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Abstract. This paper describes a complete system allowing automatic
recognition of the main sulci of the human cortex. This system relies
on a preprocessing of MR images leading to abstract structural repre-
sentations of the cortical folding. The representation nodes are cortical
folds, which are given a sulcus name by a contextual pattern recognition
method. This method can be interpreted as a graph matching approach,
which is driven by the minimization of a global function made up of local
potentials. Each potential is a measure of the likelihood of the labelling
of a restricted area. This potential is given by a multi-layer perceptron
trained on a learning database. A base of 26 brains manually labelled
by a neuroanatomist is used to validate our approach. The whole system
developed for the right hemisphere is made up of 265 neural networks.

1 Introduction

The development of image analysis methods dedicated to automatic manage-
ment of brain anatomy is a widely addressed area of research. A number of
works focus on the notion of deformable atlases, which can be elastically trans-
formed to reflect the anatomy of new subjects. An exhaustive bibliography of
this approach initially proposed by Bajcsy [1] is largely beyond the scope of
this paper (see [23] for a recent review). The complexity and the striking inter-
individual variability of the human cortex folding patterns, however, have led
several groups to question the behaviour of the deformable atlas framework at
the cortex level. The main issues to be addressed are the following:

What are the features of the cortex folding patterns which should be matched
across individuals? While some sulci clearly belong to this set of landmark fea-
tures because they are usually considered as boundaries between different func-
tional areas, nobody knows to which extent secondary folds should play the
same role [18]. Some answers to this important issue could stem from foresee-
able advances in functional imaging and mapping of cortex connectivity. De-
formable atlas methods rely on the optimization of some function which realizes
a trade-off between similarity to the new brain and deformation cost. What-
ever the approach, the function driving the deformations is non convex. When
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high-dimensional deformation fields are used, this non-convexity turns out to be
particularly problematic since standard optimization approaches are bound to
lead to a local optimum. While multi-resolution methods may guarantee that an
“interesting optimum” is found, the complexity of the cortical folding patterns
implies that a lot of other similar optima exist. An important issue is raised by
this observation: is the global optimum the best one according to the pairing of
sulcal landmarks?

To overcome some of the difficulties related to the non-convexity of the prob-
lem, several teams have proposed to design composite similarity functions relying
on manual identifications of the main sulci [23, 4]. These composite functions
impose the pairing of homologous sulcal landmarks. While a lot of work remains
to be done along this line, this evolution seems required to adapt the deformable
atlas paradigm to the human cortex. This new point of view implies a prepro-
cessing of the data in order to extract and identify automatically these sulcal
landmarks, which is the subject of our paper.

Our system may be considered as a symbolic version of the deformable atlas
approach. The framework is made up of two stages [14, 15]. An abstract struc-
tural representation of the cortical topography is extracted first from each new
T1-weighted MR image. A symbolic pattern recognition method is then used to
label automatically the main sulci. This method can be interpreted as a graph
matching approach. Hence the usual iconic anatomical template is replaced by
an abstract structural template. The one to many matching between the tem-
plate nodes and the nodes of one structural representation is simply a labelling
operation. This labelling is driven by the minimization of a global function made
up of local potentials. Each local potential is a measure of the likelihood of the
labelling of a restricted cortex area. This potential is given by a virtual expert
in this area made up of a multi-layer perceptron trained on a learning database.

While the complexity of the preprocessing stage required by our method
may appear as a weakness compared to the straightforward use of continuous
deformations, it results in a fundamental difference. While the evaluation of
functions driving continuous deformations is costly in terms of computation, the
function used to drive the symbolic recognition relies on only a few hundred labels
and can be evaluated at a low cost. Hence stochastic optimization algorithms
can be used to deal with the non-convexity problems. In fact, working at a
higher level of representation leads to more efficiency for the pattern recognition
process, which explains an increasing interest in the community [10, 8, 9].

