
Elliptic Scalar Multiplication Using Point

Halving

Erik Woodward Knudsen

De La Rue Card Systems
erik.knudsen@fr.delarue.com

Abstract. We describe a new method for conducting scalar multiplica-
tion on a non-supersingular elliptic curve in characteristic two. The idea
is to replace all point doublings in the double-and-add algorithm with a
faster operation called point halving.

1 Introduction

The security of cryptosystems like the Diffie-Hellman scheme is based on the
intractability of the Discrete Logarithm Problem of the underlying group. For
most elliptic curves defined over finite fields the Discrete Logarithm Problem
is believed to be hard to solve and for this reason they are interesting in cryp-
tography. The most time consuming part of the Diffie-Hellman key exchange
protocol is multiplication of a point on the curve not known in advance by a
random scalar. We will only discuss curves defined over fields of characteristic
two; a popular choice for implementations since addition in such a field cor-
responds to the exclusive-or operation. It is known that scalar multiplication
can be speeded up on a curve which is defined over a field of small cardinality
([Koblitz],[Meistaff],[Muller1]) using the Frobenius morphism. The curves can
be chosen such that no known attack applies to them. However, at least princi-
pally, it is of course preferable to be able to choose the curve which one wants to
use from as general a class of curves as possible. The method described in this
paper applies in its fastest version to half of the elliptic curves. Moreover, from
a cryptographic point of view it is the ”better” half. Before giving the principle
of the method we formulate the basic concepts. See for example [Silverman] for
an introduction to the theory of elliptic curves.

Let n be a fixed integer. Let F2n denote the field with 2n elements and let
F2n denote the algebraic closure of F2n . Let O denote the point at infinity. By
a non-supersingular elliptic curve E defined over F2n we mean the set

E = {(x, y) ∈ F2n × F2n | y2 + xy = x3 + ax2 + b} ∪ {O} a, b ∈ F2n , b �= 0

It is well known that E can be equipped with an abelian group structure where
the point at infinity is the neutral element. It is customary to call the elements

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASIACRYPT’99, LNCS 1716, pp. 135–149, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

136 Erik Woodward Knudsen

of E for points. We will work with the finite subgroup of E

E(F2n) = {(x, y) ∈ F2n × F2n | y2 + xy = x3 + ax2 + b} ∪ {O}
That is the F2n -rational points in E. For any m ∈ N we can define the multi-
plication-by-m map

[m] : E → E

P
→ P + · · · + P︸ ︷︷ ︸
(m times)

and for m = 0:
∀P ∈ E : [0]P = O.

The kernel of the multiplication-by-m map is denoted by E[m]. The points of
the group E[m] are also called the m-torsion points of E. The group structure of
the m-torsion points is well known. We will only be interested in the case where
m is a power of two. In this case we have:

∀k ∈ N : E[2k]
 Z/2kZ

We will use the notation T2k for a point of order 2k. Since T2 is contained in
E(F2n) and since E(F2n) is a finite subgroup of E it has the structure:

E(F2n) = G× E[2k]

where G is a group of odd order and k ≥ 1. When k = 1 we will say that the
curve has minimal two-torsion.

After these preliminaries we are ready to explain the aim of the paper. The
multiplication-by-two map, denoted by [2], which we will also call the doubling
map, is not an injective function when defined on E or E(F2n) because it has
kernel E[2] = {O, T2}. On the other hand, if we restrict the domain of the
doubling map to a subgroup G ⊂ E(F2n) of odd order the map is a bijection.
Consequently, on this subgroup the doubling map has an inverse map which we
call the halving map:

[
1
2

] : G → G

P
→ Q [2]Q = P

We will write [12]P for the point in G which the doubling map sends to P . For
all i ≥ 1 we will write

[
1
2i

] := [
1
2

] ◦ · · · ◦ [
1
2

]

for the i-fold composition of the halving map. The halving map is interesting in
connection with elliptic scalar multiplication for the following reason: it is possi-
ble to replace all point doublings used when performing a scalar multiplication

