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Abstract. The paper cryptanalyses two public key cryptosystems based
on SL2(Z) that have been recently proposed by Yamamura.

1 Introduction

Yamamura [13,14] has recently described two public-key cryptosystems based
on subsemigroups of SL2(Z). This paper cryptanalyses both of these systems.
We show that a plaintext may be efficiently obtained from the corresponding
ciphertext and public key, and hence both systems are insecure.

There have been other proposals for cryptographic primitives based on group
theory. A public key cryptosystem based on ‘logarithmic signatures’ in finite
groups was proposed by Qu and Vanstone [9]. This system was cryptanalysed
by Blackburn, Murphy and Stern [1,2]. Related work, for example by Magliveras
and Memon [6], investigated the suitability of a cryptosystem based on permu-
tation groups. A hybrid system, primarily based on a knapsack problem but also
involving logarithmic signatures, was proposed by Qu and Vanstone [10] and
was cryptanalysed by Nguyen and Stern [7]. Tillich and Zémor [12] proposed a
hash function based on SL2(F2n). Geiselmann [5] described how to find collisions
for this hash function; see Charnes and Pieprzyk [3] for other comments on this
scheme.

The basic cryptanalytic approach of this paper is as follows. The ciphertext
in the cryptosystem described in [14] is a complex number z. It turns out that it
is easy to derive the first bit of the plaintext from z. An example of the possible
ciphertexts output by the cipher is given in Figure 2. These complex numbers
clearly fall into two easily distinguished regions in the complex plane, depending
on the first bit of the plaintext. Once the first bit has been recovered, it is easy to
compute the ciphertext corresponding to the plaintext with the first bit removed.
Hence we may recover all the plaintext one bit at a time.

The bulk of this paper shows that the phenomenon illustrated in Figure 2
occurs for all possible choices of private key, and so the cryptosystem proposed
in [14] is insecure. We also show how to reduce the security of the cryptosystem
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proposed in [13] to the security of the cryptosystem proposed in [14]; hence both
cryptosystems are insecure.

The rest of this paper is organised as follows. Section 2 contains the back-
ground on SL2(Z) that we require. Section 3 describes the two cryptosystems
that Yamamura proposes. Section 4 cryptanalyses these systems, and Section 5
discusses a slightly more general class of cryptosystems.

2 Background

Both the Yamamura cryptosystems are based on properties of the group SL2(Z)
of 2 × 2 integer matrices of determinant 1 under multiplication. This section
summarises properties of this group that we will need.

Define matrices A, B ∈ SL2(Z) by

A =
(

1 −1
1 0

)
and B =

(
0 −1
1 0

)
.

It is well known that these matrices generate SL2(Z). It is easy to check that
A3 = B2 = −I, where I is the 2 × 2 identity matrix. In fact, it is possible to
characterise SL2(Z) in terms of abstract group theory as an ‘amalgamated free
product’ of the cylic groups of order 6 and 4 generated by A and B respectively;
see Robinson [11, Section 6.4] for any facts about amalgamated free products
that we use.

The theory of amalgamated free products shows that each element g ∈
SL2(Z) has a unique representation as an element in ‘normal form’. More pre-
cisely, there exists a unique non-negative integer n, a unique ε ∈ {I,−I} and
unique elements s1, s2, . . . sn ∈ {A, A2, B} such that

g = εs1s2 · · · sn (1)

and such that for all k ∈ {1, 2, . . . , n − 1} either:

– sk ∈ {A, A2} and sk+1 = B, or
– sk = B and sk+1 ∈ {A, A2}.

We now introduce some more geometrical notions. We write GL2(C) for the
group of all 2× 2 matrices with complex entries and non-zero determinant. This
group acts on C ∪ {∞} by associating

g =
(

a b
c d

)
∈ GL2(C)

with the ‘Möbius transformation’ defined by

z �→ (az + b)/(cz + d).

It is well known — see Jones and Singerman [4] — that Möbius trasformations
map circles to circles (we include the limiting case of the lines in our definition
of circle).
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Since SL2(Z) is a subgroup of GL2(C), we may associate each element of
SL2(Z) with a Möbius transformation. The Möbius transformations associated
with SL2(Z) actually preserve the upper half plane H = {z ∈ C : Im(z) > 0}.

