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Abstract. Constructing practical and provably secure group signature
schemes has been a very active research topic in recent years. A group
signature can be viewed as a digital signature with certain extra prop-
erties. Notably, anyone can verify that a signature is generated by a
legitimate group member, while the actual signer can only be identified
(and linked) by a designated entity called a group manager. Currently,
the most efficient group signature scheme available is due to Camenisch
and Lysyanskaya [CL02]. It is obtained by integrating a novel dynamic
accumulator with the scheme by Ateniese, et al. [ACJT00].
In this paper, we construct a dynamic accumulator that accumulates
composites, as opposed to previous accumulators that accumulated
primes. We also present an efficient method for proving knowledge of fac-
torization of a committed value. Based on these (and other) techniques
we design a novel provably secure group signature scheme. It operates
in the common auxiliary string model and offers two important bene-
fits: 1) the Join process is very efficient: a new member computes only
a single exponentiation, and 2) the (unoptimized) cost of generating a
group signature is 17 exponentiations which is appreciably less than the
state-of-the-art.

1 Introduction

The notion of group signatures was introduced by Chaum and van Heyst in
1991 [CvH91]. Since then, seeking practical and provably secure group signature
schemes – and their interactive dual known as identity escrow [KP98] – has been
a very active research area in applied cryptography. A group signature can be
seen as a normal digital signature with the following extra properties: anyone
can verify that a signature is generated by a legitimate group member, while the
actual signer can only be identified and linked by a designated entity called a
group manager.

The basic idea underlying most group signature schemes (as well as ours)
is the following: In order for a group member (Alice) to sign a message, she
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needs to construct an authorization-proof to show that she has a legitimate
membership certificate, and an ownership-proof to demonstrate knowledge of
the secret corresponding to the membership certificate. The issues in these two
proofs are similar to those encountered in a normal public key infrastructure
(PKI) setting, namely, a signature can be verified using the alleged signer’s
public key contained in a certificate which has not been revoked. However, the
group signature scenario is more complicated, since a signer cannot show her
membership certificate without compromising her anonymity. It is precisely this
anonymity requirement that makes it very difficult to have a practical solution
that facilitates revocation of membership certificates (a concept compatible to
certificate revocation in a normal PKI), or the validity check of non-revoked
membership certificates.

Early group signature schemes (e.g., [CP94]) have the characteristics that
the sizes of the group public key and/or of group signatures linearly depend
on the number of group members. The advantages of these schemes include:
(1) many of the schemes have been proven secure using some standard crypto-
graphic assumptions (such as the hardness of computing discrete logarithms),
and (2) authorization-proof is trivial since revoking a member is done by the
group manager that removes the corresponding membership certificate from the
group public key. The disadvantage of such schemes is that the complexity of
ownership-proof, namely proving and verifying that one knows the secret corre-
sponding to a (non-identified yet non-revoked) membership certificate, is linear
in the number of current members and thus becomes inefficient for large groups.

To combat linear complexity incurred as part of ownership-proof, Camenisch
and Stadler [CS97] took a different approach where the sizes of the group public
key and of group signatures are constant and independent of the number of cur-
rent group members. This approach has been adopted in some follow-on results,
e.g., [CM98,CM99a,ACJT00]. As initially presented, these schemes only support
adding new members. Since then, [CS97] and [ACJT00] have been extended to
support membership revocation [BS01,S01,AST02]. However, revocation incurs
certain significant costs due to some (or all) of the following:

– Group manager re-issuing all certificates for each revocation interval.
– Group member (signer) proving, as part of signing, that her certificate is not

revoked.
– Verifier checking each group signature against the current list of revoked

certificates.

As pointed out in [CL02], each of the above has a linear dependency either
on the number of current, or the total number of deleted, members.