Elliptic Scalar Multiplication Using Point Halving 137

by point halvings. As we shall see the halving map is considerably faster to eval-
uate than the doubling map on a curve with minimal two-torsion when working
in affine coordinates. From a cryptographic viewpoint it is good to have as many
curves to choose from as possible and it is customary to use a curve for which
the two-torsion of E(F2n) is either minimal or isomorphic to Z/4Z. We shall see
in Appendix A that for a given field F2n the curves with minimal two-torsion
constitutes exactly half of all the curves defined over F2n . Therefore, although
not completely general, the method described applies in its fastest version to a
large class of the curves which are interesting in connection with cryptography.
The method can always be implemented if the field elements are represented in
a normal basis. If a polynomial basis is used the storage requirements are in the
order of magnitude O(n2) bits.

In section 2 we show how to compute [12]P ∈ G from P ∈ G. In section 3
suggestions are given for fast computations. In section 4 we show how to replace
doublings by halvings when performing a scalar multiplication and in section 5
we discuss the expected improvements in running time due to this replacement.

2 Point Halving

Representations of Points
We will use two representations: The usual affine representation of a point

P = (x, y)

and the representation

(x, λP) where λP = x+
y

x
.

From the second representation we can evaluate y = x(x + λP) using one mul-
tiplication. The idea is then, when performing a scalar multiplication, to save
field multiplications by performing intermediate results using the representation
(x, λP) and only determining the second coordinate of the affine representation
in the very end.

Point Halving
Given a point P in G we want to calculate [12]P . To do this let P = (x, y) =
(x, x(x+λP)) ∈ G and Q = (u, v) = (u, u(u+λQ)) ∈ E(F2n) denote points such
that [2]Q = P . The doubling formulas are given by ([IEEE]):

λQ = u+
v

u
(1)

x = λ2
Q + λQ + a (2)

y = (x+ u)λQ + x+ v (3)

138 Erik Woodward Knudsen

Multiplying (1) by u and substituting the value of v from (1) into (3) this is
rewritten to:

v = u(u+ λQ)
λ2

Q + λQ = a + x

y = (x+ u)λQ + x+ u2 + uλQ = u2 + x(λQ + 1)

Remembering that y = x(x + λP) we get:

λ2
Q + λQ = a + x (i)

u2 = x(λQ + 1) + y = x(λQ + λP + x+ 1) (ii)
v = u(u+ λQ) (iii)

With input P = (x, y) = (x, x(x + λP)) in either affine coordinates or the
representation (x, λP) this system of equations determines the two points

[
1
2

]P ∈ G and [
1
2

]P + T2 ∈ E(F2n)\G

which are mapped to P by the doubling map. We want to be able to distinguish
between them. We start by considering curves with minimal two-torsion:

Theorem 1. Let E be a curve with minimal two-torsion. Let P ∈ E(F2n) =
G× {O, T2} be an element of odd order. Let Q be a point such that

Q ∈ {[
1
2

]P, [
1
2

]P + T2}

and let Q1 denote either one of the two points in E for which [2]Q1 = Q. We
then have the necessary and sufficient condition

Q = [
1
2

]P ⇔ Q1 ∈ E(F2n)

Proof. Q1 is determined by applying the formulas (i),(ii) and (iii) to Q. Q equals
either [12]P or [12]P + T2. By applying the formulas (i),(ii) and (iii) to [12]P we
get the two points

[
1
4

]P, [
1
4

]P + T2 ∈ E(F2n)

which are in E(F2n). Let T4 and [3]T4 denote the two points of order four in E.
Applying the formulas (i),(ii) and (iii) to [12]P + T2 we get

[
1
4

]P + T4, [
1
4

]P + [3]T4 �∈ E(F2n)

The points are not in E(F2n) because T4 �∈ E(F2n) = G× {O, T2} ��
Theorem 1 tells us that we on a curve with minimal two-torsion can check

whether Q = [12]P or Q = [12]P + T2 by checking whether the coordinates of
Q1 are in F2n or in a field extension. Since Q1 is determined by the equations

