide a more flexible way of modelling the
behaviour of components in the sense that execution sequences emerge from the inter-
ference of actions on the state rather than an explicit prescription of an ordering on the
actions. The problem with such approaches is that interaction between components in
a system is modelled through a shared state, exactly the dual of what is favoured by
architecture description languages. As a result, these approaches do not support the
separation between the description of the components of a system and their interaction
– interaction has to be implemented in the programs that model the components.

Our purpose in this paper is to show how the two approaches can be reconciled in a
parallel program design language that adopts an explicit state but an action-based
discipline of interaction. The language that we discuss is an extension of CommU-
nity [5]. CommUnity was developed precisely as having the same computational
model as Unity but a coordination model based on private state and shared actions.
However, it lacked mechanisms for addressing some of the key issues that are required
by architecture description languages such as the ability to handle non-determinism
and choice, and refinement mechanisms that support role instantiation and are compo-
sitional with respect to component interconnection.

Section 2 refines this initial motivation by expanding on the issues that we have
identified as fundamental for languages based on explicit state to accommodate archi-
tectural description. Section 3 presents the extended language and its model-theoretic
semantics. This semantics is based on labelled transition systems that differ from
what is traditional in reactive system modelling in the way the environment is taken
into account. Section 4 is concerned with component interconnection, for which a
categorical semantics is adapted from previous papers., e.g. [6]. Section 5 formalises
component refinement in terms of morphisms that differ from the ones used to model
interconnection. A notion of compositionality is formalised in this setting. These
notions are applied in section 6 to architectural connectors.

2 Motivation

We start by illustrating the ideas briefly described in the introduction and motivating
some of the proposed extensions to CommUnity.

Shared state vs shared actions. Consider that, in the development of a given
system, the need for a component Merge has been identified that receives two streams
of data, merges them, and makes the resulting stream available to the environment.

 Merge

 i 1

 i 2

 o

If the interaction between the component and its environment is uniquely based on
shared state, then it is not possible to design Merge without assuming a particular
interaction protocol. For instance, it is necessary to program the acknowledgment of
the reception of each data item in each input channel and make assumptions on the
way the environment acknowledges the reception of data items [1].

145Using Explicit State to Describe Architectures

In contrast, an approach based on shared actions allows us to describe, at the level
of each component, only what the component contributes to each action – its local
view of the action – without assuming a fixed protocol. This is because the execution
of shared actions is under the control both of the component and the environment.
This mode of interaction – synchronous communication via shared actions – is very
general in the sense that other modes of communication can be programmed over it
[9], for instance as architectural connectors. Indeed, protocols themselves can be de-
veloped separately as components with which other components synchronise for
communicating with one another, thus promoting the separation between the descrip-
tion of the behaviour of the individual components and their interaction.

Internal vs external choice. When designing a component, it is often important
to specify, whenever there is more than one shared action that is enabled, whether the
choice between them is determined by the component or by the environment. For
instance, in the case of a server, the choice between services should not be decided by
the server itself but left to its clients. Process description languages support this
distinction through separate internal and external choice operators.

In an approach based on explicit state, conditions on the state of the component
may be used to define when the component makes each action available. For instance,
in object-based languages enforcing "design by contract" [18], pre-conditions define
when methods are available for execution in the sense that, if called by its environ-
ment, the object ensures their execution with a certain post-condition. This is why
refinement of methods does not allow pre-conditions to be strengthened: strengthening
the pre-condition of a method would violate the contract established between the object
and its environment according to which the object lets the environment choose the
method whenever its pre-condition is true. This means that the programmer who is
going to implement the server must make sure that the execution of the services will
not be blocked when their pre-conditions hold.

However, in program design languages based on guarded-commands, such condi-
tions cannot be captured through the guards of each action. This is because guards are
typically used as mechanisms for ensuring safety by blocking the execution of ac-
tions. Hence, refinement does not allow them to be weakened. For instance, in the
design of the control system of a boiler in a central heating system, the action that
releases hot water into the system may be required to be blocked if the temperature of
the water raises above a certain threshold determined by the specification of the piping
system. A developer may decide to lower this threshold in an implementation because
of physical restrictions imposed by internal components of the controller itself.

CommUnity reconciles these two design mechanisms by guarding actions with two
conditions: the safety guard that must be true whenever the action is enabled, and the
progress guard that, when true, implies that the action is enabled and, hence, available
for the environment to choose it. The key issue here is the separation between guards
and enabledeness of actions. Our proposal makes guards a specification mechanism
for enabledeness in the sense that they do not fully determine the enabling condition of
an action but impose constraints on it.

146 Antónia Lopes and José Luiz Fiadeiro

Underspecification vs Non-determinism. Safety and progress guards estab-
lish an interval in which the enabling condition of an action must lie: the safety guard
is a lower bound for enabledeness, in the sense that it is implied by the enabling con-
dition, and the progress guard is an upper bound in the sense that it implies the ena-
bling condition. As such, the corresponding action may be underspecified in the sense
that its enabling condition is not fully determined, and, hence, subject to refinement
by reducing this interval, i.e. weakening the progress guard and strengthening the
safety guard. Underspecification is an essential mechanism for ensuring that design
can be conducted at the required level of abstraction, avoiding implementation deci-
sions to be made in early stages. CommUnity supports other mechanisms for under-
specification such as non-deterministic assignments.