As Yamamura observes, this action gives rise to an efficient algorithm to
compute the normal form (1) of an arbitrary element g ∈ SL2(Z), up to sign; we
may describe this algorithm as follows. Define regions O, P , Q and R of H by

O = {z ∈ H : |z| > 1, |Re(z)| ≤ 1/2},
P = {z ∈ H : |z| ≥ 1, |Re(z)| ≥ 1/2},
Q = {z ∈ H : |z| ≤ 1, |z − 1| ≤ 1} and
R = H− (O ∪ P ∪ Q).

These regions are depicted in Figure 1.

R

O
P

Q

Fig. 1. The regions O, P , Q and R

(The region O is the standard fundamental domain for the action of SL2(Z)
on H.) Choose a point z0 in the interior of O; for example z0 = 2i. Define
z = g(z0). The following algorithm finds the normal form of g, up to sign.

Algorithm 1

1. Set k = 0.
2. If z ∈ O then halt.
3. Set k = k + 1.
4. If z ∈ P then set sk = A, if z ∈ Q then set sk = A2 and if z ∈ R then set

sk = B.
5. Set z = s−1

k (z).
6. Return to step 2.

The sequence s1s2...sn is the normal form of ±g; see Yamamura [14] for details.
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3 The Cryptosystems

This section describes the two public key cryptosystems proposed by Yama-
mura. We refer to the system proposed in [13] as the “polynomial-based scheme”
and the system proposed in [14] as the “point-based scheme”. We describe the
two schemes in a different manner to Yamamura; we will prove below that the
schemes we describe are no less general than the Yamamura schemes.

3.1 The Point-Based Scheme

A user generates its public key as follows. The user chooses words V1 and V2 in
the generators A and B of SL2(Z) so that V1 and V2 generate a free subsemigroup
of SL2(Z). This is done so that any word in V1 and V2 is in normal form with
respect to A and B; moreover, one of V1 and V2 should not be an initial segment
of the other. For example, for any integers i and j such that i, j ≥ 2, a valid choice
of V1 and V2 is V1 = (BA)i and V2 = (BA2)j . The user then chooses a matrix
M ∈ GL2(C) and a point p in the interior of the fundamental region O. The
public key is defined to be an ordered triple (W1, W2, q) where W1, W2 ∈ GL2(C)
and q ∈ C are defined by

W1 = M−1V1M,

W2 = M−1V2M

q = M−1(p).

The private key is the matrix M .
Encryption: Given a message of n values i1, i2, . . . , in ∈ {1, 2} the ciphertext
is the point q′ = W (q) ∈ C where

W = Wi1Wi2 · · ·Win .

Note that M(q′) = Vi1Vi2 · · ·Vin(p).
Decryption: The receiver computes the point p′ = M(q′) ∈ H. The receiver
then uses Algorithm 1 to find the normal form of word Vi1Vi2 · · ·Vin in A and
B. It is then easy to recover the sequence i1, i2, . . . , in.

Following Yamamura, we ignore any practical issues relating to exact compu-
tation in C. We assume that all calculations are performed to sufficient precision
so that all the operations we consider may be carried out.

3.2 The Polynomial-Based Scheme

In this scheme, a user generates a public key as follows. The user chooses V1, V2

and M as in the point-based scheme above. The user then chooses a ∈ C and
a pair F1(x), F2(x) of 2 × 2 matrices over the polynomial ring C[x] such that
F1(a) = V1 and F2(a) = V2. The public key is the pair (W1(x), W2(x)) where
Wi(x) = M−1Fi(x)M for i ∈ {1, 2}. The secret key is the matrix M and the
complex number a.
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Encryption The sequence i1, i2, . . . , in ∈ {1, 2} is encrypted as the matrix E(x)
where

E(x) = W2(x)W1(x)i1W2(x)W1(x)i2 · · ·W2(x)W1(x)in W2(x).

[One could have equally used the matrix
∏n

j=1 Wij (x) as in the point-based
scheme.]
Decryption The receiver calculates g ∈ SL2(Z), where g = ME(a)M−1. The
user chooses a point p in the interior of the fundamental domain O, calculates
q = g(p) and recovers the message in essentially the same way as in the point-
based scheme.