State-of-the-Art. Currently, the most efficient group signature scheme is due
to Camenisch and Lysyanskaya [CL02]. It is constructed by incorporating a
dynamic accumulator, which allows efficient authorization-proofs, into the group
signature scheme due to Ateniese, et al. [ACJT00], which allows efficient owner-
ship-proofs. The concept of dynamic accumulators introduced in [CL02] is a
variant of the accumulator due to Baric and Pfitzmann [BP97]. It enables a
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group member to conduct a light-weight authorization-proof such that both the
proving and verifying complexities are independent of the number of the current,
or total deleted, members. We note that the use of dynamic accumulators to
facilitate authorization-proofs, requires the group manager to disseminate certain
information, such as the values deleted from the accumulator whenever a member
(or a set of thereof) joins or leaves the group.

1.1 Contributions

The main contribution of this paper is a new group signature scheme provably se-
cure against adaptive adversaries, i.e., adversaries allowed to adaptively join and
leave the group. The scheme is obtained by integrating several building blocks,
some of which are new (e.g., the dynamic composites accumulator), while oth-
ers are more efficient than previous techniques providing the same functionality
(e.g., the multiplication protocol that allows one to prove that she knows the
factorization of a committed value). More specifically:
– A new dynamic accumulator that accumulates composites (see Section 5.1),

as opposed to the prior construct that accumulates primes [CL02]. This
accumulator fits well into a group signature scheme because it allows us to
conduct simultaneous authorization-proofs and ownership-proofs based on
the factorizations of accumulated composites.

– A protocol (in Section 5.2) for proving knowledge of factorization of a com-
mitted value, which, in our case, corresponds to an accumulated composite.
This protocol is more efficient than prior art, such as [DF02].

– A protocol (in Section 5.3) for verifiable encryption of discrete logarithms,
based on the public key cryptosystem due to Catalano, et al. [CGHN01].
This protocol is more efficient than previous similar protocols (e.g., the one
presented in [MR01]) based on the Paillier cryptosystem [P99].
As mentioned earlier, the state-of-the-art group signature scheme by Ca-

menisch and Lysyanskaya is obtained by integrating a dynamic prime accumula-
tor [CL02] with the bare group signature scheme in [ACJT00]. This integration
was needed since a prime accumulator cannot be used for ownership-proof. In
comparison with the [CL02] scheme, our approach has three major benefits:

– Use of the new accumulator construct simultaneously for both ownership-
proof and authorization-proof. This yields a conceptually simpler scheme.

– Efficient Join: a new member only computes a single exponentiation in order
to verify that her composite has been correctly accumulated. In comparison,
Join involves more than 30 exponentiations in [CL02]. We note that this
complexity does not stem from the use of the dynamic accumulator; it is
inherited from Join of [ACJT00].

– Efficient Sign and Verify: the computational complexity of signing is 17 ex-
ponentiations (without any optimizations) which is notably lower than 25
in the Camenisch-Lysyanskaya scheme. A similar gain in efficiency is also
achieved in the verification process.

Our scheme also has some potential drawbacks. They are discussed in Sec-
tion 7.
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1.2 Organization

In Section 2, we overview the model and goals of group signatures. Then, in
Section 3, we introduce the basic ideas underlying our group signature scheme.
Section 4 presents some cryptographic preliminaries and Section 5 describes
some building blocks. The new group signature scheme is found in Section 6; its
features and potential drawbacks are discussed in Section 7. Due to space limi-
tations, technical details of the security proof and some interesting discussions
are deferred to the extended version [TX03].

2 Model and Goals

Participants. A group signature scheme involves a group manager (responsible
for admitting/deleting members and for revoking anonymity of group signatures,
e.g., in cases of dispute or fraud), a set of group members, and a set of signature
verifiers. All participants are modeled as probabilistic polynomial-time interac-
tive Turing machines.

Communication Channels. All communication channels are assumed to be
asynchronous. The communication channel between a signer and a receiver is
assumed to be anonymous.

Trust. We assume that the group manager will not admit unauthorized individ-
uals into the group. This is reasonable, since, otherwise, the group manager can
issue valid membership certificates to rogue members and thus make the group
signature scheme useless. We assume that the group members, whether honest
or not, behave rationally. More precisely, a dishonest group member may seek to
undermine the system (e.g., by colluding with other internal or external parties)
as long as the attack will not be traced back to herself. Nonetheless, she will not
take the chance if she (or anyone else colluding with her) is bound to be caught.
This assumption is also reasonable since, in any group signature scheme (indeed,
in any cryptographic setting), a dishonest user could (for instance) simply give
away her own secrets. However, she is bound to be held accountable for any
consequences of such misbehavior.

