
On Cryptographically Secure Vectorial Boolean

Functions

Takashi Satoh1, Tetsu Iwata2, and Kaoru Kurosawa2

1 Faculty of International Environmental Engineering
Promotion and Development Office,

Kitakyushu University
4–2–1 Kitagata, Kokuraminami-ku, Kitakyushu 802–8577, Japan

tsatoh@kitakyu-u.ac.jp
2 Department of Electrical and Electronic Engineering,

Faculty of Engineering,
Tokyo Institute of Technology

2–12–1 O-okayama, Meguro-ku, Tokyo 152–8552, Japan
{tez,kurosawa}@ss.titech.ac.jp

Abstract. In this paper, we show the first method to construct vecto-
rial bent functions which satisfy both the largest degree and the largest
number of output bits simultaneously. We next apply this method to
construct balanced vectorial Boolean functions which have larger non-
linearities than previously known constructions.

1 Introduction

Boolean functions play an important role in block ciphers (for example, see
[3,7,8,10,11]) and stream ciphers [12,2]. The nonlinearity Nf of a Boolean func-
tion f(x1, . . . , xn) is defined as a distance between f and the set of affine func-
tions {a0 ⊕ a1x1 ⊕ · · · ⊕ anxn}. Nf should be large to resist the linear attack
[2,6].

f(x1, . . . , xn) is said to be a bent function if it has the maximum nonlinearity
[5,9]. More generally, we say that a vectorial Boolean function F (x1, . . . , xn) =
(f1, . . . , fm) is a (n, m)-bent function if any nonzero linear combination of
f1, . . . , fm is a bent function. For (n, m)-bent functions, it is known that [7]

m ≤ n/2 . (1)

On the other hand, the degree of f , deg(f), is defined as the degree of the
highest degree term of the algebraic normal form:

f(x1, . . . , xn) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj ⊕ · · · ⊕ a1,2,...,nx1x2 · · ·xn .

The degree of a vectorial Boolean function F (x1, . . . , xn) = (f1, . . . , fm) is de-
fined as

deg(F )
�
= min

(c1,...,cm) �=(0,...,0)
deg(c1f1 ⊕ · · · ⊕ cmfm) .
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In block ciphers, deg(F ) should be large to resist the higher order differential
attack [4]. For (n, m)-bent functions, it is known that [5,9]

deg(F ) ≤ n/2 . (2)

However, no construction method has been known so far which achieves both
equalities of eq.(1) and eq.(2) simultaneously. In this paper, we show the first
method to construct (n, m)-bent functions which satisfy the both equalities of
eq.(1) and eq.(2) simultaneously.

It is known that bent functions are not balanced. For m = 1, Seberry, Zhang
and Zheng [10] and Dobbertin [3] showed balanced functions which have large
nonlinearity. For m = n, Nyberg showed balanced vectorial Boolean functions
with high nonlinearity [8].

We next apply our method to construct balanced vectorial Boolean func-
tions with high nonlinearity. For 2 ≤ m ≤ n/2, our balanced vectorial Boolean
functions have larger nonlinearity than that of [8].

2 Bent Functions

For a Boolean function f(x1, . . . , xn), define

‖f(x1, . . . , xn)‖ �= |{(x1, . . . , xn) | f(x1, . . . , xn) = 1}| .

Nf
�
= min

a0,...,an

‖f(x1, . . . , xn)⊕ (a0 ⊕ a1x1 ⊕ · · · ⊕ anxn)‖ .

Nf is called the nonlinearity of f and it denotes a distance between f and the
set of affine functions {a0⊕ a1x1 ⊕ · · ·⊕ anxn}. For a vectorial Boolean function
F (x1, . . . , xn) = (f1, . . . , fm), the nonlinearity NF is defined as

NF
�
= min

(c1,...,cm) �=(0,...,0)
Nc1f1⊕···⊕cmfm . (3)

NF should be large to resist the linear attack [2,6]. It is known that

Nf ≤ 2n−1 − 2
n
2 −1 and NF ≤ 2n−1 − 2

n
2 −1 . (4)

Definition 2.1. f(x1, . . . , xn) is called a bent function if Nf = 2n−1 − 2
n
2 −1.

F (x1, . . . , xn) = (f1, . . . , fm) is called a (n, m)-bent function if NF = 2n−1 −
2

n
2 −1.