2 The Preprocessing Stage

This section describes briefly the robust sequence of treatments that converts
automatically a T1-weighted MR image in an abstract structural representation
of the cortical topography. The whole sequence requires about one hour on a
conventional workstation, including sophisticated triangulation of hundreds of
objects. All the steps have been validated with at least 50 different images ac-
quired with 6 different scanners using various MR sequence parameters. The
processing sequence is the following:
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Bias Correction via minimization of the grey level distribution entropy [12];
Histogram scale space analysis to assess tissue statistics [13];

Brain segmentation using mathematical morphology and Markov fields [13];
Hemisphere separation using mathematic morphology [16];

Segmentation of grey/CSF using topology preserving deformations [14];
Homotopic skeletonization driven by an isophote based erosion [14];
Segmentation of the skeleton into topologically simple surfaces [14];

Simple surfaces are split according to fold depth local minima, which are
considered as clues of a putative burried gyrus [18, 14, 11, 10];

9. The objects provided by the last step are finally gathered in a structural
representation which describes their relationships. Three kinds of links are
created between these nodes: pr links represent skeleton splits related to the
simple surface definition; pp links represent splits related to the presence of
a putative burried gyrus; and p¢ links represent a neighborhood relationship
geodesic to the hemisphere hull [14]. The resulting graph is enriched with
numerous semantic attributes dedicated to the recognition stage. Nodes are
described by their size, maximal depth, gravity center localization, and mean
normal. Links of type pr and pp are described by their length, extremity
localizations, minimal and maximal depth, and mean direction. Links of type
pc are described by their size and the localization of the closest points of
the linked nodes. The resulting attributed graph is supposed to include all
the information required by the sulcus recognition process.

PN ORI

3 The Learning Database

Our preprocessing tool can be viewed as a compression system which provides
for each individual brain a synthetic description of the cortex folding patterns.
A sophisticated 3D browser allows our neuroanatomist to label manually each
node with a name chosen in a list of anatomical entities. The lack of a validated
explanation of the structural variability of the human cortex is an important
problem during this labelling. Indeed, standard sulci are often split into several
pieces which leads to ambiguous configurations [17].

It has to be understood that this situation prevents the definition of an
unquestionable gold standard to be reached by any sulcus recognition method.
Therefore, one of the aims of our research is to favour the emergence of new
anatomical descriptions relying on smaller sulcal entities than the usual ones.
According to different arguments that would be too long to develop in this paper,
these units, the primary cortical folds that appear on the foetal cortex, are stable
across individuals; a functional delimitation meaning is probably attached to
them [18]. During ulterior stages of brain growth, some of these sulcal roots
merge with each other and form different patterns depending on the subjects.
The more usual patterns correspond to the usual sulci. In our opinion, some
clues on these sulcal root fusions can be found in the depth of the sulci.

A model of these sulcal roots derived from our anatomical research has been
used to label 26 right hemispheres. This model shares striking similarities with
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Fig. 1. A survey of the labelled database. The three first rows present nine brains
of the learning base, the fourth row presents three brains of the test base, and
the last row presents three brains of the generalization base. Each color labels
one entity of the anatomical model. Several hues of the same color are used to
depict different roots or stable branches of one given sulcus. For instance, color
codes of main frontal sulci are: 2 reds = central, 5 yellows = precentral, 3 greens
= superior, 2 blues = intermediate, 4 purples = inferior, 8 blues Lateral fissure,
red = orbitary, rose = marginal, yellow = transverse...
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Fig.2. 60 sulcus experts and 205 relationship experts are inferred from the
learning base. Each expert evaluates the labelling of the nodes included in its
field of view.

the model recently proposed by Lohman in [10]. This new type of anatomical
model, however, requires further validations before being properly used by neu-
roscientists. Therefore, the results described in the following have been obtained
after a conversion of this fine grain labelling to the standard nomenclature of
Ono [17], which will allow comparisons to other group’s works. This choice leads
to a list 60 names for each hemisphere, where each name represent standard sulci
and usual sulcus branches.

The 26 right hemispheres have been randomly separated into three bases: a
learning base made up of 16 brains is used to train the local experts; a test base
of 5 brains is used to stop the training before over-learning; and finally, a gener-
alization base of 5 brains is used to assess the actual recognition performance of
the system. We encourage the reader to study Fig. 1, which gives an idea of the
variability of the folding patterns. Of course, our manual labelling can not be
considered as a gold standard and could be questioned by other anatomists. It
has to be noted, however, that a lot of information used to perform the manual
recognition is concealed in the depth of the sulci.