3.3 Some Comments

The description of the schemes above differ slightly from the presentation in
Yamamura’s papers [13,14]. Firstly, in the point-based scheme, Yamamura re-
stricts M to lie in GL2(R), and so our scheme is more general in this respect.
Secondly, in both schemes Yamamura allows a user to choose any generators
A1, B1 ∈ SL2(Z) such that A3

1 = B2
1 = −I in place of the matrices A and B.

With this more general choice, our method of cryptanalysis still applies; see
Section 5.

To avoid difficulties with the decryption method, Yamamura has recently [15]
added the restriction that A1 = P−1AP and B1 = P−1BP for some matrix
P ∈ SL2(Z). Note that, when A1 and B1 are chosen in this way, then an instance
of Yamamura’s scheme [13,14] with a matrix M is the same as an instance of
the scheme described above with M replaced by PM . Hence the schemes above
are as general as the schemes described by Yamamura if A1 and B1 are chosen
in this manner.

4 Cryptanalysis

This section contains two subsections, which cryptanalyse each of the two cryp-
tosystems in turn.

4.1 Cryptanalysis of the Point-Based Scheme

We begin this section with an example of a cryptanalysis. Suppose V1 = BABA,
V2 = BA2, p = 2i and

M =
(

0.8 − 0.3i −0.2 + 0.4i
−0.8 + 0.9i 2.7 + 0.3i

)
∈ GL2(C).

We will show that the points of C corresponding to encryptions of messages
with i1 = 1 are easily distinguished from those with i1 = 2. This is clear for
our example: Figure 2 is a plot of all points in C corresponding to messages of
length between 1 and 9. The points fall into two regions depending on the bit i1
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of their corresponding plaintexts: those points corresponding to messages with
i1 = 1 correspond precisely to the lower collection of points (those with negative
imaginary part). Thus, given an intercepted ciphertext q′, it is easy to determine
the first bit i1 of the corresponding plaintext by finding which of the two regions
q′ lies in. Once i1 has been determined, the first digit of the plaintext may be
stripped off by replacing q′ by V −1

i1
(q′) and the process repeated to determine

earlier digits until q′ = q.

Fig. 2. Example of Ciphertexts

It remains to show that for all choices of parameters, the messages always
fall into two regions in a similar way, and to show that these regions may be
derived from the public key. We begin by showing that points corresponding to
ciphertexts fall into two regions.

For W1, W2 ∈ GL2(C) and q ∈ C, define the set Sq(W1, W2) ⊆ C by

Sq(W1, W2) =

⎧⎨
⎩W (q) ∈ C : W =

n∏
j=1

Wij where n ≥ 0 and ij ∈ {1, 2}
⎫⎬
⎭ .

Proposition 1. Let (W1, W2, q) be a public key of the point-based scheme. Then
the sets W1Sq(W1, W2) and W2Sq(W1, W2) are separated by a boundary which
consists of at most 3 circle segments.

Note: We include the limiting case of a line in our definition of ‘circle’.
Proof: Consider the words V1 and V2, the point p ∈ O and the matrix M ∈
GL2(C) that were used to construct the public key. Without loss of generality,



58 Simon R. Blackburn and Steven Galbraith

the normal forms of V1 and V2 with respect to A and B may be written in the
form

V1 = ±gAg1 and
V2 = ±gBg2,

where g, g1 and g2 are words in A and B. The fact that the normal form al-
gorithm of Section 2 always works implies that g−1V1Sp(V1, V2) ⊆ P ∪ Q and
g−1V2Sp(V1, V2) ⊆ R. The boundary of P ∪ Q consists of 3 circle segments. We
may take the image of this boundary under M−1g as the boundary between
W1Sq(W1, W2) and W2Sq(W1, W2). �

In fact, the boundary that separates the two sets is usually much simpler than
that constructed in the proposition. Indeed, except for the single case when V2 =
gB, we may take the image of the imaginary axis under M−1g as the boundary.
Even in the exceptional case when V2 = gB, the image of the imaginary axis
separates the two sets once we remove single point W2(q). Hence for all practical
purposes, we may assume that the two sets are separated by a circle.

It is now clear how cryptanalysis proceeds:

1. Generate some random points from W1Sq(W1, W2) and W2Sq(W1, W2) using
the public key.

2. Find a circle that separates the two subsets that have been generated. Such
a circle can be determined by a variety of methods.

3. For a ciphertext q′, determine the first bit i1 of the corresponding plaintext
by determining which side of the circle q′ lies.