Elliptic Scalar Multiplication Using Point Halving 139

(i),(ii) and (iii) we examine these for operations which are not internal to the
field. Solving the second degree equation in (i) is one such operation, and it is
in fact the only one: it is true that we also have to calculate a square root to
calculate the first coordinate of Q1, but in characteristic two taking a square
root is an operation internal to the field. We thus have:

Q = (u, v) = [
1
2

]P ⇔ ∃λ ∈ F2n : λ2 + λ = a+ u

Since taking a square root is an operation internal to the field we can state this
necessary and sufficient condition in another way:

Q = (u, v) = [
1
2

]P ⇔ ∃λ ∈ F2n : λ2 + λ = a2 + u2

Using this last condition will optimize the algorithm given below if the time to
compute a square root is non-negligible.

Given P ∈ G, the two solutions to (i) are λ[12]P and λ[12]P + 1 and we see
from (ii) that the first coordinates of the corresponding candidates are u and
u +

√
x. We have justified that we can calculate [12]P in the following manner

on a curve with minimal two-torsion:

Point Halving Algorithm
Input: P = (x, y) = (x, x(x+ λP)) ∈ G represented either as (x, y) or as (x, λP)
Output: [12]P = (u, v) ∈ G represented as (u, λ[12]P)
Method:

1. Compute a solution λ[12]P from (i).
2. Compute the corresponding u2 from (ii).
3. Check if there exists λ ∈ F2n such that λ2 + λ = a2 + u2.
4. If such a λ does not exist then compute

u2 := u2 + x and λ[12]P := λ[12]P + 1

5. Calculate u :=
√
u2.

6. Output (u, λ[12]P).

If a2 is precomputed and stored the algorithm requires
solving 1 second degree equation (in 1)
1 multiplication (in 2)
1 check (in 3)
1 square root (in 5)

and if v is to be evaluated using (iii) one extra multiplication is required. We
see that if we have to perform k consecutive halvings we can save k − 1 field
multiplications by keeping the intermediate result in the representation (x, λP).

We now turn to the case of an arbitrary curve E(F2n) = G× E[2k]. Let P ∈ G
and Q ∈ {[12]P, [12]P + T2} be given. We want to determine whether Q = [12]P
or Q = [12]P + T2 and we can do this by repeating the procedure in the proof

140 Erik Woodward Knudsen

of Theorem 1. Apply the formulas (i) and (ii) k times: the first time to Q to
get a point Q1 such that [2]Q1 = Q. In the i’th step apply the formulas to Qi−1

to get a point Qi such that [2]Qi = Qi−1. The resulting point Qk will be on
the form [1

2k+1]P + T2k+1 if and only if Q = [12]P + T2 and it will be on the
form [1

2k+1]P + T2i where 0 ≤ i ≤ k if and only if Q = [12]P . One thus has the
necessary and sufficient condition:

Q = [
1
2

]P ⇔ Qk ∈ E(F2n)

With the notation Q = (u, v) = (u, u(u+λ[12]P)) and Qk−1 = (uk−1, vk−1), [12]P
is computed in the following manner: compute u2

k−1 by repeated applications of
steps 1,2 and 5 of the Point Halving Algorithm. Use u2

k−1 in the check. If the
check is negative put u := u +

√
x and put λ[12]P := λ[12]P + 1. Finally, output

(u, λ[12]P). For a general curve the operations to be performed in a point halving
which gives the output in the representation (u, λ[12]P) are:

solving k second degree equations
k multiplications
1 check
k or k + 1 square roots

3 Computing Efficiently

We show how to perform the check, solve the second degree equation and com-
pute the square root used in the Point Halving Algorithm in an efficient way. By
”efficient”, we mean time efficient and not necessarily storage efficient. We con-
sider both normal and polynomial bases. In a normal basis everything proceeds
smoothly. In a polynomial basis we can likewise perform fast computations, but
only if it is possible to store O(n2) bits.