Such forms of underspecification model what is sometimes called allowed non-
determinism [11] in the sense that they determine a range of possible alternative im-
plementations whose choice cannot be controlled by the environment of the compo-
nent. In contrast, mechanisms such as progress guards model required non-
determinism in the sense that they specify alternative forms of behaviour that must be
exhibited by every single implementation, thus allowing the environment to control
it. The distinction between these two forms of non-determinism is essential for sup-
porting abstraction and choice in architectural design.

Fairness. The above mentioned extensions to CommUnity, motivated by the need to
support architectural description, are concerned with the coordination aspects of archi-
tectures, i.e. with the mechanisms that are made available to coordinate the behaviour
of the components within a system. In what concerns the computational side of com-
ponents, i.e. the mechanisms that guarantee that each component behaves, individu-
ally, as intended, it is necessary to make available another notion of progress – one
that ensures that certain states are eventually reached. Such progress properties –
liveness – are typical of "classical" reactive system specifications based on shared state
and private actions. Therefore, we extended CommUnity with locally-controlled ac-
tions for which the progress guard ensures liveness in all fair computations.

3 Programming the Individual Components

The syntax of CommUnity with the extensions motivated above is as follows:

program P is
var output out(V)

input inp(V)
in terna l int(V)

i n i t Ι
d o []

g∈sh(Γ)
 g : [B(g),U(g) → ||

v∈D(g)
 v:∈F(g,v)]

[]
g∈prv(Γ)

 prv g : [B(g),U(g) → ||
v∈D(g)

 v:∈F(g,v)]

where
• V is the set of variables. Variables can be declared as input, output or internal.

Input variables are read from the environment of the program but cannot be modi-

147Using Explicit State to Describe Architectures

fied by the program. Output and internal variables are local to the program, i.e.,
they cannot be modified by the environment. We use loc(V) to denote the set of lo-
cal variables. Output variables can be read by the environment but internal vari-
ables cannot. Each variable v is typed with a sort Sort(v).

• Γ is the set of action names; each action name has an associated guarded command
(see below). Actions can be declared either as private or shared (for simplicity, we
only declare which actions are private). Private actions represent internal computa-
tions and their execution is uniquely under the control of the program. In contrast,
shared actions represent interactions between the program and the environment.
Hence, their execution is also under the control of the environment. Each action g
is typed with a set D(g) consisting of the local variables that action g can change –
its write frame. For every local variable v, we also denote by D(v) the set of ac-
tions that can change v. The pair <V,Γ> is called the signature of the program.

• I is a proposition over the set of local variables – the initialisation condition.
• For every action g∈Γ, B(g) and U(g) are propositions over the set of variables – its

guards. When the safety guard B(g) is false, g cannot be executed. When the pro-
gress guard U(g) holds, the program is ready to execute g. More precisely,
(1) when g is a shared action, if U(g) holds, the program cannot refuse to execute g
if the environment requests it, and (2) when g is a private action, if U(g) holds in-
finitely often then g is taken infinitely often. For simplicity, we write only one
proposition when the two guards coincide.

• For every action g∈Γ and local variable v∈D(g), F(g,v) is a non-deterministic
assignment: each time g is executed, v is assigned one of the values denoted by
F(g,v), chosen in a non-deterministic way (when D(g)=∅, the only available com-
mand is the empty one which we denote by skip).

Example 3.1. Consider that, in the context of the development of a given system,
the need for two components Merge and Consumer is identified. The component
Merge merges two streams of natural numbers and transmits the resulting stream to
the environment, guaranteeing that the output is ordered if the input streams are also
ordered. The component Consumer receives a stream of natural numbers and stores it.

Consider first the component Consumer. In order to illustrate the ability of Com-
mUnity to support the high-level description of system behaviour, assume that, at a
given level of abstraction, one is just concerned with coordinating the joint behaviour
of the components in the system, ignoring for a moment the details of the internal
computation performed by Consumer (the storing of the data),

program Consumer is
var output cl: bool

input i: nat, eof: bool
i n i t ¬cl
d o rec : [¬ eof ∧ ¬ cl, false → skip]

[] p r v close : [true, eof∧¬cl → cl:=true]

The fact that the internal computation related to the storing of data is being ab-
stracted away is reflected in the fact that the body of action rec – modelling the recep-
tion of values from the environment – is empty, meaning that it does not change the

148 Antónia Lopes and José Luiz Fiadeiro

abstract state, and its progress guard is false, meaning that we cannot make precise
how the reception is controlled. In section 5, we shall see how refinement mecha-
nisms can be used to extend this program with details on the computational aspects.

The program above is, therefore, primarily concerned with the interface between
Consumer and its environment. Part of this interface is established via the input
channel i along which data are transmitted to Consumer. The (shared) action rec ac-
counts for the reception of such transmissions. This action is shared between Con-
sumer and its environment meaning that both Consumer and the environment have to
give permission for the action to occur. The safety guard of rec requires Consumer to
refuse a transmission when communication has been closed (see below). However,
because the progress guard has been set to false, an implementation of Consumer can
arbitrarily refuse to accept transmissions because there is no upper bound on the ena-
bling condition of rec.

