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Abstract. This paper describes a novel fast correlation attack of
stream ciphers. The salient feature of the algorithm is the absence of
any pre-processing or iterative phase, an usual feature of existing fast
correlation attacks. The algorithm attempts to identify a number of
bits of the original linear feedback shift register (LFSR) output from
the received bits of the ciphertext. These are then used to construct a
system of linear equations which are subsequently solved to obtain the
initial conditions. The algorithm is found to perform well for LFSRs of
large sizes but having sparse polynomials. It may be noted that such
polynomials have low Hamming weight which is one more than the
number of feedback connections or “taps” of the corresponding LFSR.
Its performance is good in situations even where limited cipherlength is
available. Another important contribution of the paper is a modification
of the approach when the LFSR outputs are combined by a function
which is correlation immune and perhaps, unknown to the decrypter.

Keywords: Stream cipher, Correlation attack, LFSR polynomial, Cor-
relation immune function.

1 Introduction

Stream ciphers form an important class of cipher systems. Their speed over that
of block ciphers and less complex hardware circuitry make it advantageous to
use stream ciphers in many applications [2]. Such ciphersystems are widely used
in military applications across the world [3].

In a binary additive stream cipher, the ciphertext is produced by bit-wise
addition of the plaintext with the key-stream, all in binary. The key-stream gen-
erator is initialized using a secret key. A popular key-stream generator used in
stream ciphers consists of several LFSRs combined through a non-linear boolean
function. LFSRs lie at the heart of most key-stream generators since they pro-
duce pseudo-random sequences with good statistical properties and are easily
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implemented in hardware. The secret key, unknown to the decrypter, is nor-
mally chosen to be the initial conditions of the LFSRs. The LFSR polynomials
are assumed to be known.

The objective of the nonlinear combining function is to destroy the inherent
linearity present in LFSR sequences. It enables the key-stream to have a large
linear complexity in order to prevent linear cryptanalysis. However, depending
on the order of resiliency of the function, there is still some correlation between
the ciphertext and the LFSR outputs. Attacks that exploit the similarity between
the ciphertext and the LFSR outputs, are termed correlation attacks. The nature
of the cipher system allows each LFSR to be analysed separately, thus leading
to a divide-and-conquer strategy. Such attacks were first proposed in [14] and
further developed in [17,4,6,7,11]. The idea of a fast correlation attack, which
eliminates the need for an exhaustive search of the LFSR initial conditions was
first proposed by Meier and Staffelbach [10]. The algorithm was designed to
work for a small number of taps. A number of fast correlation attacks were later
proposed in [8,9,5,2,12].

It is important to note, however, that the existing fast correlation attacks
suffer from one or more of the following drawbacks:

1. The presence of a preprocessing phase of considerable complexity which nat-
urally increases the overall decoding time.

2. An iterative phase which takes time to converge.
3. The assumption of a combining function that is not correlation immune [15]

and also known to the decrypter.

The algorithm proposed in this paper is free of all these restrictions. It may be
mentioned in this context, that a correlation attack for a situation where the
combining function is both correlation immune and unknown was first proposed
in [13]. Recovery of the unknown combining function has also been addressed in
[3].

Since a divide-and-conquer approach is possible, each LFSR can be analysed
independently of the others. In this situation, it is reasonable to model the
ciphertext as the output of a binary symmetric channel through which the output
of the ith LFSR passes. The error probability of the channel (or the probability
that a bit of the ciphertext is not equal to the corresponding bit of the LFSR
sequence) is denoted as (1−p). The proposed approach is based on the fact that
every bit of an LFSR equation satisfies certain relations called parity checks, all
of which are derived from its generating polynomial [10]. Since the cipherstream
is correlated to the LFSR output (with probability of concurrence, p, different
from .5), many of its bits will also satisfy the same equations. The extent to
which a bit satisfies these equations will determine whether it is actually equal
to the LFSR bit at the same position. Once a sufficient number of bits have been
correctly determined (slightly more than the length of the LFSR), the initial
conditions of the corresponding LFSR are obtained by solving linear equations.
Section 2 develops the background for the proposed method while the actual
algorithm is laid down in Section 3. Performance of the algorithm, comparison
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with other well-known algorithms [10,5] are presented in Section 4. Modifications
of the algorithm for decryption involving an unknown combining function which
may be correlation immune is discussed in Section 5.