Proposition 2.1. [5,9] If f(x1, . . . , xn) is a bent function, then n is even and

deg(f) ≤ n/2 .

Proposition 2.2. [7] If F (x1, . . . , xn) = (f1, . . . , fm) is a (n, m)-bent function,
then n is even,

m ≤ n/2 and deg(F ) ≤ n/2 .
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For even n, let X �
= (x1, . . . , xn/2) and Y �

= (y1, . . . , yn/2). Then it is known
that

f(Y,X ) = π(Y) · X T ⊕ g(Y)
is a bent function if π is a permutation on {0, 1}n/2, where g(Y) is any Boolean
function [1]. This is called a Maiorana-McFarland type bent function [1]. From
the definition of (n, m)-bent functions, we have the following proposition imme-
diately.

Proposition 2.3. [7] F (Y,X ) = (f1, . . . , fm) is a (n, m)-bent function if

fi(Y,X ) = πi(Y) · X T ⊕ gi(Y)

and every nonzero linear combination of {πi} is a permutation on {0, 1}n/2,
where gi(Y) is any Boolean function.

Nyberg gave several constructions of such {πi} [7].

3 Proposed Vectorial Bent Function

3.1 Notation

For a binary vector (y1, . . . , ym), define

dec(y1, . . . , ym)
�
= 2m−1y1 + 2m−2y2 + · · ·+ ym .

For an element α of GF(2m), let [α] denote a vector representation of α.

3.2 Proposed Construction

We now present a method to construct (n, m)-bent functions which satisfy both
equalities of Proposition 2.2.

Proposition 3.1. [5, page 372] Any Boolean function f can be expanded as

f(x1, . . . , xn) =
⊕

a1,...,an

h(a1, . . . , an)xa1
1 · · ·xan

n ,

where
h(a1, . . . , an) =

⊕
b⊂a

f(b1, . . . , bn) ,

and b ⊂ a means that the 1’s in (b1, . . . , bn) are a subset of the 1’s in (a1, . . . , an).

Lemma 3.1. Let α be a primitive element of GF(2m). Then

1 + α + α2 + · · ·+ αl

{ �= 0 if 0 < l + 1 < 2m − 1 ,
= 0 if l + 1 = 2m − 1 .
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Proof. Since α is a primitive element, we have

(1 + α)(1 + α + α2 + · · ·+ αl) = 1 + αl+1

{ �= 0 if 0 < l + 1 < 2m − 1 ,
= 0 if l + 1 = 2m − 1 .

Therefore, this lemma holds. 
�
For even n, let m = n/2, X = (x1, . . . , xm) and Y = (y1, . . . , ym). Let α be

a primitive element of GF(2n/2). Consider F (Y,X ) = (f1, . . . , fn/2) such that

fi(Y,X ) = [ϕi(Y)] · X T ⊕ gi(Y) ,

where

ϕi(Y) �
=

{
0 if Y = (0, . . . , 0) ,
αdec(Y)+i−1 otherwise

and gi is any Boolean function.

Theorem 3.1. The above F is a (n, m)-bent function such that m = n/2 and
deg(F ) = n/2.

Proof. For any c = (c1, . . . , cm) �= (0, . . . , 0), let

Φc(Y) �
= c1ϕ1(Y) + · · ·+ cmϕm(Y) . (5)

Then it is easy to see that

Φc(Y) =
{
0 if Y = (0, . . . , 0) ,

αdec(Y)γ otherwise ,
(6)

where
γ

�
= (c1 + c2α + · · ·+ cmαm−1) �= 0 (7)

because α is a primitive element of GF(2m). This implies that [Φc(Y)] is a per-
mutation on {0, 1}m. Therefore, F is a (n, n/2)-bent function from Proposition
2.3.

Next suppose that [Φc(Y)] is written as

[Φc(Y)] = h(1, . . . , 1)y1 · · · ym

⊕h(1, . . . , 1, 0)y1 · · · ym−1

⊕ · · · ⊕ h(0, 1, . . . , 1)y2 · · · ym

⊕ · · · ⊕ h(0, . . . , 0) .

Let β
�
= 1 + α + α2 + · · ·+ α2m−1−1. Then

β = 1 + α + α2 + · · ·+ α2m−1−1 =
∑

(i2,...,im)

αdec(0,i2,...,im) .
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From eq.(6)

γβ = γ

 ∑
(i2,...,im)

αdec(0,i2,...,im)

 =
∑

(i2,...,im)

Φc(0, i2, . . . , im) .