The other means of interaction with the environment is concerned with the closure
of communication. The component can receive, through the input channel eof, a
Boolean indicating that transmission along i has ceased. This should trigger a com-
munication closure as indicated in the progress guard of close. Fairness then guaran-
tees that the assignment is eventually performed. The assignment sets the output
variable cl thus signaling to the environment that the component has stopped accept-
ing transmissions. This is often important for coordination purposes, namely for
managing the configuration of the system. Notice that Consumer can arbitrarily de-
cide to execute close. This is because, being a private action, the environment cannot
interfere with its execution. The only influence of the environment is to set its pro-
gress guard, i.e. to trigger the action. Hence, a specific choice of implementation may
dictate conditions under which closure is required beyond the reception of a signal on
the input variable eof, for instance related to the space made available for storing data.
This will be illustrated in section 5.

Consider now the component Merge. It can be designed in CommUnity as follows.

program Merge is
var output o : nat, eof: bool

input i1,i2: nat, eof1,eof2: bool
in terna l rd: bool

i n i t ¬eof∧¬rd
d o rec1 : [¬(eof1 ∨ rd)∧(eof2∨i1≤i2) → o:=i1 || rd:=true]

[] rec2 : [¬(eof2 ∨ rd)∧(eof1∨i2≤i1) → o:=i2 || rd:=true]
[] send : [¬eof ∧ rd → rd:=false]
[] p r v close : [¬eof ∧ ¬rd ∧ eof1 ∧ eof2 → eof:=true]

The two input streams and the corresponding signal of end of data are received
through the input variables i1, i2, eof1 and eof2. The resulting stream is transmitted
through the variable o and the environment is informed of the end of data through the
variable eof. The reception of a message in the input channel ik is modelled by the
shared action reck. The execution of this action is blocked when the end of data has
already been signaled in this channel or the other channel presents a lower number to
be read. Whenever reck is executed, the program copies the message presented in
channel ik to the output variable o and the action send becomes ready to be executed.
The program waits for the reading of that message to become ready again to receive

149Using Explicit State to Describe Architectures

one more message. Finally, after each channel has signalled that it has ended trans-
mission, the program signals the end of data in the output channel eof. Because the
closing of the communication does not involve the environment, this is modelled by a
private action (the action close). Notice that, in this program, the safety and progress
guard coincide for every action, meaning that these actions have a unique implementa-
tion. ❚

The mathematical model that we adopt for system behaviour is based on labelled
transition systems. Because, as discussed in sections 1 and 2, we are interested in
capturing the coordination aspects required for software architectures, namely the fact
that a component can be guaranteed to make its services available for the environment
to choose, the way the environment is taken into account in these models is different
from what is traditionally found in the literature. The typical situation in reactive sys-
tems [17,12] is to take models that reflect the behaviour of a component in a given
environment. That is, a model already exhibts a joint execution of the component and
its environment. In our case, a model reflects the behaviour that the component offers
to its environment. More concretely, the branching structure of transition systems is
intended to reflect required non-determinism on the behaviour of the component indi-
vidually. Internal non-determinism, which accounts for choice between different im-
plementations, is essentially modelled by the existence of more than one such transi-
tion system as a model of a program. Openess to the environment is explicitly mod-
elled through a special label ⊥ that identifies steps performed by the environment.

We assume fixed an algebra U for the data types used in CommUnity. We denote
by Vs, where s∈S, the set of variables of sort s. We denote by Reach(T) the set of
reachable states of a transition system T.

Def in i t ion 3.2. A model for a program signature <V,Γ> consists of a labelled
transition system T=<W,→,W0> over the set Γ⊥ and an S-indexed family of map-
pings Vs:Vs→[W→Us] s.t.:

1. The set W0 of initial states is non-empty;
2. For every w∈W0 and S-indexed family of mappings Rs:inp(Vs)→Us, there exists

w'∈W0 s.t. w≡loc(V)w' and Vs(i)(w')=Rs(i), for every i∈inp(V) and s∈S;
3. For every w,w'∈Reach(T) and g∈Γ⊥ s.t. w g→ w’ and for every S-indexed family

of mappings Rs:inp(Vs)→Us, there exists w''∈W s.t. w'≡loc(V)w'', Vs(i)(w'')=Rs(i),
for every i∈inp(V) and s∈S, and w g→ w'';

4. For every w∈Reach(T) there exists w'∈W s.t. w ⊥→w';
5. For every v∈loc(V), w,w'∈Reach(T), and g∉D(v), if w g→w' then V(v)(w)=V(v)(w');

where w≡Xw' abbreviates V(v)(w)=V(v)(w') for every v∈X. ❚

A model for a program signature consists of a labelled transition system and a map
that interprets the variables as functions that return the value that each variable takes
in each state. Conditions 1 to 4 ensure that a model cannot constrain the behaviour of
the environment. More concretely, a model is such that (1) its set of initial states is
non-empty, (2) it does not constrain the initial values of the input variables nor (3)
the values that input variables can have in the other reachable states, and (4) it does
not prevent the execution of environment steps. Furthermore, condition 5 requires
that the values of the local variables remain unchanged during the actions whose do-

150 Antónia Lopes and José Luiz Fiadeiro

main do not contain them. In particular, because ⊥∉D(v), local variables are not sub-
ject to interference from the environment.