2.1 Definitions

A group signature scheme consists of the following procedures:

– Setup. On input a security parameter, this probabilistic algorithm outputs
the initial group public key and the secret key for the group manager.

– Join. This is a protocol executed between the group manager and a user who
is to become a group member. The user’s output is a membership certifi-
cate and a membership secret; the group manager’s output is some updated
information that indicates the current state of the system.

– Revoke. This is a deterministic algorithm which, on input a membership cer-
tificate, outputs some updated information that indicates the current state
of the system after revoking the given membership certificate.
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– Update. This is a deterministic algorithm that may be triggered by any Join
or Revoke operation. It is run by the group members after obtaining certain
information from the group manager.

– Sign. This is a probabilistic algorithm which, on input of: a group public
key, a membership certificate, a membership secret and a message, outputs
a group signature.

– Verify. This is a deterministic algorithm for establishing the validity of an
alleged group signature on a message with respect to the group public key.

– Open. This is an algorithm which, on input of: a message, a valid group
signature, a group public key and a group manager’s secret key, determines
the identity of the actual signer.

2.2 The Goals

A secure group signature scheme must satisfy the following properties:

– Correctness. Any signatures produced by a group member using Sign
must be accepted by Verify.

– Unforgeability. Only group members are able to sign messages on behalf
of the group.

– Anonymity. Given a valid group signature, identifying the actual signer is
computationally hard for everyone but the group manager.

– Unlinkability. Deciding whether two different group signatures were gen-
erated by the same member is computationally hard for everyone but the
group manager.

– No-framing. No combination of a group manager and a subset of dishonest
group members can sign on behalf of a single honest member. That is, no
honest member can be made responsible for a signature she did not produce.

– Traceability. The group manager is always able to identify the actual
signer of any valid group signature.

– Coalition-resistance. A colluding subset of group members (even all
members) cannot generate a signature that the group manager cannot trace.

3 Basic Ideas

The basic idea underlying our group signature scheme is to utilize an accumula-
tor that accumulates composites, where the factorization of a composite is only
known to the user who generates it. More specifically, suppose a group member
has a witness w such that we = v mod n where v is the public accumulator value
and n is the product of two safe primes. The factorization of e = e1e2 (i.e., the
primes e1 and e2) is only known to the member. This knowledge allows the user
to conduct an ownership-proof by demonstrating that e = e1e2. The witness w
facilitates an authorization-proof that we = v mod n.

While the basic idea is quite simple, we must deal with potential abuses.
We now present an informal discussion of some subtleties, and suggest counter-
measures. Readers who prefer to commence with the more in-depth technical
description may wish to skip this section.
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Q: How to ensure anonymity while preserving authenticity?
A: A signer “encrypts” both w and e such that the required properties regarding

them can be shown on the corresponding “ciphertexts”. In particular, a
signer needs to show we = v for the authorization-proof, and e = e1e2 for
the ownership-proof. As long as e is chosen such that it is infeasible to factor,
no group of participants (including the group manager) can frame an honest
group member.

Q: How to deal with multiple dishonest group members who collude (by reveal-
ing to each other factorizations of their respective composites) and produce
new membership certificates? For example, if Alice chooses e1 = e1,1e1,2
and Bob chooses e2 = e2,1e2,2, they can collude to obtain new membership
certificates for the values such as (e1e2,1) or (e1,1e2,1).

A: Although we cannot prevent such abuses, we can ensure that, the group
manager can factor at least one of the colluding group member’s e (e1, or e2,
or even both) and thus identify at least one of the miscreants. One way to
do this, as we shall see, is to use a public key encryption scheme (for which
the group manager knows the private key) so that the signer is forced to
encrypt an “accumulated” value she is claiming. Note that even a dishonest
member cannot afford to encrypt e1,1, since, otherwise, the group manager
can factor her composite and forge signatures that will be traced back to the
dishonest member.