2 The Probabilistic Background

The relationships developed in this section (which are used in the present work)
have been worked out in much greater detail in [10]. We merely present them
here for the sake of clarity and completeness.

Let C denote the ciphertext, N its length available, Xi the sequence produced
by the ith LFSR, di and ti the size and number of feedback taps, respectively,
of the ith LFSR. With P (A) standing for the probability of the occurrence of
the event A, it follows that p = P (C = Xi)1. Without loss of generality, since
only one LFSR will be considered at a time, let Xi = X, di = d and ti = t.
Further, let the LFSR polynomial (assumed to be known) used to generate X,
be represented by

a(Y ) = 1 + a1Y + a2Y
2 + · · · + adY

d (1)

The number of non-zero coefficients ai give the number of taps t. Since the
sequence X = {x1, x2, · · ·} is generated from a(Y )

xn = a1xn−1 + a2xn−2 + · · · + adxn−d (2)

holds with t number of terms on the right hand side. For every bit of X (except
those towards the beginning and end of the sequence), placing it in one of the
t + 1 positions of (2) yields t + 1 relations or equations. Now, the number of
relations satisfied by each bit can be further increased by noting that every
polynomial multiple of a(Y ) gives a linear relation satisfied by X. This is true,
in particular for powers a(X)j with j = 2i. It is also important to note that
the resulting polynomials all have t feedback taps which is a basic requirement
of the algorithm. Hence, repeated squaring (the number of times limited by the
cipherlength available) of the LFSR polynomial followed by shifting each bit
from one of t + 1 positions to another results in a large number of relations all
satisfied by the LFSR sequence X.

Let m be the number of relations satisfied by a particular bit xn (It has
been shown in [10] that the average number of relations satisfied per bit is
approximately (t+1) log2(N/2d)). These relations may be expressed in the form:

Li = xn + wi = 0 i = 1, · · · , m (3)

where wi represents a sum of exactly t different remaining terms with xn in one
of the t + 1 positions in (2) and also its multiples.

Consider now a bit of the cipherstream, cn in place of xn in (3) with

Li = cn + zi i = 1, · · · , m (4)
1 Here, the event C = Xi means that a particular bit of C is the same as the corre-

sponding bit of Xi
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with zi representing a sum of exactly t different remaining terms with cn in one
of the t + 1 positions in (2) and its multiples.

In this case, Li may not be equal to zero.
Now, let wi = wi1 +wi2 + · · ·+wit and zi = zi1 +zi2 + · · ·+zit where, wij and

zij , j = 1, · · · , m are binary variables, all independent and identically distributed
with equal probability of being 0 or 1. Note that P (xn = cn) = p = P (wij = zij).

Then, s(t) = P (wi = zi) can be recursively computed as follows:

s(1) = p

s(j) = ps(j − 1) + (1 − p)(1 − s(j − 1)) j = 2, · · · , t (5)

Observe that, for a particular ciphertext bit to satisfy the ith relation i.e. Li =
cn + zi = 0, either cn = xn and wi = zi or cn �= xn and wi �= zi . Hence

P (L1 = · · · = Lh = 0;Lh+1 = · · · = Lm = 1) = psh(1 − s)m−h

+ (1 − p)(1 − s)hsm−h

where s = s(t).
Let

R = P (cn = xn; cn satisfies at least h of m relations),

Q = P (cn satisfies at least h out of m relations),

T = P (cn = xn; given that cn satisfies at least h of m relations).
Then, using (6)

R =
m∑

i=h

(
m

i

)
psi(1 − s)m−i (6)

Q =
m∑

i=h

(
m

i

)
(psi(1 − s)m−i + (1 − p)(1 − s)ism−i) (7)

T = R/Q (8)

The quantity h/m which is the minimum fraction of equations that a bit of the
cipherstream must satisfy, shall be henceforth, referred to as the upper threshold.