A model of a program is a model for its signature for which the initial states sat-
isfy the initialisation constraint, the assignments are enforced, actions can only occur
when their safety guards hold and are made available whenever their progress guards are
true.

Definition 3.3. Given a program P and a model Mfor its signature, M ïP iff:
1. For every w0∈W0, V,w0ïI;
2. For every g∈Γ, v∈D(g) ,w,w'∈Reach(M), if w g→ w' then V(w')(v)∈ÊF(g,v)ËV(w);
3. For every g∈Γ and w,w'∈Reach(M), if w g→ w' then V,wïB(g);
4. For every g∈Γ and w∈Reach(M), if V,wïU(g) then there exists w'∈W s.t. w g→ w'. ❚

As mentioned before, a model M such that M ïP must be regarded as a model of
the behaviour that the program offers to its environment: it defines a set of potential
initial states and a set of potential transitions at each state — the choice between the
alternatives that are not locally controlled, such as initialisation and modification of
input variables and the execution of shared actions that are enabled, is left to the envi-
ronment. In this way, S represents the degree of cooperation of the program P with re-
spect to its environment.

The definition above makes clear that, for a program to admit models, it is neces-
sary that, for every action g, the progress guard U(g) implies the safety guard B(g).
Furthermore, because the emptiness of F(g,v) for some v∈D(g) also prevents action g to
occur, it is also necessary that U(g) implies the non emptiness of F(g,v), for every
v∈D(g). Programs satisfying such conditions are called realisable.

For capturing the liveness properties of programs, we also have to model the way
in which the locally-controlled actions that are infinitely often enabled are schedulled
by the operating system. As usual, we shall consider infinite computations and we re-
quire strong fairness for private actions. That is, we consider paths in which any lo-
cally-controlled action which is infinitely often enabled cannot be neglected indefi-
nitely. As usual, we say that an action is enabled at a state when there is a transition
from that state that is labelled with the action.

Def in i t ion 3.4. A model of a program P consists of a model M for its signature s.t.
MïP, and a function Π:W→2Path(M) s.t., for every w∈Reach(M) and π∈Π(w), π starts
at w and, for every g∈prv(Γ), if g is enabled infinitely often in π then g is taken in-
finitely often in π. ❚

Consider again the program Consumer. After receiving the signal of end of data,
and if the communication has not been closed already, the progress guard of action
close becomes true. If this signal is stable, then the guard remains true while the
action is not taken. Under strong fairness, close will eventually be executed.

4 Specifying How Components Interact

Software Architecture is about the modularisation of systems in terms of components
and interconnections. Many of our previous papers [e.g., 5,6] have argued in favour

151Using Explicit State to Describe Architectures

of the use of Category Theory as a mathematical framework for expressing such inter-
connections following Goguen's work on General Systems Theory [8]. The notion of
morphism between programs captures what in the literature on parallel program design
is known as superposition. Most of the conditions expressed in the definition below
are standard when defining superposition and are more thoroughly discussed in our
previous paper [5].

Definit ion/Proposit ion 4.1. A program morphism σ:P1→P2 consists of a
(total) function σvar:V1→V2 and a partial mapping σac:Γ2→Γ1 s.t.:
1. For every v∈V1, o∈out(V1), i∈inp(V1), h∈int(V1): Sort2(σvar(v))=Sort1(v),

σvar(o)∈out(V2), σvar(i)∈out(V2)∪inp(V2) and σvar(h)∈int(V2);
2. For every g∈sh(Γ2)

 s.t. σac(g) is defined and g'∈prv(Γ2)
 s.t. σac(g') is defined:

σac(g)∈sh(Γ1)
 and σac(g')∈prv(Γ1)

 ;
3. For every g∈Γ2 s.t. σac(g) is defined and v∈loc(V1): σvar(D1(σac(g))⊆D2(g) and

σac(D2(σvar(v))⊆D1(v);
4. For every g∈Γ2 s.t.σac(g) is defined and v∈D1(σac(g)):
ï (F2(g,σvar(v))⊆ σ (F1(σac(g),v)));

5. ï (I2 ⊃ σ (I1));
6. For every g∈Γ2 s.t. σac(g) is defined, ï(B2(g) ⊃ σ (B1(σac(g))));
7. For every g∈Γ2 s.t. σac(g) is defined, ï(U2(g) ⊃ σ (U1(σac(g)))).
Programs and program morphisms constitute a category c-PROG. ❚

A morphism σ:P1→P2 identifies a way in which P1 is a component of the system
P2. The map σvar identifies, for every variable of the component, the corresponding
variable in the system and σac identifies the action of the component that is involved
in each action of the system, if ever. Condition 1 states that sorts, visibility and
locality of variables are preserved. Notice, however, that input variables of P1 may
become output variables of P2. This is because the result of interconnecting an input
variable of P1 with an output variable of another component of P2 results in an output
variable of P2. Condition 2 indicates that morphisms respect the type of actions
(shared/private). Condition 3 means that the domains of variables are preserved and
that an action of the system that does not involve an action of the component cannot
change any variable of the component. Conditions 4 and 5 correspond to the preserva-
tion of the functionality of the component program: (4) the effects of the actions have
to be preserved or made more deterministic and (5) initialisation conditions are pre-
served. Conditions 6 and 7 allow safety and progress guards to be strengthened but
not weakened. Strengthening the safety guard is typical in superposition and reflects
the fact that all the components that participate in the execution of a joint action have
to give their permission. On the other hand, it is clear that progress for a joint action
can only be guaranteed when all the components involved can locally guarantee so.