Q: How to deal with multiple dishonest group members who collude (but do not
reveal to each other the factorizations of their composites) and produce new
membership certificates? For example, suppose that Alice holds (w1, e1) and
Bob holds (w2, e2), where e1 = e1,1e1,2, e2 = e2,1e2,2, we1

1 = we2
2 = v. They

can collude and generate (w′, e′ = e1e2) such that (w′)e1e2 = v.
A: We prevent such attacks by requiring all verifiers to check that e′ falls within

a certain range.
Q: Does the group manager need to check whether a composite presented by a

new user during Join is well-formed, i.e., a product of two large primes? If
not, what if a dishonest group member chooses e to be a single prime or a
product of multiple (more than 2) primes?

A: We do not aim to prevent such abuses (this also justifies our efficiency gains).
However, will be shown, no adversary can gain any benefit from any such
abuse since the group manager is always able to identify at least one of
the colluding group members. Moreover, choosing appropriate composites is
indeed on the user’s behalf.

Q: What if the group manager attempts to frame an honest group member by
using the group member’s membership certificate (w, e) where we = v while
providing a proof of factorization of some value e′ �= e.

A: The Sign process ensures that, if the group manager proves knowledge of the
factorization of an “accumulated” value e′ �= e, then the witness value that
the group manager (or any impersonator) is showing is w′ �= w. Moreover,
the group manager is required to conduct a zero-knowledge proof as part of
Open such that the decryption corresponding to an ElGamal ciphertext (of
w) is correct.
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4 Preliminaries

Definition 1. (safe RSA modulus). We say n = pq is a safe RSA modulus, if
p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are all primes.

By convention, let gcd(0, n) = n, and QRn be the subgroup of quadratic
residues modulo n.

Definition 2. (Strong RSA Problem). Let n = pq be a RSA-like modulus and G

be a cyclic subgroup of Z∗
n, where |ord(G)| = lG. Given n and z ∈R G, the Strong

RSA Problem consists of finding w ∈ G and e > 1 such that z = we mod n.

Assumption 1 (Strong RSA Assumption). Suppose a RSA-like modulus n and
z ∈R G are obtained according to a given security parameter lG. The assumption
states that any probabilistic polynomial-time algorithm A can solve the Strong
RSA Problem with only negligible probability.

The following lemma is useful and has appeared in many places (e.g.,
[GKR00]).

Lemma 1. Suppose n = pq is a safe RSA modulus. Given an element w ∈
Z∗

n \ {1,−1} of ord(w) < p′q′, either gcd(w − 1, n) or gcd(w + 1, n) is a prime
factor of n.

Definition 3. (Decisional Diffie-Hellman Problem). Let G = 〈g〉 be a cyclic
group generated by g, where |ord(G)| = lG. Given g, gx, gy, and gz ∈R G, the
Decisional Diffie-Hellman Problem consists of deciding whether gxy = gz.

Assumption 2 (Decisional Diffie-Hellman Assumption). Suppose a group G

and an element g of order ord(G) are obtained according to a given security
parameter lG. The assumption states that there is no probabilistic polynomial-
time algorithm that distinguishes with non-negligible probability (g, gx, gy, gxy)
from (g, gx, gy, gz), where x, y, z ∈R Zord(G).

We will utilize the ElGamal public key cryptosystem [E85] whose semantic
security is based on DDHA [TY98]. Since we always work in the setting of modulo
a safe RSA modulus, we need certain group in which the DDHA holds.

Fact 1 If n is a safe RSA modulus, then QRn is a cyclic subgroup of order p′q′.
Moreover, if a ∈ Z∗

n and gcd(a± 1, n) = 1, then g = a2 mod n is of order p′q′.