Further, let

W = P (cn �= xn; cn satisfies at most h of m relations),

D = P (cn satisfies at most h out of m relations),

E = P (cn �= xn; cn satisfies at most h of m relations)
Then, using (6)

W =
h∑

i=0

(
m

i

)
(1 − p)si(1 − s)m−i (9)

D =
h∑

i=0

(
m

i

)
(psi(1 − s)m−i + (1 − p)(1 − s)ism−i) (10)

E = W/D (11)
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The maximum fraction of equations h/m, that a bit can satisfy in order to be
designated as wrong shall be called the lower threshold. Note that the value of
h for the upper threshold is different from that of h for the lower threshold.

3 Development of the Algorithm

In order to understand the relationship between the various quantities involved
in (8),(7),(11),(10), the expressions have been computed for d = 31, k = 2,
N = 14, 000 and p = 0.64. Figure 1a shows the plot of T vs. the upper threshold
(varying h/m). Figure 1b shows the plot of the number of bits determined cor-
rectly with probability T out of those satisfying the upper threshold (which is
equal to T ∗Q∗N) vs. the upper threshold Note that satisfying the upper thresh-
old h/m implies satisfying at least h out of m relations. Figure 1c shows the plot
of E vs. the lower threshold. Figure 1d shows the plot of the number of bits
determined wrongly (and hence to be complemented), vs. the lower threshold.

It can be seen from Figures 1a and 1b, that as the upper threshold is in-
creased, the probability of correctly determining the bits increases while the
number of bits correctly determined decreases. The reverse situation occurs in
Figures 1c and 1d i.e. as the lower threshold is increased, the probability that
a bit is wrong decreases while the number of wrong bits increases. It can hence
be concluded that the thresholds must be chosen with a trade-off in mind. Not
only must the choice ensure a desired probability of correct determination of the
bits but at the same time, make it possible that a required number of these are
obtained.

Fig. 1a. T vs. upper threshold for d = 31, t = 2, p = 0.64, N = 14000
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Fig. 1b. No. of correct bits vs. upper threshold for d = 31, t = 2, p = 0.64, N = 14000

Fig. 1c. E vs. lower threshold for d = 31, t = 2, p = 0.64, N = 14000
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Fig. 1d. No. of wrong bits vs. lower threshold for d = 31, t = 2, p = 0.64, N = 14000

The algorithm can now be outlined as follows:

1. For every bit of the cipherstream, generate as many equations as possible by
shifting, squaring etc. the original LFSR feedback polynomial. Compute the
percentage of relations, say r, satisfied by each bit.

2. Using (8) and (7), obtain the upper threshold such that the probability
of correct determination is at least 0.95 and the number of bits correctly
determined is at least equal to d, the length of the LFSR.

3. Using (11) and (10), obtain the lower threshold such that the probability of
wrongful determination is at least 0.95. Complement these bits.

4. Express the bits thus determined in terms of the initial conditions of the
LFSR and solve the resultant linear system in order to recover the initial
conditions. Do this for all combinations of the identified bits, taken d at a
time. Note that the system may not always be solvable in which case that
particular combination of bits must be rejected.