System configuration in the categorical framework is expressed via diagrams.
Morphisms can be used to establish synchronisation between actions of programs P1

and P2 labelling diagram nodes as well as the interconnection of input variables of one
component with output variables of the other component.

152 Antónia Lopes and José Luiz Fiadeiro

P1

channel

σ1

P2

σ2

This kind of interaction can be established in a configuration diagram through inter-
connections of the form depicted above, where channel is essentially a set of input
variables and a set of shared actions. Each action of channel acts as a rendez-vous
point where actions from the components can meet (synchronise). Hence, action
names act as interaction names as in IP [7]. Each variable of the channel provides for
an input/output communication to be established between the components. See [4]
for more details on the nature of channels.
Example 4.2. The diagram below defines a configuration in which Merge and
Consumer synchronise on actions send and rec, and the input variables i and eof of
Consumer are instantiated with the output variables o and eof of Merge, respectively.

 Merge

 <{x,y},{c}>

Consumer

rec → c
x → i

 → eof

c ← send
o ← x

eof← y

❚

More complex configurations can be described by using other interaction protocols
that take the general form

P1

channel

σ1 µ1

Glue P2

channel

µ2 σ2

where Glue is a program that describes how the activities of both components are co-
ordinated in the intended architecture. Such configurations typically arise from the
application of architectural connectors to given components of the system, as ex-
plained in section 6.
Example 4.3. Consider now the problem of specifying that Merge and Consumer
communicate asynchronously. In this case, we have to interconnect the two programs
through a third component modelling a buffer. The buffer coordinates the transmis-
sion of messages and informs the Consumer when there is no more data to transmit.

erge

 <{x,y},{c}>
put → c

x → i

 → cl

c ← send
o ← x

eof← y

Buffer

 <{x,y},{c}>
 ← get

o ← x
eof← y

rec → c
x → i

y → eof

Consumer
where

program Buffer is
var output o=head(b), eof: bool

input i: nat, cl: bool
in terna l b:List(nat), n:nat

i n i t b=<>∧n=0∧¬eof
d o put : [n<Limit → b:=b^<i> || n:=n+1]

 [] get : [¬(n=0) →b:=tail(b) !!!|| n:=n-1]
[] prvsig : [cl∧(n=0) → eof:=true]

153Using Explicit State to Describe Architectures

The program Buffer models a buffer with limited capacify and a FIFO discipline.
The private action sig is responsible for signaling the end of data to the Consumer as
soon as the buffer gets empty and Merge has already informed, through the channel cl,
that it will not send anymore data. ❚

Not every diagram expresses a meaningful configuration in the sense that it de-
scribes a well configured system. For instance, diagrams in which output variables of
different components are connected to one another do not make sense as configura-
tions. Consider that Var denotes the forgetful functor from c-PROG to SET that
maps programs to their underlying sets of variables. The class of diagrams that repre-
sent correct configurations of interconnected components can be formalised as follows.

Definition 4.4. Given a finite J-indexed multi-set of programs P, a configuration
diagram of a system with those components is a finite diagram ι:I→c-PROG s.t.:
1. For every j∈J, j∈|I| and ι(j)=Pj;
2. For every f:i→j in I, either (i=j and f=idi) or (j∈J and i∉J and ι(i) is a channel);
3. For every i∈|I|\J s.t. ι(i) is a channel, there exist distinct j,k and morphisms f:i→j

and g:i→k in I;
4. If {µi:Var(ι(i))→V: i∈|I|} is a colimit of ι;Var then, for every v∈V, there exists at

most one i in I s.t. µi
-1(v)∩out(Vι(i))≠∅ and, for such i, µ i

-1(v) ∩out(Vι(i)) is a sin-
gleton. ❚
Condition 1 means that every component of a system must be involved in its con-

figuration diagram. Condition 2 states that the elementary interconnections are estab-
lished through channels. Condition 3 ensures that a configuration diagram does not
include channels that are not used. Finally, condition 4 prevents the identification of
output variables. The fact that configurations represent systems is proved mathemati-
cally by the existence of a colimit for the diagram:

Definition/Proposition 4.5. Given a finite J-indexed multi-set of programs P ,
modelling the components of a system Sys, and a configuration diagram ι, describing
how these components interact, the program that models Sys is the program given by
the colimit of ι, which always exists. We denote this program by ||ιP. ❚

The colimit of a configuration diagram ι of a system corresponds to the parallel
composition of the component programs (the programs that model the components of
the system and the glues). Basically, ||ιP is defined as follows:
• the set of input variables of ||ιP consists of the input variables of each component

program that are not identified with any output variable of any other component
program and the output and internal variables of ||ιP are the (disjoint) union of, re-
spectively, the output and the internal variables of the components;

• the shared actions of ||ιP are the joint actions defined by the synchronisation points
and the set of private actions of ||ιP consists of the joint actions that represent the
simultaneous execution of private actions of different components;

• the initialisation condition of ||ιP is given by the conjunction of the initialisation
conditions of the component programs;

• the actions of ||ιP perform the parallel composition of the assignments of the joint
actions and are guarded by the conjunction of the guards of the joint actions.