Finally, from Proposition 3.1, we have

h(0, 1, . . . , 1) =
⊕

(i2,...,im)

[Φc(0, i2, . . . , im)] = [γβ] . (8)

Hence, we have

[Φc(Y)] · X T = [γβ] · X T y2 · · · ym ⊕ · · · , (9)

where γβ �= 0 from Lemma 3.1 and eq.(7). Therefore,

deg([Φc(Y)] · X T ) ≥ deg([γβ] · X T y2 · · · ym) = m = n/2 .

This means that deg(F ) = n/2 since deg(F ) ≤ n/2 from Proposition 2.2. 
�

3.3 Maximum Degree for Each Variable

Definition 3.1. We say that a (n, m)-bent function F (x1, . . . , xn)=(f1, . . . , fm)
has the maximum degree for each variable if each variable xi appears in some
term of degree n/2.

Definition 3.2. [5, page 120] A normal basis of GF(pk) is a basis of the form
β, βp, . . . , βpk−1.

Proposition 3.2. [5, page 122] A normal basis exists in any field GF(pk).

Theorem 3.2. In the proposed construction, let m = n/2 and let

β = 1 + α + α2 + · · ·+ α2m−1−1 . (10)

Then our (n, m)-bent function F has the maximum degree for each variable if
{β, β2, . . . , β2m−1} is a normal basis of GF(2m).

Proof. In eq.(8), we have proved that

h(0, 1, . . . , 1) = [γβ] .

Similarly, we can prove that

h(1, . . . , 1, 0) = [γβ2] ,

h(1, . . . , 1, 0, 1) = [γβ22
] ,

...
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Then eq.(9) becomes as follows.

[Φc(Y)] · X T = [γβ2] · X T y1 · · · ym−1 ⊕ · · · ⊕ [γβ] · X T y2 · · · ym ⊕ · · · .

Now [γβ2], [γβ22
], . . . , [γβ] are linearly independent since {β, β2, . . . , β2m−1} is

a normal basis and γ �= 0. This means that each xi is included in some term
of degree m = n/2. It is clear that each yi is included in some term of degree
n/2. 
�
Corollary 3.1. Our (n, n/2)-bent function F has the maximum degree for each
variable if 2n/2 − 1 is a prime.

Proof. There exists a normal basis β, β2, β22
, . . . , β2n/2−1

in GF(2n/2) from
Proposition 3.2. On the other hand, if eq.(10) holds, then from lemma 3.1,

(1 + α2m−1
)β = 1 + α + α2 + · · ·+ α2m−1 = α2m−1 = 1

and

(1 + α2m

)β2 = 1
(1 + α)β2 = 1

α = β−2 + 1 .

Now any nonzero element is a primitive element of GF(2n/2) if 2n/2 − 1 is a
prime. Therefore, α = β−2 + 1 is a primitive element. This implies that the
condition of Theorem 3.2 is satisfied. 
�

4 Application to Balanced Boolean Functions

We say that f(x1, . . . , xn) is balanced if

‖f(x1, . . . , xn)‖ = 2n−1 .

We also say that F (x1, . . . , xn) = (f1, . . . , fm) is balanced if any nonzero linear
combination of f1, . . . , fm is balanced.

For m = 1, Seberry, Zhang and Zheng [10] and Dobbertin [3] showed balanced
functions which have large nonlinearity. For m = n, Nyberg showed balanced
vectorial Boolean functions with high nonlinearity such as follows.

Proposition 4.1. [8] For m = n, there exists a balanced vectorial Boolean func-
tion such that

NF

{≥ 2n−1 − 2
n
2 if n is even ,

= 2n−1 − 2
n−1

2 if n is odd .

This section shows that we can obtain balanced vectorial Boolean functions
which have larger nonlinearity than Proposition 4.1 for 2 ≤ m ≤ n/2 by applying
our technique of Sec.3.2.
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Theorem 4.1. Suppose that there exists a balanced vectorial Boolean function
F (x1, . . . , xh) = (f1, . . . , fm) with nonlinearity NF for m ≤ h. Then there exists
a balanced vectorial Boolean function F̃ = (f̃1, . . . , f̃m) with 2h input variables
such that

N
F̃
≥ NF + 2h−1(2h − 2) .