Normal basis
The results given for the normal basis can be found in [IEEE]. We can view F2n

as an n-dimensional vectorspace over F2. In a normal basis a field element is
represented as

x =
n−1∑
i=0

xiβ
2i

xi ∈ {0, 1}

where β ∈ F2n is chosen such that {β, β2, · · · , β2n−1} is a basis for F2n . The
normal basis has the feature that computing a square root is done by a left
cyclic shift and squaring by a right cyclic shift. The time to compute these
operations is negligible.

Assume that the second degree equation λ2 + λ = x has solutions in F2n . A
solution is then given by

λ =
n−1∑
i=1

λiβ
2i

where λi =
i∑

k=1

xk for all 1 ≤ i ≤ n− 1

Elliptic Scalar Multiplication Using Point Halving 141

We expect the time needed to compute this to be negligible compared to the
time needed to compute a field multiplication or an inversion.

Since the time to compute a solution to a second degree equation is negligible
we can compute the check in the following way: Compute a candidate λ from x
and check if λ2 +λ = x. If this is not the case then the equation has no solutions
in F2n .

Polynomial Basis
We will use the representation:

x =
n−1∑
i=0

xiT
i xi ∈ {0, 1}

The square root of x can be computed with the storage of the element
√
T after

making the following observations:

– in characteristic two the square root map is a field morphism.
–

√∑
i even xiT i =

∑
i even xiT

i
2

Now, splitting x into even and odd powers and taking the square root, we get

√
x =

∑
i even

xiT
i
2 +

√
T

∑
i odd

xiT
i−1
2

so all we have to do to compute a square root is to ”shrink” two vectors to half
size and then perform a multiplication of a precomputed value with an element of
length n

2 . Therefore we expect the time to compute a square root in a polynomial
basis to be equivalent to half the time to compute a field multiplication plus a
very small overhead.

To perform the check and to solve the second degree equation we will view
F2n as an n-dimensional vectorspace over F2. The map

F : F2n → F2n

λ
→ λ2 + λ

is then a linear operator with kernel {0, 1}.

For a given x, the equation λ2 + λ = x has solutions in F2n if and only if
the vector x is in the image of F . Im(F) is an n − 1 dimensional subspace of
F2n . For a given basis of F2n with corresponding dot product there is a unique
non-zero vector which is orthogonal to all vectors in Im(F). Denote this vector
w. We then have:

∃λ ∈ F2n : λ2 + λ = x ⇔ x • w = 0

so the check can be performed by adding up the entries of x for which the cor-
responding entries of w hold a 1. We expect the time to perform the check to be
negligible.

142 Erik Woodward Knudsen

To solve the second degree equation F (λ) = λ2 + λ = x in a polynomial ba-
sis we propose a straightforward method which requires capability to store an
n× n matrix. We are looking for a linear operator G such that

∀ x ∈ Im(F) : F (G(x)) = (G(x))2 +G(x) = x

Let α ∈ F2n be any vector such that α �∈ Im(F) and define G by

G := F̃−1 where F̃ (T i) =
{

α when i = 0
F (T i) when 1 ≤ i ≤ n− 1

With x =
∑n−1

i=1 xiF (T i) ∈ Im(F) given it is left to the reader to verify that
G(x) solves the second degree equation. In an implementation one precomputes
the matrix representation for G in the basis {1, T, · · · , T n−1}. In characteristic
two, multiplication of a matrix by a vector is just adding up the columns of the
matrix for which the corresponding entries of the vector hold a 1. Therefore,
this method for solving a second degree equation on average requires n

2 field
additions.

The drawback of the method is the storage needed. In appendix B, an al-
gorithm is given which reduces the storage needed to n2

2 bits. It is even faster
requiring on average n

4 field additions and a small overhead.
We have one further remark on the storage before ending the section. We do

not need to store the vector w needed for the check seperately, since it is the
first row of the matrix representation of G. It follows from the fact that G is
invertible and G(F (T i)) = T i for 1 ≤ i ≤ n−1. This implies that the first row of
the matrix representation of G is non-zero and orthogonal to all column vectors
of the matrix representation of F .

