10. $A_r(X)$

Throughout this section we will assume that $\Phi_X : X \to S$ is weakly prepared.

Definition 10.1. Suppose that $r \ge 2$. $\overline{A}_r(X)$ holds if

- 1. $\nu(p) \leq r$ if $p \in X$ is a 1 point or a 2 point.
- 2. If $p \in X$ is a 1 point and $\nu(p) = r$, then $\gamma(p) = r$.
- 3. If $p \in X$ is a 2 point and $\nu(p) = r$, then $\tau(p) > 0$.
- 4. $\nu(p) \leq r-1$ if $p \in X$ is a 3 point

Definition 10.2. Suppose that $r \ge 2$. $A_r(X)$ holds if

- 1. $\overline{A}_r(X)$ holds.
- 2. $\overline{S}_r(X)$ is a union of nonsingular curves and isolated points.
- 3. $\overline{S}_r(X) \cap (X \overline{B}_2(X))$ is smooth.
- 4. $\overline{S}_r(X)$ makes SNCs with $\overline{B}_2(X)$ on the open set $X B_3(X)$.
- 5. The curves in $\overline{S}_r(X)$ passing through a 3 point $q \in X$ have distinct tangent directions at q. (They are however, allowed to be tangent to a 2 curve).

Lemma 10.3. Suppose that X satisfies $\overline{A}_r(X)$ with $r \ge 2$. Then there exists a sequence of quadratic transforms $X_1 \to X$ such that $A_r(X_1)$ holds.

Proof. Let $\pi : X_1 \to X$ be a sequence of quadratic transforms so that the strict transform of $\overline{S}_r(X)$ makes SNCs with $\overline{B}_2(X)$. Then $\overline{A}_r(X_1)$ holds by Theorems 7.1 and 7.3, and $A_r(X_1)$ holds by Lemma 7.9 and Theorem 7.8.

Definition 10.4. Suppose that $A_r(X)$ holds. A weakly permissible monoidal transform $\pi : X_1 \to X$ is called permissible if π is the blow-up of a point, a 2 curve or a curve C containing a 1 point such that $C \cup \overline{S}_r(X)$ makes SNCs with $\overline{B}_2(X)$ at all points of C.

- **Remark 10.5.** 1. If $A_r(X)$ holds and $\pi : X_1 \to X$ is a permissible monoidal transform, then the strict transform of $\overline{S}_r(X)$ on X_1 makes SNCs with $\overline{B}_2(X_1)$ at 1 and 2 points, and has distinct tangent directions at 3 points.
 - 2. If $\pi : X_1 \to X$ is a quadratic transform centered at a point $p \in X$ with $\nu(p) = r$ and $A_r(X)$ holds, then $A_r(X_1)$ holds.
 - 3. If $A_r(X)$ holds and all 3 points q of X satisfy $\nu(q) \leq r-2$, then $\overline{S}_r(X)$ makes SNCs with $\overline{B}_2(X)$.

The Remark follows from Lemmas 7.9 and 7.7, and the observation that the strict transforms of nonsingular curves with distinct tangent directions at a point p intersect the exceptional fiber of the blow-up of p transversally in distinct points.