Proof. Let X = (x1, . . . , xh) and Y = (y1, . . . , yh). Let α be a primitive element
of GF(2h). Define

f̃i(Y,X )
�
=

{
fi(X ) if Y = (0, . . . , 0) ,[
αdec(Y)+i−1

] · X T ⊕ gi(Y) otherwise .

where gi(Y) is any Boolean function. Let F̃ (Y,X )
�
= (f̃1, . . . , f̃m). For any c =

(c1, . . . , cm) �= (0, . . . , 0), let

f̃c(X ,Y) �
= c1f1(X ,Y) ⊕ · · · ⊕ cmfm(X ,Y)

=


c1f1(X ) ⊕ · · · ⊕ cmfm(X ) if Y = (0, . . . , 0) ,(

c1[ϕ1(Y)] ⊕ · · · ⊕ cm[ϕm(Y)]
)
· X T

⊕c1g1(Y) ⊕ · · · cmgi(Y)
otherwise ,

where ϕi(Y) = αdec(Y)+i−1.
We first prove that f̃c(Y,X ) is balanced. For Y = (0, . . . , 0), f̃c(X , 0, . . . , 0) =

c1f1 ⊕ · · · ⊕ cmfm is balanced since F is balanced. For Y �= (0, . . . , 0),

c1[ϕ1(Y)] ⊕ · · · ⊕ cm[ϕm(Y)] = [αdec(Y)(c1 + c2α + · · ·+ cmαm−1)]
= [αdec(Y)γ] �= (0, . . . , 0) (11)

where γ = c1+c2α+· · ·+cmαm−1. Note that γ �= 0 since α is a primitive element
of GF(2h). Therefore (c1[ϕ1(Y)] ⊕ · · · ⊕ cm[ϕm(Y)]) · X T = [αdec(Y)γ] · X T is
balanced for each fixed Y �= (0, . . . , 0). This implies that f̃c(Y,X ) is balanced.

We next compute the nonlinearity of f̃c(Y,X ). Let

L(Y,X ) = a · YT ⊕ b · X T ⊕ c0 .

Then

N
F̃
= min

L
||f̃c(Y,X ) ⊕ L(Y,X )||

≥ min
L

||f̃c(0, . . . , 0,X )⊕ L(0, . . . , 0,X )||

+min
L

∑
Y�=(0,...,0)

||f̃c(Y,X ) ⊕ L(Y,X )||

= min
b,c0

||c1f1(X )⊕ · · · ⊕ cmfm(X ) ⊕ b · X T ⊕ c0||

+min
b,c0

∑
Y�=(0,...,0)

||(c1[ϕ1(Y)]⊕ · · · ⊕ cm[ϕm(Y)] ⊕ b) · X T ⊕ c̃Y ||

≥ NF +min
b,c0

∑
Y�=(0,...,0)

||([αdec(Y)γ]⊕ b) · X T ⊕ c̃Y ||
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for some c̃Y (= 0 or 1) from eq.(11). For any b, there exists at most one Y such
that

[αdec(Y)γ]⊕ b = (0, . . . , 0) . (12)

If [αdec(Y)γ]⊕ b �= (0, . . . , 0), then

||([αdec(Y)γ]⊕ b) · X T ⊕ c̃Y || = 2h−1 .

Hence,
N

F̃
≥ NF + 2h−1 ((2h − 1)− 1) .


�
Corollary 4.1. Suppose that there exists a balanced vectorial Boolean function
F (x1, . . . , xh) = (f1, . . . , fm) with nonlinearity NF for m ≤ h. Then there exists
a balanced vectorial Boolean function F̃ with 2sh input variables such that

N
F̃
≥ NF + 22sh−1 − 1

2
(22s−1h + 22s−2h + · · ·+ 22h + 2 · 2h) .

Finally, we can obtain the following corollary from Corollary 4.1 and Propo-
sition 4.1.

Corollary 4.2. If n = 2sh, then there exists a balanced vectorial Boolean func-
tion F (x1, . . . , xn) = (f1, . . . , fm) such that m ≤ h and

NF ≥
{
22sh−1 − 1

2 (2
2s−1h + 22s−2h + · · ·+ 2h + 2

h
2 +1) if h is even ,

22sh−1 − 1
2 (2

2s−1h + 22s−2h + · · ·+ 2h + 2
h+1
2 ) if h is odd .

(Remark) Corollary 4.2 gives larger nonlinearity than Proposition 4.1 for s ≥ 1
which corresponds to 2 ≤ m ≤ n/2.
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