154 Antónia Lopes and José Luiz Fiadeiro

5 Refinement

A key factor for architectural description is a notion of refinement that can be used to
support abstraction. In particular, refinement is necessary when, as illustrated in sec-
tion 3, one wants to conduct the description of the architecture of a system at the level
of the coordination that needs to be established between its components, leaving com-
putational concerns for later stages of design. The notion of refinement can be cap-
tured by means of a different class of morphisms between programs.

Definition/Proposition 5.1. A program refinement morphism σ:P1→P2 con-
sists of a (total) function σvar:V1→V2 and a partial mapping σac:Γ2→Γ1 s.t. condi-
tions 1 to 6 of definition 4.1 hold and
7. For every i∈inp(V1), σvar(i)∈inp(V2) and σvar↓(out(V1)∪inp(V1)) is injective;
8. For every g∈sh(Γ1), σ−1(g)≠∅;
9. For every g1∈Γ1, ï(σ (U1(g1)) ⊃ ∨

σac(g2)=g1
 U2(g2)).

Programs and refinement morphisms constitute a category r-PROG. ❚
A refinement morphism supports the identification of a way in which a program P1

is refined by another program P2. Each variable of P1 has a corresponding variable in
P2 and each action g of P1 is implemented by the set of actions σ−1(g) in the sense
that σ−1(g) is a menu of refinements for action g. The actions for which σac is left
undefined (the new actions) and the variables which are not in σvar(V1) (the new vari-
ables) introduce more detail in the description of the program.

Condition 7 ensures that an input variable cannot be made local by refinement (re-
finement does not alter the border between the system and its environment) and that
different variables of the interface cannot be collapsed into a single one. Condition 8
ensures that actions that model interaction between the program and its environment
have to be implemented. Condition 9 states that progress guards can be weakened but
not strengthened. Indeed, because progress guards represent a requirement on the avail-
ability of an action for execution, refinement has to preserve that availability under the
conditions established by the progress guard of the abstract program. Naturally, the
circumstances under which this availability is guaranteed can be widened, which corre-
sponds to the weakening of the progress guard.

Because condition 6 (see definition 4.1) allows safety guards to be strengthened
(which corresponds to the preservation of the safety properties of the abstract pro-
gram), the "interval" of (allowed) non-determinism defined by the two guards can be
reduced by refinement. This is intuitive because refinement, pointing in the direction
of implementations, should reduce allowed non-determinism. This is the reason why
initialisation conditions can be strengthened and the non-determinism of assignments
decreased. Notice that when the two guards coincide there cannot be any further refine-
ment: the enabling condition for the action has been fully determined.

Preservation of required properties (including required non-determinism) and re-
duction of allowed non-determinism are intrinsic to any notion of refinement, and jus-
tify the conditions that we have imposed on morphisms. The morphisms that we
used for modelling interconnections do not satisfy these properties. In particular,
programs are not necessarily refined by the systems of which they are components,

155Using Explicit State to Describe Architectures

which is consistent with other notions of refinement and parallel composition, e.g.
CSP [9].

Example 5.2. In order to illustrate refinement consider the following program.

program Consumer2 is
var output c l : b o o l

input i : nat, eof : b o o l
in terna l x : nat, rd : bool, s : array(nat,N), k : n a t

i n i t ¬cl∧rd∧k=1
d o rec : [¬eof∧¬cl∧rd∧k<N → x:=i || rd:=false]

[] p r v store : [¬rd → rd:=true || s[k]:=x || k:=k+1]
[] p r v close : [((eof∧¬cl∧rd)∨k≥N) → cl:=true]

This program refines the program Consumer presented in 3.1. The new private ac-
tion store models the storing of the received data in an array. The program is ready to
receive a new number only if the previously received number has already been stored
and the array is not full. The degree of internal nondeterminism over the action close
present in the program Consumer given in section 3 was eliminated. The program
eventually closes the communication if it receives the signal of end of data or reaches
a state in which the array is full. ❚

Refinement and interconnection morphisms, though different as justified above,
must be related by two important properties for architectural design to be supported.
On the one hand, because composite programs are given by colimits and, hence, are
defined up to isomorphism, refinement morphisms must be such that programs that
are isomorphic with respect to interconnections, refine, and are refined exactly by, the
same programs. The morphisms of r-PROG satisfy this requirement because isomor-
phisms in c-PROG are also isomorphisms in r-PROG.

On the other hand, refinement must be compositional with respect to parallel com-
position, i.e. it is necessary that a refinement of a composite system can be obtained
from arbitrary refinements of its components. This property also holds for the pro-
posed notions of interconnection and refinement. More precisely, given a finite
J-indexed multi-set of programs P, a configuration diagram ι of a system with those
components, and refinement morphisms (ηj:Pj→Pj')j∈J, there exists a refinement mor-
phism η:||ιP →||ι'P ', where ι' is the diagram obtained from ι by replacing the subdi-
agrams of the form

ihannel σi
 by

 ‘ihannel
σi;ηi

where (σi;ηi) denotes the program morphism defined by the composition of the under-
lying signature morphisms (it is not difficult to show that this construction gives rise
to a configuration diagram for P ').