5. From a plot of the frequency distribution of the occurrence of the initial
conditions determined in the above step, locate the set/sets occurring most
frequently. When this yields only one set, it can be safely assumed that
this is the correct initial condition. If there are multiple sets, the Hamming
distance between the LFSR output corresponding to each of these and the
cipherstream must be computed. The set with the lowest Hamming distance
will be the desired initial condition.
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4 Performance

Experiments were conducted on LFSRs of various sizes, having up to 6 taps. In
each case, the initial conditions were recovered correctly. An illustration of step
4 of the algorithm can be seen in Table 1. It shows the variation of the Hamming
distances (normalized by the cipherlength) for the LFSR outputs corresponding
to ten candidate sets of initial conditions which occurred most frequently upon
solving the linear system of equations as in step 3 for a length 31, 2 tap LFSR
with p = 0.69. Index no.1 corresponds to the correct initial condition and it
clearly has a much lesser Hamming distance than the others.

Table 1. Normalized Hamming distance for various candidate initial conditions.

index Normalized Hamming distance
1 0.31
2 0.49
3 0.5
4 0.51
5 0.5
6 0.49
7 0.49
8 0.5
9 0.48
10 0.51

It should also be mentioned that the value m used in the theoretical calcu-
lations is only an average number and the number of relations for the bits in
the central part of the cipherstream is much more. This explains the improved
performance of the algorithm in practice. For example, for the 31 length, 2 tap
LFSR with p = 0.69 considered here, only 4000 cipherbits were sufficient for re-
covering 36 bits correctly while from theoretical calculations, 14,000 cipherbits
appeared to be required. As observed from the graphs of Section 3, the number
of bits determined correctly depends on the value selected for the upper thresh-
old, increasing for lower values of the threshold. It actually decreases for higher
values of the upper threshold.

Figure 2 shows a plot of p = P (C = Xi) vs. the number of taps for a length
100 LFSR and N = 20, 000. The value of p is determined using (8) and (7) so
that at least 100 bits are correctly determined with a probability greater than
0.95 . Since the contribution from complementing the incorrect bits in this case
turned out to be very small, it has been ignored here. As expected, the required
correlation between the cipherstream and LFSR sequence increases with the
number of taps.
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Fig. 2. p = P (C = Xi) vs. no. of taps for d = 100, N = 20000

From the algorithm, it is obvious that the computational time largely depends
on step 4 and consequently, on the number of bits recovered with a certain prob-
ability of being correct. Let this number be d + ∆. Then, the maximum number
of times that d linear equations have to be solved for the d initial conditions is

Nl =
(

d + ∆

d

)
(12)

The choice of ∆ thus decides the computation time. A reasonable approach
is to go through step 4 with a small value of ∆, say 5% of d. However, if this
does not yield a clear solution for the unknown initial conditions, the step must
be repeated using a higher value for ∆. It has been observed that higher values
are necessary as the number of taps increases. It is also to be noted that a
judicious choice of the upper threshold yields a smaller number of bits with a
greater chance of being correct, both of which act in the interest of reducing the
computational time.

In order to compare the performance of our method with some standard
algorithms, some case studies were made. Algorithm B (henceforth referred to
as Alg. B) of [10] and Algorithm A1 (henceforth referred to as Alg. A1) of
[5] were used for comparison. For the LFSR of length 31, with 2 taps, and
p = 0.69, 0.71, 0.75, the proposed algorithm and Alg. A1 successfully recover the
correct initial condition in each case with a cipherlength of 4000 bits. It was
noted, however, that the time taken by Alg. A1 is more than double that of the
time taken by the proposed algorithm. Alg. B failed to determine the correct
LFSR sequence in each case.

With an LFSR of length 31, 4 taps, p = 0.75 and message length of 4000,
both the proposed method and Alg. B are successful. Alg. A1 however, fails even
with a cipherlength of 10000.
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5 Unknown/Correlation-Immune Combining Function

When the combining function is unknown, so is the value of p. Hence the selection
of the thresholds, based on the values of T , Q, E and D is no longer directly
possible. In such a situation, a search over all possible initial conditions, for
the one which has the maximum number of coincidences with the ciphertext, as
suggested in [13], works well. Once the initial conditions have been determined,
the combining function can be estimated as proposed in [13]. However, the attack
can no longer be said to be a fast correlation one since it involves examining all
the initial conditions. In such a situation, knowledge of the degree of correlation
immunity of the combining function can be appropriately employed.