4 Applications for Scalar Multiplication

Let a point P ∈ E(F2n) of odd order r and an integer c be given. Let m
denote the integer part of log2(r). We want to compute the scalar multiple [c]P
employing the halving map. For this purpose, we prove the easy:

Lemma 1. For every integer c, there is a rational number of the form

m∑
i=0

ci
2i

ci ∈ {0, 1}

such that

c ≡
m∑

i=0

ci
2i

(mod r)

Elliptic Scalar Multiplication Using Point Halving 143

Proof. Calculate the remainder of 2mc after division by r and write the result
as a binary number:

2mc (mod r) =
m∑

i=0

ĉi2i ĉi ∈ {0, 1}

Dividing by 2m and putting ci := ĉm−i gives the result:
m∑

i=0

ci
2i

:=
m∑

i=0

ĉi2i−m ci ∈ {0, 1}

��
Let < P > denote the cyclic group generated by P . Since we have the isomor-
phism of rings:

< P >
 Z/rZ
[k]P
→ k

we can compute the scalar multiple by

[c]P =
m∑

i=0

[
ci
2i

]P

using point halvings and point additions. The well known double-and-add algo-
rithm can be used for the computations. We only have to replace doublings by
halvings in this algorithm. One has to perform log2(r) halvings and on average
1
2 log2(r) additions. There are improvements to the double-and-add algorithm
which require only 1

3 log2(r) additions in the average case. In appendix C, we
give an automaton suitable for the halve-and-add algorithm. In general, any
method which is based on manipulating an integer represented by its binary ex-
pansion should be easy to modify so as to make the same manipulations on the
rational number from Lemma 1 represented by its 1

2 -adic expansion. We bear in
mind here in particular the sliding window method.

For the addition of our original point P and the intermediate result Q, we
use the following algorithm which is a small modification of the usual addition
algorithm given in for example [IEEE]:

Addition Algorithm
Input: P = (x, y) in affine coordinates and Q = (u, u(u + λQ)) represented as
(u, λQ)
Output:P +Q = (s, t) in affine coordinates
Method:

1 Compute λ := y+u(u+λQ)
x+u

2 Compute s := λ2 + λ+ a + x+ u
3 Compute t := (s + x)λ + s+ y
4 Output (s, t)

The algorithm requires 1 inversion,3 multiplications and 1 squaring.

144 Erik Woodward Knudsen

5 Expected Performance

We will only consider curves with minimal two-torsion in this section. The time
saved by using halvings instead of doublings is significant. In affine coordinates,
both elliptic doubling and addition require 1 inversion, 2 multiplications and 1
squaring. If the scalar for the scalar multiplication is represented by a bitvec-
tor of length m with k non-zero entries the operations needed for the scalar
multiplication are:

operation double-and-add halve-and-add
inversions m+ k k

multiplications 2m+ 2k m+ 3k
squarings m+ k k

solving λ2 + λ = a+ x 0 m
square roots 0 m

checks 0 m

Thus, by using halvings one saves m inversions, m − k multiplications and m
squarings at the cost of solving m second degree equations, calculating m square
roots and performing m checks. We have shown how to compute the ”new” op-
erations fast. In the average case of the optimized version of the double-and-add
algorithm and halve-and-add algorithm given in Appendix C we have k = m

3 . In
a polynomial basis, it is difficult to give a general estimate of the improvement
in running time because of the many different operations involved. Based on
[SOOS] we will put the time to compute an inversion equivalent to the time to
compute 3 multiplications. A field multiplication in the average case requires n

2
field additions and afterwards a reduction by the reduction polynomial defining
the field. With the following assumptions on equivalence of timings:

1 inversion ∼ 3 multiplications
1 multiplication ∼ 10 squarings
1(λ2 +λ = a+x) + 1 check + 1 square root ∼ 1 multiplication + 1 squaring

we get an improvement in the running time on 39%. In a normal basis, as men-
tioned in Section 3, we assume that the time needed to calculate the square
root, the check and the second degree equation is negligible compared to the
time needed to compute a multiplication or an inversion. An inversion can be
computed using [log2(n− 1)] + ω(n− 1) − 1 multiplications ([Menezes]), where
n is the degree of the field extension and ω is the number of 1′s in the binary
expansion of n− 1. As an example, with n = 155 the number of multiplications
needed for one inversion is 10. The improvement in running time is then 67%.
Even with the time to compute an inversion being equivalent to the time to
calculate 3 multiplications we get a 55% improvement of the running time.