4 The Markovian Model

Once a new brain has been virtually oriented according to a universal frame,
for instance the Talairach system, the cortical area where one specific sulcus can
be found is relatively small. This localization information can already lead to
interesting recognition results [8, 9]. Localization, however, is largely insufficient
to perform a complete recognition. Indeed, a lot of discriminating power only
stems from contextual information. This situation has led us to introduce a
Markovian framework [15]. This framework provides us with a simple way of
designing a probability distribution for the labelling: a Gibbs distribution relying
on local potentials [6]. These potentials are inferred from the learning base. They
embed interactions between the labels of neighboring nodes. These interactions
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are related to contextual constraints that must be adhered to in order to get
anatomically plausible recognitions.

Two families of potential are designed. The first family evaluates the sul-
cus shapes and the second family evaluates the spatial relationships of pairs of
neighboring sulci. Each potential depends only on the labels of a localized set of
nodes, which corresponds to the Markov field interaction clique [6]. For a given
graph, each clique corresponds to the set of nodes included in the field of view of
the underlying expert (see Fig. 2). For sulcus experts, this field of view is defined
from the learning base as a parallelepiped of the Talairach coordinate system.
The parallelepiped is the bounding box of the sulcus instances in the learning
base computed along the inertia axes of this instance set. For sulcus pair rela-
tionship experts, the field of view is simply the union of the fields of view of the
two related sulcus experts. Pairs of sulci are endowed with an expert if at least
10% of the learning base brains possess an actual link between the two related
sulci. For the model of the right hemisphere described in this paper, this rule
leads to 205 relationship experts. The whole system, therefore, is made up of a
congregation of 265 experts. Each expert potential is defined as the output of a
standard multi-layer perceptron [22]. The expert single opinions are gathered by
the Gibbs distribution, which gives the likelihood of a global labelling. Hence,
the sulcus recognition amounts to minimizing the sum of all of the perceptron
outputs.

5 Expert Training

Each expert is a multi-layer perceptron which is trained using the usual back-
propagation algorithm [22]. Expert inputs are vectors of descriptors of the ana-
tomical feature for which the expert is responsible. These descriptors consti-
tute a compressed code of sulcus shapes and relationships. Sulcus shapes are
summarized by 27 descriptors and sulcus relationships by 23 descriptors. These
descriptors are computed from a small part of the graph corresponding to one
single label (sulcus) or one pair of labels (relationship). A few Boolean logical
descriptors are used to inform of the existence of a non-empty instance of some
anatomical entity (sulcus, junction with the hemisphere hull, actual link between
two sulci...). Continuous semantic descriptors are inferred from the semantic at-
tributes [14] of the subgraph to be analyzed:

Sulcus expert: total size, minimal and maximal depth, gravity center localiza-
tion, and mean orientation; length, mean direction, and extremity localiza-
tion of the junction with the hemisphere hull;

Relationship expert: total sizes of both sulci; total sizes of each kind of links;
minimal distance between the sulci; semantic attributes of the contact link
(junction or burried gyrus [14]), namely junction localization, mean direc-
tion, distances between the contact point and the closest sulcus extremities,
respective localization of the sulci, and angle between sulcus hull junctions.
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Fig.3. A survey of the learning of the intermediate precentral sulcus ex-
pert. Dark points represent correct examples, light points ambiguous counter-
examples, and middle grey points standard counter-examples. The first chart
shows the evolution of the perceptron output for the learning base during the
training. The second chart is related to the output for the test base. The third
chart presents the evolution of the mean error on the test base. A consistent
increase of this criterion corresponds to overlearning beginning.

Integer syntactic descriptors of the subgraph topology are also computed:

Sulcus expert: number of connected components using all links or only con-
tact links; number of proximity links between contact related connected com-
ponents, maximal gap between these components (continuous); number of
internal links of “burried gyrus” type;

Relationship expert: numbers of contact related connected components of
both sulci, numbers of such components implied in actual links between the
sulci, number of contact points, number of links of “burried gyrus” type
between the sulci, minimal depth of such links (continuous).

The perceptrons include two hidden layers and one output neuron. The first
hidden layer is not fully connected to the input layer. Indeed, various experiments
have led to the conclusion that a consistent packaging of the inputs lead to
a better generalization power. Hence, the first hidden layer is split in several
blocks feeded by a specific subset of inputs (see Fig. 2). For instance, syntactic
descriptors feed one specific block.

The supervised learning of the experts relies on two kinds of examples. Cor-
rect examples extracted from the learning base must lead to the lowest output.
Counter-examples are generated from correct examples through random modi-
fications of some labels of the clique nodes. A continuous distance between the
correct example and the generated counter-example is used to choose the taught
output. Small distances lead to intermediate outputs while larger distances lead
to the highest output. This balancing of the counter-example outputs was nec-
essary to overcome learning difficulties fathered by ambiguous counterexamples.