4. Replace q′ by W−1
i1

q′ and, while q 	= q′, go to step 3.

4.2 Cryptanalysis of the Polynomial-Based Scheme

We now cryptanalyse the polynomial-based scheme, by reducing the problem to
an instance of breaking the point-based scheme.

The cryptanalysis of the previous subsection makes use of the fact that Mq ∈
O. We justify why the methods will produce good results for all q ∈ C excluding
a set of measure zero. We will show that all but a few points in W1Sq(W1, W2)
and W2Sq(W1, W2) are separated by the boundary constructed in Proposition 1.
This will allow us to use the same four steps above to recover almost all of the
plaintext; see below.

Let q ∈ C and suppose that p = M(q) ∈ H. (This is no real loss of generality,
since a similar argument will work when p ∈ −H.) Assume further that p is not
on the boundary of any image of O under SL2(Z). Then there is some h ∈ SL2(Z)
such that h−1(p) is in the interior of O. Let i1, . . . , in ∈ {1, 2}. The algorithm to
find the normal form of an element of SL2(Z) given by Yamamura works by con-
sidering the images of a point in the fundamental domain. Since our point p is in
the image of the fundamental domain under the element h, the algorithm of Ya-
mamura produces the normal form of Vi1Vi2 · · ·Vinh rather than of Vi1Vi2 · · ·Vin

when given Vi1Vi2 · · ·Vin(p). Now, the normal form of Vi1Vi2 · · ·Vinh almost al-
ways begins with the word Vi1 — the only way this can fail to happen is if h
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begins with the normal form of (Vi2 · · ·Vin)−1, and this bad case is extremely
unlikely. Indeed, the likelihood of the bad case occurring tends to 0 exponen-
tially as n tends to infinity. Thus, if we construct our approximations to the sets
W1Sq(W1, W2) and W2Sq(W1, W2) by sampling words in W1 and W2 of small
length, the methods of the previous subsection will recover all but (at worst) the
last few terms of the sequence i1, i2, . . . , in with overwhelming probability. Even
if problems occur with recovering the final few terms, this is easily overcome by
exhaustive search.

We now cryptanalyse the polynomial-based scheme. We know that there is
some a ∈ C such that the matrices W1(a) and W2(a) have determinant 1. Hence,
gcd(det(W1(x))− 1, det(W2(x))− 1) is a polynomial which has a as a root. The
roots of this polynomial may be computed to arbitrary precision by numerical
methods; see Press et al [8] for example. One of these roots will be the value of
a we are seeking. In fact, for most choices of F1(x) and F2(x), there will only be
one root a. For each candidate a′ for a we repeat the following process.

Let E(x) be an intercepted ciphertext. Choose a point p ∈ C and compute
p′ = E(a′)(p). We now use the method described in the cryptanalysis of the
point-based scheme to express E(a′) as a product of the matrices W1(a′) and
W2(a′), thus giving us a candidate plaintext. If the plaintext encrypts to the
intercepted ciphertext (which it is almost certain to do if a′ = a), we have
decrypted successfully.

5 More General Generators

It might be hoped that a different choice A1, B1 of generators of SL2(Z) such
that A3

1 = B2
1 = −I might resist the attacks above. (If this is done, a different

decryption method must be found.) However, since we only care about A1 and B1

up to conjugation in GL2(C), we may assume that A1 and B1 are of a restricted
form (as outlined in the following proposition). We may then use this restricted
form to show that no choices of A1 and B1 resist the attacks presented above.

Proposition 2. Let A1, B1 ∈ SL2(Z) be generators for SL2(Z) such that A3
1 =

B2
1 = −I. Then there exists a matrix N ∈ GL2(R) such that

(i) N−1A1N = A and
(ii) the normal form (1) of N−1B1N with respect to A and B has the
property that s1 = sn = B.

Proof: The theory of amalgamated free products shows that any element of finite
order in SL2(Z) is conjugate (by an element of SL2(Z)) to an element in either
the subgroup generated by A or the subgroup generated by B. Since A1 has order
6, there exists N ∈ SL2(Z) that conjugates A1 to either A or A−1. Conjugating
by the matrix T defined by

T =
(

0 1
1 0

)
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preserves SL2(Z) and maps A−1 to A. Thus, replacing N by NT if necessary,
there exists N ∈ GL2(R) such that property (i) holds and that N−1B1N ∈
SL2(Z).