Elliptic Scalar Multiplication Using Point Halving 145

6 Conclusion

A fast method for elliptic scalar multiplication has been introduced. In its fastest
version it applies to half the curves: the ones with minimal two-torsion. For a
polynomial basis, the disadvantage is the amount of storage needed. For a normal
basis, there are no disadvantages. The algorithm is clearly superior to any double-
and-add algorithm when this is implemented using affine coordinates. In [CLNZ]
it is investigated how to reduce the amount of curve additions by representing
the scalar by a bit vector which is longer, but has a lower Hamming-weight. This
is of particular interest in this context since point halving is much faster than
point addition. The current limitations of the method give rise to the challenges:
Find a fast check for curves with higher two-torsion. Derive an efficient halving
algorithm for projective coordinates. Reduce the storage needed in a polynomial
basis.

7 Acknowledgements

The author would like to thank Kristian Pedersen, Jean-Bernard Fischer and
Jacques Stern for fruitful comments.

References

MorOli. F. Morain and J. Olivos: Speeding up computations on an elliptic curve using
addition-subtraction chains ln Theoretical Informatics and Applications 24, No. 6,
1990 pp.531-544 149

Zhang. C.N.Zhang: An improved binary algorithm for RSA ln Computers and Math-
ematics with Applications, vol. 25, 1993, pp.15-24 149

IEEE. Standard Specifications for Public Key Cryptography, Annex A. Number The-
oretic Background. IEEE Standards Department, August 20, 1998. 137, 140,
143

Koblitz. N.Koblitz: CM-Curves with Good Cryptographic Properties, Advances in
Cryptology-CRYPTO 91, Lecture Notes in Computer Science, No. 576, Springer-
Verlag, Berlin, 1992, pp. 279-287. 135

Meistaff. W.Meier,O.Staffelbach: Efficient Multiplication on Certain Nonsupersingular
Elliptic Curves, Advances in Cryptology-CRYPTO 92, Lecture Notes in Computer
Science,No. 740, Springer-Verlag, Berlin, 1992, pp. 333-344. 135

Muller1. Volker Muller: Fast Multiplication on Elliptic Curves over Small Fields of
Characteristic Two, Journal of Cryptology 1998, pp. 219-234. 135

Silverman. J.Silverman: The arithmetic of Elliptic Curves, Graduate Texts in Math-
ematics 106, Springer-Verlag, Berlin Heidelberg New York 1986. 135

CLNZ. G.Cohen,A.Lobstein,D.Naccache,G.Zemor: How to Improve an Exponetiation
Black-box, Technical Report AP03-1998, Gemplus’ Corporate Product R&D Divi-
sion 145

Muller2. Volker Muller: Efficient Algorithms for Multiplication on Elliptic Curves TI-
9/97,1997, Institut fur theoretische Informatik 149

Menezes. Alfred J. Menezes: Elliptic Curve Public Key Cryptosystems Kluwer Ace-
demic Publishers 144

SOOS. R. Schroeppel, H. Orman, S. O’Malley, O. Spatscheck: Fast Key Exchange with
Elliptic Curve Systems, Advances in cryptology - CRYPTO ’95, Lecture Notes in
Computer Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995 144

146 Erik Woodward Knudsen

A Half the Curves Have Minimal Two-Torsion

Theorem 2. Let a field F2n be given. Half the curves defined on F2n have
minimal two-torsion.

