Throughout this section we will assume that $\Phi_{X}: X \rightarrow S$ is weakly prepared.
Definition 10.1. Suppose that $r \geq 2 . \bar{A}_{r}(X)$ holds if

1. $\nu(p) \leq r$ if $p \in X$ is a 1 point or a 2 point.
2. If $p \in X$ is a 1 point and $\nu(p)=r$, then $\gamma(p)=r$.
3. If $p \in X$ is a 2 point and $\nu(p)=r$, then $\tau(p)>0$.
4. $\nu(p) \leq r-1$ if $p \in X$ is a 3 point

Definition 10.2. Suppose that $r \geq 2$. $A_{r}(X)$ holds if

1. $\bar{A}_{r}(X)$ holds.
2. $\bar{S}_{r}(X)$ is a union of nonsingular curves and isolated points.
3. $\bar{S}_{r}(X) \cap\left(X-\bar{B}_{2}(X)\right)$ is smooth.
4. $\bar{S}_{r}(X)$ makes $S N C s$ with $\bar{B}_{2}(X)$ on the open set $X-B_{3}(X)$.
5. The curves in $\bar{S}_{r}(X)$ passing through a 3 point $q \in X$ have distinct tangent directions at q. (They are however, allowed to be tangent to a 2 curve).

Lemma 10.3. Suppose that X satisfies $\bar{A}_{r}(X)$ with $r \geq 2$. Then there exists a sequence of quadratic transforms $X_{1} \rightarrow X$ such that $A_{r}\left(X_{1}\right)$ holds.

Proof. Let $\pi: X_{1} \rightarrow X$ be a sequence of quadratic transforms so that the strict transform of $\bar{S}_{r}(X)$ makes SNCs with $\bar{B}_{2}(X)$. Then $\bar{A}_{r}\left(X_{1}\right)$ holds by Theorems 7.1 and 7.3, and $A_{r}\left(X_{1}\right)$ holds by Lemma 7.9 and Theorem 7.8.

Definition 10.4. Suppose that $A_{r}(X)$ holds. A weakly permissible monoidal transform $\pi: X_{1} \rightarrow X$ is called permissible if π is the blow-up of a point, a 2 curve or a curve C containing a 1 point such that $C \cup \bar{S}_{r}(X)$ makes $S N C s$ with $\bar{B}_{2}(X)$ at all points of C.

Remark 10.5. 1. If $A_{r}(X)$ holds and $\pi: X_{1} \rightarrow X$ is a permissible monoidal transform, then the strict transform of $\bar{S}_{r}(X)$ on X_{1} makes SNCs with $\bar{B}_{2}\left(X_{1}\right)$ at 1 and 2 points, and has distinct tangent directions at 3 points.
2. If $\pi: X_{1} \rightarrow X$ is a quadratic transform centered at a point $p \in X$ with $\nu(p)=r$ and $A_{r}(X)$ holds, then $A_{r}\left(X_{1}\right)$ holds.
3. If $A_{r}(X)$ holds and all 3 points q of X satisfy $\nu(q) \leq r-2$, then $\bar{S}_{r}(X)$ makes SNCs with $\bar{B}_{2}(X)$.

The Remark follows from Lemmas 7.9 and 7.7, and the observation that the strict transforms of nonsingular curves with distinct tangent directions at a point p intersect the exceptional fiber of the blow-up of p transversally in distinct points.