The morphism η is unique if we require the preservation of the design decisions
that lead from each Pi to Pi', i.e., µj;η=ηj;µ'j, for any j∈J where µj and µ'j are the
program morphisms which identify, Pj and Pj', as a component of, respectively, ||ιP
and ||ι'P '.

Let us consider, for instance, a system Sys with two components modelled by pro-
grams P1 and P2 interconnected through a third program as depicted above. The
colimit of this diagram is a program P that models Sys. By picking up arbitrary re-

156 Antónia Lopes and José Luiz Fiadeiro

finements of programs P1 and P2, we obtain by composition a program P' that refines P
and, hence, also models Sys.

σ1;η1

1

hannel

σ1 µ1

lue 2

hannel

µ2 σ2

 ‘1 ‘2

’

σ2;η2

η2η1

η

µ1 µ2

µ ’1 µ’ 2

6 Defining and Applying Architectural Connectors

In a previous paper [6], we have shown how architectural connectors in the style of
Allen and Garlan [2] can be given a categorical semantics in general, and in the origi-
nal version of CommUnity in particular.

R

 channel
σ µ

A connector (type) is defined by an object G – the glue – and a finite set of dia-
grams of the form depicted above, where each object R models a role of the connector.
The roles describe the behaviour required of the components to which the connector
can be applied. The glue describes how the activities of these components are coordi-
nated once they instantiate the roles.

Role instantiation was modelled in [6] through the morphisms used for intercon-
nection. However, the correct notion of morphism that models instantiation is the
one that corresponds to refinement as argued in [2]. Because refinement is composi-
tional with respect to parallel composition as explained in the previous section, the
results developed in [6] are still valid when refinement is used instead of interconnec-
tion morphisms to model instantiation. In particular, the meaning of a connector is
correctly given by the colimit of its configuration diagram in the sense that the prop-
erties inferred at the architectural level are guaranteed to hold in any system that results
from the instantiation. Hence, by reasoning about the program resulting from the
colimit, we may infer the properties of the underlying protocol.

Example 6.1. As an example, consider the following connector.

ender

<{x,y},{c}>
ut → c

 → i

 → cl

 ← send
 ← x

of← y

uffer

<{x,y},{c}>
 ← get
 ← x

of← y

ec → c
 → i

 → eof

eceiver

The glue of this connector is the program Buffer defined in example 4.4. The con-

157Using Explicit State to Describe Architectures

nector has two roles – Sender and Receiver .

program Sender is
 var output o : nat, eof : b o o l

input
internal rd : b o o l

i n i t ¬eof∧¬rd
d o prod :[¬rd,false →o:∈nat ||rd:=true]

[] send : [¬eof∧rd , false → rd:=false]
[] prv close : [¬eof,false → eof:=true]

program Receiver is
var output cl : bool

input i: nat, eof: bool
internal

i n i t ¬cl
d o rec : [¬eof∧¬cl ,false → s k i p]
 [] p r v close : [¬cl, ¬cl∧eof → cl:=true]

This connector is usually called a pipe [19] and describes the interaction protocol
we used in example 4.4. More concretely, it defines asynchronous message passing
through a channel with limited capacity that preserves the order of transmission.
Furthermore, it defines that the sender has to signal the end of data (through the output
variable eof) and the receiver is obliged to close the communication as soon as it is in-
formed that there will be no more data. Notice that progress guards are essential to
impose this restriction on the behaviour of the receiver and also to leave unspecified
when and how many messages the sender (receiver) will send (receive). We chose the
least deterministic assignment for the production of messages (denoted by the sort
symbol nat) in order to avoid committing to a particular discipline of production.

The semantics of the connector is given by the parallel composition of Sender, Re-
ceiver and Buffer with the restrictions defined by the configuration diagram. By rea-
soning about the behaviour of this program it is possible to conclude, for instance,
that the correctness of the transmission/reception of data does not depend on the order
in which each role processes the data.

The programs Merge and Consumer, defined in 3.1, refine, respectively, the role
Sender and Receiver (through inclusion morphisms in1 and in2) and, hence, the con-
nector pipe can be used to interconnect these components.

n1
erge eceiver

ipe onsumer
n2

ender

❚

7 Concluding Remarks

This paper was motivated by the need to promote higher levels of abstraction in archi-
tectural design while maintaining the separation between the description of component
behaviour and the interaction protocols that coordinate their interaction. For this pur-
pose, we investigated extensions to parallel program design based on the use of ex-
plicit state variables to accommodate the action-based discipline of interaction that is
typical of process-based languages. The idea was to bring together the benefits of the
two approaches: the explicit modelling of state facilitates the description of the com-
ponents of a system in terms of some abstract state whereas the communication fea-
tures of process languages are ideal for specifying the interaction of the components of
a system in a given architecture.