Proof. As mentioned in the introduction, a non-supersingular curve E is defined
by an equation

y2 + xy = x3 + ax2 + b a, b ∈ F2n b �= 0

That is, it is defined by the pair (a, b) ∈ F2n × F2n . The unique point of order
two is given by T2 = (0,

√
b). With T2 as input, we can calculate the two points

of order four by the equations (i), (ii), (iii) in Section 2. Therefore, by repeating
the arguments of Theorem 1 and the analysis afterwards leading to the check in
the Point Halving Algorithm, we have with T2 as input in equation (i):

T4, [3]T4 ∈ E(F2n) ⇔ ∃λ ∈ F2n : λ2 + λ = a

Let F denote the linear operator F (λ) = λ2 + λ with domain F2n . We negate
the necessary and sufficient condition and get:

E has minimal two-torsion ⇔ a �∈ Im(F)

Since F has kernel {0, 1}, this condition holds for 2n−1 values of a, thus half the
curves. ��

B Reducing Storage in a Polynomial Basis

Assume that the equation F (λ) = λ2 +λ = x has solutions in F2n . As explained
in Chapter 3, the solutions can be computed with the storage of an n×n matrix
representation of a linear operator G, where G(x) is a solution to the second
degree equation. In this Appendix we show how to reduce the storage needed.
The idea is to write x as

x = F (y) + z

where y =
∑n−1

i=1 yiT
i and where z is an element of the subspace of F2n generated

by the vector 1 and the vectors {T i} where i is odd. Define G̃ by

G̃(T i) =




G(1) if i = 0
G(T i) if i = 1, 3, 5, ...

0 if i = 2, 4, 6, ...

Then G̃(z) = G(z). It follows from the definition of G that G(F (T i)) = T i for
all 1 ≤ i ≤ n− 1. Therefore a solution to the second degree equation is given by

G(x) = G(F (y) + z) = G(
n−1∑
i=1

yiF (T i)) +G(z) = y +G(z) = y + G̃(z)

Elliptic Scalar Multiplication Using Point Halving 147

So, using this approach, we only have to store the [n
2] + 1 nontrivial vectors of

the matrix representation of G̃. Let x be represented as

x =
n−1∑
i=0

xiT
i

and assume for simplicity that n− 1 is a power of two. The following algorithm
calculates a solution to the second degree equation using log2(n− 1) iterations.

Input: x ∈ Im(F)
Output: λ such that λ2 + λ = x
Method:

y := 0
m := n− 1
while m > 2 do

u :=
∑m

2
i= m

4 +1 x2iT
i

x := x+ F (u)
y := y + u
m := m

2
od
u := x2T
x := x+ F (u)
y := y + u
λ := y + G̃(x)

Theorem 3. The algorithm works.

Proof. Define values

ak :=
{

n−1
2k when 0 ≤ k ≤ log2(n− 1)
0 when k = 1 + log2(n− 1)

x(0) := x

y(0) := 0

and recursively for 1 ≤ k ≤ log2(n− 1):

x(k) = x(k−1) + F (
ak∑

i=1+ak+1

x
(k−1)
2i T i)

y(k) = y(k−1) +
ak∑

i=1+ak+1

x
(k−1)
2i T i

corresponding to the operations performed in the algorithm. Using the fact that
F is a linear operator, it is easily seen that we have for all 0 ≤ k ≤ log2(n− 1):

x = F (y(k)) + x(k)

148 Erik Woodward Knudsen

In particular, this is true for k := log2(n−1). It is immediate from the recursion
formula defining y(k) that the constant term of y(log2(n−1)) is zero. It remains to
show that all even coefficients of x(log2(n−1)) of index greater than or equal to
two are zero. Then, a solution can be calculated by y(log2(n−1)) + G̃(x(log2(n−1)))
which is the final step of the algorithm. With 2+ak ≤ n−1 we show by induction
on k that

x
(k)
2+ak

= x
(k)
4+ak

= · · · = x
(k)
n−1 = 0 for all 0 ≤ k < log2(n− 1)