4.1 The CGHN Public Key Cryptosystem

We now briefly review Paillier’s cryptosystem [P99]. Suppose n = pq where p and
q are large primes. Then we have Euler’s Totient function φ(n) = (p− 1)(q − 1)
and Carmichael’s function λ(n) = lcm(p − 1, q − 1). It follows that: wλ(n) =
1 mod n and wn·λ(n) = 1 mod n2 for any w ∈ Z∗

n2 . Let (n, g; n, g, p, q) be a pair
of Paillier public and private keys as specified in [P99]. To encrypt a message
m ∈ Zn, one chooses r ∈R Z∗

n and computes the ciphertext c = gmrn mod n2.
Note that an interesting selection of g is g = (1 + n) because (1 + n)m =
1 + mn mod n2.
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A performance disadvantage of the Paillier cryptosystem is that one needs to
compute rn mod n2. Catalano et al. [CGHN01] observed that if we always set
g = (1 + n) then we can use any public exponent t as long as gcd(t, λ(n2)) = 1,
because a ciphertext c = (1 + mn)rt mod n2 yields c = rt mod n, thereby r
can be recovered by a standard RSA decryption operation. This means that
one only needs to compute an exponentiation operation modulo n2 with respect
to an exponent |t| << |n|. We call this variant the CGHN cryptosystem whose
semantic security is based on the following DSRA assumption.
Definition 4. (Computational Small t-roots Problem). This is a variant of the
RSA problem in Z∗

n2 . The problem is to invert yt mod n2, where y ∈ Zn, t ∈ Zn,
and gcd(t, λ(n2)) = 1.

Definition 5. (Decisional Small Residuosity Problem, DSRP). This is a deci-
sional version of the above computational problem. Given an element x ∈R Z∗

n2 ,
one needs to decide whether x is the form yt with y ∈ Zn.

Assumption 3 (Decisional Small Residuosity Assumption, DSRA) Let n be a
randomly chosen l-bit RSA modulus, t ∈ Zn such that gcd(t, λ(n2)) = 1, and
x ∈R Z∗

n2 . There exists no probabilistic polynomial-time algorithm that is able to
decide, with non-negligible advantage, whether x is the form yt with y ∈ Zn.

The following lemma will be used (the proof is deferred to [TX03]).
Lemma 2. Suppose n is a safe RSA modulus. If Aa = 1 mod n2 where A ∈ Z∗

n2

and gcd(a, n · λ(n)) = 1 or 2, then A = ±1 mod n2.

5 Building Blocks

5.1 A Composite Accumulator
Definition 6. A dynamic accumulator for a family of inputs {Xl} is a family
of families of functions {Fl} with the following properties:

– Generation. There is an efficient probabilistic algorithm G that on input
1l produces a random element f of Fl, and some auxiliary information auxf

about f .
– Evaluation. f ∈ Fl is a polynomial-size circuit that, on input (u, x) ∈

Uf × Xl, outputs a value v ∈ Uf , where Uf is an efficiently-samplable input
domain for the function f , Xl is the intended input domain whose elements
(i.e., composites) are to be accumulated.

– Quasi-Commutative. For all l, for all f ∈ Fl, for all u ∈ Uf , for all
x1, x2 ∈ Xl, f(f(u, x1), x2) = f(f(u, x2), x1). If X = {x1, · · ·, xm} ⊂ Xl, then
by f(u, X) we denote f(· · ·f(f(u, x1), · · ·), xm).

– Witness. Let v ∈ Uf and x ∈ Xl. A value w ∈ Uf is called a witness for x
in v under f if v = f(w, x).

– Addition. Let f ∈ Fl, and v = f(u, X) be the accumulator so far. There is
an efficient algorithm A to accumulate a given value x′ ∈ Xl. The algorithm
outputs: (1) X′ = X ∪ {x′} and v′ = f(v, x′) = f(u, X′); (2) w′ which is the
witness for x ∈ X in v′.
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– Deletion. Let f ∈ Fl, and v = f(u, X) be the accumulator so far. There
exist efficient algorithms D, W to delete an accumulated value x′ ∈ X. The
functionality of the algorithms includes: (1) D(auxf , v, x′) = v′ such that
v′ = f(u, X \ {x′}), and (2) W(w, x, x′, v, v′) = w′ such that f(w′, x) = v′,
where x ∈ X and f(w, x) = v.