It has been shown in [16,1] that a Boolean function f is mth-order correlation
immune if and only if it is not correlated to linear functions of any subset of m
input variables. However, f may be correlated to a linear function of m + 1
variables, in which case, a correlation attack may be mounted on it. Similarly,
in an LFSR based stream cipher system, even though the combining function
may not be correlated to the individual LFSR outputs, it may be correlated to
certain combinations of them. Hence, it is necessary to determine these LFSR
combinations. It is known that a combination of LFSRs (whose outputs are
obtained by EX-ORing the individual outputs) may be equivalently replaced by
an LFSR whose feedback polynomial is given by the product of constituent LFSR
feedback polynomials. For example, if a(Xi) is the generating polynomial of Xi,
then (a(X1))(a(X2)) is the generating polynomial of (X1⊕X2). If it is known that
the combining function is correlated to the output of a particular combination
of LFSRs, then it will be correlated to the output of the equivalent LFSR. The
algorithm of Section 3 can now be used to determine this output. When the
function is unknown, so is the knowledge of such combinations and they must
be determined systematically. For instance, if the function is correlation immune
of order 1, a combination of two of the LFSRs must be considered. Each of the
correctly identified bits is expressed in terms of the initial conditions of either
LFSR and hence, both the sets of initial conditions are recovered simultaneously.
In order to test this approach, a combining function

f = X3 ⊕ X4 ⊕ X1X2

was used to combine the LFSRs X1, X2, X3 and X4. The polynomials used were
(x10 + x3 + 1), (x9 + x4 + 1), (x7 + x + 1) and (x6 + x5 + 1), respectively. Note
that P (f = Xi; i = 1, · · · , 4) = 0.5 but P (f = (X3 ⊕ X4)) = 0.75. Hence,
the algorithm developed in Section 3 is employed with the corresponding LFSR
polynomial ((x7 + x + 1) × (x6 + x5 + 1). With a cipherlength of 8000, both the
sets of initial conditions were recovered successfully.

6 Conclusions

The method presented in this paper appears to perform better than Alg. B
of [10] especially when smaller cipherlengths are available and the number of
taps is small. At the same time, it eliminates the need for further iterations,
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which is an essential feature of Alg. B. It also compares favourably with Alg.
A1, being faster and also requiring smaller cipherlength. Our approach does not
have a computationally intensive and time consuming pre-processing stage as
with other contemporary fast correlation attack algorithms such as Alg. A1. For
example, for a polynomial of length 60 and 3 taps and a cipherlength of 14,20,000,
the authors of Alg. A1 report a precomputation time of about four days. An
important step of the proposed algorithm consists of successively solving a set
of linear equation. This set may be made as small as desired, limited only by
the length of the LFSR. It may be said therefore that the proposed algorithm
requires neither pre-computation nor iterative convergence.

As suggested in the paper, correlation attacks are indeed possible even for un-
known combining functions which are correlation immune of a particular degree,
provided that sufficient computational power is available. However, the restric-
tion on the number of taps is a bottleneck of such attacks. For the attack on a
system with a function which is correlation immune of some order, it should be
noted that the generating polynomial of the equivalent LFSR (which is equiva-
lent to the combination of LFSRs, as explained in Section 5) with whose output
the cipherlength is correlated, may have a greater number of taps than the con-
stituent LFSRs. However, this does not pose a problem as long as the length of
the equivalent LFSR is large enough. In fact, even values of p close to 0.5 may be
handled if the LFSR has a very long length and a sufficient amount of ciphertext
is available. It may be emphasized again that our observations strengthen the
existing views that in order to prevent correlation attacks, the designer needs to
choose feedback polynomials with a large number of taps, have a large number
of LFSRs and a combining function with a sufficiently high degree of correlation
immunity.
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