For k = 0 this is trivially true. Assume that the statement holds for k − 1. We
then have:

x(k) = x(k−1) +
ak∑

i=1+ak+1

x
(k−1)
2i T 2i +

ak∑
i=1+ak+1

x
(k−1)
2i T i

=


x(k−1) +

ak−1∑
i even, i=2+ak

x
(k−1)
i T i


 +

ak∑
i=1+ak+1

x
(k−1)
2i T i

It is clear that the coefficients of the expression in the parenthesis are zero for
even indices 2 + ak, · · · , ak−1. By the induction assumption, the same is true for
the even indices 2 + ak−1, · · · , n − 1. Adding the term outside the parenthesis
does not affect basis vectors of index greater than ak and this completes the
induction. Finally, for the last iteration in the algorithm with k = log2(n − 1),
we get:

x(k) = (x(k−1) + x
(k−1)
2 T 2) + x

(k−1)
2 T

from which we see that x(log2(n−1))
2 = 0 and we are done. ��

Each iteration in the algorithm is fast. The kth iteration consists in removing the
relevant coefficients of even index from x, ”squeezing” them to a vector of length
n−1
2k+1 and then add this vector to x and y. It is left to the reader to see that the
addition in the reassigning of y is not really an addition but a concatenation.
Therefore the total amount of field additions in the loop corresponds to the
addition of a vector of length n

2 . We can thus expect the running time of the
algorithm to be a small overhead plus, on average, n

4 field additions from the
final multiplication of the matrix representation of G̃ with x.

Using the same idea, one can hope to get the amount of storage even further
down by exploiting the specific properties of the reduction polynomial. More
precisely, the idea is that one can avoid to store a column vector of high index
k if the degree of T 2k after reduction by the reduction polynomial is less than
k. We can then once more write x = (x + F (xkT

k)) + F (xkT
k) and calculate a

solution by G(x) = G(x + F (xkT
k)) + xkT

k which does not involve computing
G(T k). We will not pursue this further.

Elliptic Scalar Multiplication Using Point Halving 149

C An Optimized Version of the Halving-and-add
Algorithm

We give below an automaton which takes as input a point P of odd order and
a bitvector (c0, · · · , cm) and outputs

∑m
i=0[ci

2i]P . The basic idea, which we have
from [MorOli], is to minimize the number of curve additions by applying the
following identities of strings to the bitvector:

1 · · · 1︸ ︷︷ ︸ = 1 0 · · ·0︸ ︷︷ ︸−1

k k − 1

and
1 · · · 1︸ ︷︷ ︸ 0 1 · · · 1︸ ︷︷ ︸ = 1 · · · 1︸ ︷︷ ︸ 0 · · · 0︸ ︷︷ ︸ −1 = 1 0 · · · 0︸ ︷︷ ︸ −1 0 · · · 0︸ ︷︷ ︸ −1

k1 k2 k1 + 1 k2 − 1 k1 k2 − 1

In this way one can always obtain an identity of rational numbers:

m∑
i=1

ci
2i

=
m∑

i=0

di

2i
, di ∈ {0,±1}

where the coefficients di have the further feature that ∀i ∈ {0, · · · ,m−1} : di �=
0 ⇒ di+1 = 0. It is proven in for example [Zhang] that the amount of non-zero
coefficients di on average will be one third of m. Since the time to calculate −P
from P is negligible, we can now calculate

m∑
i=0

[
ci
2i

]P = [c0]P +
m∑

i=1

[
ci
2i

]P = [c0]P +
m∑

i=0

[
di

2i
]P

using fewer curve additions and still m halvings. In [Muller2] is given an au-
tomaton to be used in an optimization of the Double-and-add Algorithm. It is
identical to the automaton given below except for the last bit. For the correct-
ness of the automaton given here we therefore refer to [Muller2]. The automaton
is to be used on the bits cm, · · · , c0 in descending order of indices. The arrows
pointing out are for the calculations regarding the final bit c0.

	Introduction
	Point Halving
	Computing Efficiently
	Applications for Scalar Multiplication
	Expected Performance
	Conclusion
	Acknowledgements
	References
	Half the Curves Have Minimal Two-Torsion
	Reducing Storage in a Polynomial Basis
	An Optimized Version of the Halving-and-add Algorithm