In order to discuss specific proposals and illustrate them over typical examples, our

158 Antónia Lopes and José Luiz Fiadeiro

study focused on an extension of the language CommUnity proposed in [5] as an ac-
tion-based version of Unity. The proposed extension integrates primitives that sup-
port non-determinism, choice and fairness, and refinement principles that are composi-
tional with respect to interconnection. The distinction between allowed and required
non-determinism motivated another fundamental change to CommUnity. Following
Goguen's categorical approach to General Systems Theory [8], we had already pro-
posed in previous papers (e.g. [6]) the adoption of Category Theory for formalising
architectural principles and constructions. The work reported in this paper made it
clear that separate notions of morphism are necessary for modelling component inter-
connection during system configuration, and refinement for moving between different
levels of abstraction. Similar distinctions were already recognised in [14] for specifi-
cations of system behaviour in temporal logic. Work is underway towards the integration
of specifications and CommUnity designs in the proposed categorical framework.

A different approach for combining process-based languages and state-based lan-
guages is the integration of existing languages, e.g., Z and Lotos [10] or Object-Z and
CSP [20]. The advantages of the approach developed herein over such integrations are
the following. On the one hand, it is not necessary to consider different specification
languages for different aspects of the same system. Instead, CommUnity supports the
description of the system at different levels of abstraction. Typically, the initial
stages of design are concerned with the architecture of the system (at the coordination
level), leaving the detailed description of the functionality of the components for later
stages of design. On the other hand, our framework supports the description of con-
nectors as well as their instantiation, at system configuration time, with concrete
components for the incremental construction of structured systems, something that is
out of the scope of the hybrids mentioned above.

On the contrary, an approach that seems more promising is the extension of exist-
ing languages and methods in ways similar to the proposed extension of Community.
The relationship between program design based on guarded-commands and specifica-
tion methods such as B, VDM or Z suggests that the use of private actions and pro-
gress guards could be integrated in those methods. The impact of adopting progress
guards (for shared actions) on specification languages like B and VDM++ was already
analysed in [13]. Further work is in progress that investigates the feasibility of these
extensions.

References

1 . M.Abadi and L.Lamport, "Composing Specifications", ACM TOPLAS, 15(1):73-132,
1993.

2 . R.Allen and D.Garlan, "A Formal Basis for Architectural Connectors", ACM TOSEM,
6(3):213-249,1997.

3 . K.Chandy and J.Misra, Parallel Program Design - A Foundation, Addison-Wesley
1988.

4 . J.L.Fiadeiro and A.Lopes, "Algebraic Semantics of Coordination", in AMAST'98,
Springer-Verlag, in print.

159Using Explicit State to Describe Architectures

5 . J.L.Fiadeiro and T.Maibaum, "Categorical Semantics of Parallel Program Design",
Science of Computer Programming, 28:111-138,1997.

6 . J.L.Fiadeiro and A.Lopes, "Semantics of Architectural Connectors", in TAPSOFT'97,
LNCS 1214, Springer-Verlag 1997, 505-519.

7 . N.Francez and I.Forman, Interacting Processes, Addison-Wesley 1996.
8 . J.Goguen, "Categorical Foundations for General Systems Theory", in F.Pichler and

R.Trappl (eds) Advances in Cybernetics and Systems Research, Transcripta Books
1973, 121-130.

9 . C.A.R Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
10. ITU Recommendation X.901-904, Open Distributed Processing - Ref. Model, July

1995.
11. R.Kuiper, "Enforcing Nondeterminism via Linear Temporal Logic Specifications using

Hiding", in B.Banieqbal, H.Barringer and A.Pnueli (eds), Temporal Logic in Specifica-
tion, LNCS 398, Springer-Verlag 1989, 295-303.

12. L.Lamport, "The Temporal Logic of Actions", ACM TOPLAS, 16(3):872-923, 1994.
13. K.Lano, J.Bicarregui, J.L.Fiadeiro and A.Lopes, "Specification of Required

Non-determinism", in J.Fitzgerald, C.Jones and P.Lucas (eds), Formal Methods Europe
1997, LNCS 1313, 298-317, Springer-Verlag, 1997.

14. A.Lopes and J.L.Fiadeiro,"Preservation and Reflection in Specification", in
AMAST'97, M.Johnson (ed), LNCS 1349, 380-394, Springer-Verlag, 1997.

15. D.C.Luckham and J.Vera, "An event-based architecture definition language", IEEE
TOSE, 21(9):717-734,1995.

16. J.Magee and J.Kramer, "Dynamic Structure in Software Architecures", in 4th Symp. on
Foundations of Software Engineering, ACM Press 1996, 3-14.

17. Z.Manna and A.Pnueli, The Temporal Logic of Reactive and Concurrent Systems,
Springer-Verlag, 1991.

18. B.Meyer, "Applying Design by Contract", IEEE Computer, Oct.1992, 40-51.
19. M.Shaw and D.Garlan, Software Architecture: Perspectives on an Emerging Discipline,

Prentice Hall, 1996.
20. G.Smith, "A Semantic Integration of Object-Z and CSP for the Specification of Con-

current Systems", in J.Fitzgerald, C.Jones and P.Lucas (eds), Formal Methods Europe
1997, LNCS 1313, 62-81, Springer-Verlag, 1997.

160 Antónia Lopes and José Luiz Fiadeiro

	Introduction
	Motivation
	Programming the Individual Components
	Specifying How Components Interact
	Refinement
	Defining and Applying Architectural Connectors
	Concluding Remarks
	References