The backpropagation algorithm is iteratively applied to the learning base
using a one to ten ratio between correct examples and counter-examples. A stop
criterion defined from the test base is used to avoid over-learning. This criterion
relies on the sum of two mean errors computed respectively for correct examples
and for counter-examples of the test base. The learning is stopped when this
criterion presents a consistent increase or after a maximum number of iterations
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Node number Recognition (%) Ubase Uannealing
Base (nb. brains) min mean max min mean max min mean max min mean max
Learning (16): 232 276 339 79 86 92 -106 -85 -75 -108 -95 -81
Test (5): 217 277 321 73 80 8 -68 -46 -24 -96 -85 -T4
Generalization (5): 236 281 301 71 76 80 -33 -25 -20 -74 -69 -65
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Fig. 4. (top) Node number, recognition rate, energy of the manual labelling
(Ubase), and energy of the automatic labelling for each base. (bottom) Recog-
nition rate relative to final energy for ten different minimizations.

(cf. Fig. 3). The minimum value of this criterion is used to get a measure of
confidence in the expert opinion. This measure is used to weight the output of
this expert during the recognition process.

6 Results

The sulcus recognition process consists of the minimization of the energy made
up of the weighted sum of the expert outputs. Each node label is chosen in a
subset of the sulcus list corresponding to the expert fields of view which include
this node. The minimization is performed using a stochastic algorithm inspired
by the simulated annealing principle. This algorithm relies on a dedicated version
of the Gibbs sampler [6]. For the following results, the minimization lasts about
two hours on a conventional workstation. While an optimized implementation is
planned in order to achieve a significant speed-up, it should be noted that the
manual labelling work is even slower.

A global measure is proposed to assess the correct recognition rate. This mea-
sure corresponds to the proportion of cortical folds correctly identified according
to the manual labelling. The contribution of each node to this global measure is
weighted by its size (the number of voxels of the underlying skeleton [14]). The
mean recognition rate on each of the three bases is proposed in Fig. 4. In order
to check the reproducibility of the process, the minimization has been repeated
ten times with different initializations for one brain of each base (see Fig. 4).
This experiment has shown that the recognition rate is related to the depth of
the local minimum obtained by the optimization process.

The recognition rate obtained for the generalization base is 76%, which is
very encouraging considering the variability of the folding patterns. As matters
stand relative to our understanding of this variability, it should be noted that
numerous “errors” of the system correspond in fact to ambiguous configurations.
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In fact, after a careful inspection of the results, the neuroanatomist of our team
often admits to a preference for the automatic labelling. Moreover, the automatic
system often corrects flagrant errors due to the cumbersome nature of the manual
labelling. Increasing the size of the learning and test bases should help to improve
the results. We plan also to develop a system using several experts for each
anatomical entity in order to get a better management of the coding of the
structural variability [20]. This work will include automatic adaptation of the
topology of the neural networks to each expert.

7 Conclusion

A number of approaches relying on the deformable atlas paradigm consider that
anatomical a priori knowledge can be completely embedded in iconic templates.
While this point of view is very powerful for anatomical structures presenting
low inter-individual variability, it seems insufficiently versatile to deal with the
human cortical anatomy. This observation has led several teams to investigate
approaches relying on higher levels of representation. All these approaches rely
on a preprocessing stage which extracts sulcal related features describing the
cortical topography. These features can be sulcal points [3], sulcal lines inferred
from skeletons [21, 2], topologically simple surfaces [14], 2D parametric models of
sulcal median axis [7, 24, 25], crest lines [5, 11] or cortex depth maxima [10, 19]. In
our opinion, this direction of research can lead further than the usual deformable
template approach. In fact these two types of work should be merged in the near
future. It has to be understood, however, that some of the challenging issues
about cortical anatomy mentioned in the introduction require new neuroscience
results to be obtained. As such, image analysis teams addressing this kind of
research must be responsible for providing neuroscientists with new tools in
order to speed-up anatomical and brain mapping research. Our system is used
today to question the current understanding of the variability and to help the
emergence of better anatomical models. Various direct applications have been
developed in the fields of epilepsy surgery planning and brain mapping.
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