We may assume that the normal form (1) of N−1B1N with respect to A
and B has the property that s1 = B, for if not we replace N by Ns1. Since
(N−1B1N) has finite order, the concatenation of two copies of the normal form
of N−1B1N cannot still be in normal form. Hence sn = B and so property (ii)
holds. �

The form of A1 and B1 in Proposition 2 has the useful property that any
word in normal form in A1 and B1 is also in normal form with respect to A and
B once each occurence of B1 is replaced by the normal form of B1 with respect to
A and B. Moreover, two words in A1 and B1 have the property that one is not an
initial segment of the other if and only if the same is true for their normal forms
with respect to A and B. This means that the polynomial based scheme with
general A1 and B1 is a special case of the scheme detailed above. Moreover, the
point-based scheme with general A1 and B1 is also a special case of the scheme
described in this paper, if we allow the point p to be an arbitrary point in C.
However, the methods discussed in the cryptanalysis of the polynomial-based
scheme make the cryptosystem insecure in this case.

References

1. S.R. Blackburn, S. Murphy and J. Stern, ‘Weaknesses of a public-key cryptosystem
based on factorizations of finite groups’, in T.Helleseth (Ed) Advances in Cryptology
— EUROCRYPT ’93, Lecture Notes in Computer Science 765, Springer, Berlin,
1994, pp. 50-54. 52

2. S.R. Blackburn, S. Murphy and J. Stern, ‘The cryptanalysis of a public-key im-
plementation of Finite Group Mappings’, J. Cryptology Vol. 8 (1995), pp. 157-166.
52

3. C. Charnes and J. Pieprzyk, ‘Attacking the SL2 hashing scheme’, in J. Pieprzyk
and R. Safavi-Naini (Eds) Advances in Cryptology — ASIACRYPT ’94, Lecture
Notes in Computer Science 917 , Springer, Berlin, 1995, pp. 322-330. 52

4. G. A. Jones, D. Singerman, Complex functions, Cambridge (1987) 53

5. W. Geiselmann, ‘A note on the hash function of Tillich and Zémor’ in C.Boyd
(Ed) Cryptography and Coding, Lecture Notes in Computer Science 1025, Springer,
Berlin, 1995, pp.257-263. 52

6. S.S. Magliveras and N.D. Memon, ‘Algebraic properties of cryptosystem PGM’, J.
Cryptology, Vol. 5 (1992), pp. 167-183. 52

7. P. Nguyen and J. Stern, ‘Merkle–Hellman revisited: A cryptanalysis of the Qu–
Vanstone cryptosystem based on group factorizations’ in B.S. Kaliski (Ed) Ad-
vances in Cryptology — CRYPTO ’97, Lecture Notes in Computer Science 1294,
Springer, Berlin, 1997, pp. 198-212. 52

8. W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipes in C,
2nd Edition, Cambridge University Press, Cambridge, 1988. 59

9. M. Qu and S.A. Vanstone, ‘New public-key cryptosystems based on factorizations
of finite groups’, presented at AUSCRYPT ‘92. 52



Cryptanalysis of Two Cryptosystems Based on Group Actions 61

10. M. Qu and S.A. Vanstone, ‘The knapsack problem in cryptography’ in Finite fields:
Theory, Applications, and Algorithms, Contemporary Mathematics Vol. 168, Amer-
ican Mathematical Society, 1994, pp. 291-308. 52

11. D.J.S. Robinson, A Course in the Theory of Groups, Springer, New York, 1982.
53

12. J-P. Tillich and G. Zémor, ‘Hashing with SL2’, in Y.G. Desmedt (Ed), Advances
in Cryptology — CRYPTO ’94, Lecture Notes in Computer Science 839, Springer,
Berlin, 1994, pp. 40-49. 52

13. A. Yamamura, ‘Public-key cryptosystems using the modular group’, in Imai, Hideki
(Eds) et al. International Workshop on the Theory and Practice of Cryptography,
Lecture Notes in Computer Science 1431, Springer, Berlin, 1998, pp. 203-216. 52,
53, 55, 56

14. A. Yamamura, A functional cryptosystem using a group action, ACIPS to appear.
52, 53, 54, 55, 56

15. A. Yamamura, personal communication, 3 March 1999. 56



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