Definition 7. Let U′
f ×X′

l denote the domains for which the function f ∈ Fl is
defined (thus Uf ⊆ U′

f , Xl ⊆ X′
l). To capture security of a dynamic accumulator

accumulating composites, we consider the following game: At the beginning of
the game, an accumulator manager sets up the function f and the value u and
hides the trapdoor information auxf . Then, the adversary ADV is allowed to
adaptively modifies the set, X, of accumulated values: When a value x ∈ Xl is
added, the manager updates the accumulator value using algorithm A; when a
value x ∈ X is deleted, the manager algorithm D publishes the result. We say
ADV wins in this game, if it, with non-negligible probability, manages to output
a witness w′ for a value x′ ∈ X′

l such that x′ �
∏

∀x∈X x. More formally, we
require that:

Pr[(f, auxf )← G(1l); u← Uf ; (w, x′,X)← ADVOadd,Odel(f, u,Uf ) :

w′ ∈ U′
f ; x′ ∈ X′

l; x
′ �

∏

∀x∈X

x; f(w′, x′) = f(u, X)]

to be negligible, where Oadd (Odel) is the oracle for the Addition (resp. Dele-

tion) operations. (Note that only a legitimately accumulated value x must belong
to Xl, whereas a forged value x′ can belong to a possibly larger set X′

l.)

Construction. This construction is a variant of the one in [CL02].

– Fl is the family of functions that correspond to exponentiation modulo safe
RSA modulus drawn from the integers of length l. Choosing f ∈ Fl amounts
to choosing a random safe RSA modulus n = pq of length l, where p = 2p′+1,
q = 2q′ + 1. We will denote by f the function corresponding to modulus n
and domain XA,B by fn,A,B .

– XA,B = {e1e2 : e1 ∈ S1
∧

e2 ∈ S2}, where S1 = {e : e ∈ primes
∧

e �=
p′ ∧ e �= q′ ∧ A1 ≤ e ≤ B1}, S2 = {e : e ∈ primes

∧
e �= p′ ∧ e �= q′ ∧ A2 ≤

e ≤ B2}, A1, A2, B1, and B2 can be chosen with arbitrary polynomial
dependence on the security parameter l as long as 4 < A1, 1 < A2, B1 < A2

1,
B2 < A2

1, and B1B2 < p′q′. Then, X′
A,B ⊆ {5, · · ·, A4

1−1} and XA,B ⊆ X′
A,B .

– For f = fn,A,B , the auxiliary information auxf is the factorization of n.
– For f = fn,A,B , Uf = {u ∈ QRn : u �= 1} and U′

f = Z∗
n.

– For f = fn,A,B , f(w, x) = wx mod n. We remark that f(f(w, x1), x2) =
f(w, {x1, x2}) = wx1x2 mod n.

– Update of the accumulator value. Adding a value x′ to the accumulator value
v is done by setting v′ = f(v, x′) = vx′

mod n. Deleting a value x′ from the
accumulator is done by setting v′ = D((p, q), v, x′) = v(x′)−1 mod φ(n) mod n.

– Update of witness. Updating the witness w after x′ has been added can be
done by w′ = f(w, x′) = wx′

. In the case that x′ �= x ∈ XAB has been deleted
from the accumulator, the witness w can be updated as follows. By the
extended GCD algorithm, one can compute α, β ∈ Z such that αx+βx′ = 1
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and then w′ = W(w, x, x′, v, v′) = (v′)αwβ . This guarantees f(w′, x) =
(w′)x = v′ mod n because:

w′ = (v′)αwβ = (v(x′)−1 mod φ(n))αwβ = w(αx+βx′)((x′)−1 mod φ(n))

= w(x′)−1 mod φ(n) mod n.

Note that it is crucial (x′, φ(n)) = 1, but this is always guaranteed.

Theorem 1. ([TX03]) Under the Strong RSA Assumption (SRSA), the above
construction is a secure dynamic accumulator that accumulates composites.

5.2 Proving That One Knows the Factorization
of a Committed Value

In order to enable ownership-proofs, we adopt the Damgard-Fujisaki commit-
ment scheme [DF02] with slight modification. Nonetheless, our protocol for a
signer to prove that she knows the factorization of a committed value is more
efficient than the protocol presented in [DF02], and thus may be independently
interesting.

The Commitment Scheme. Let l (for the length of the modulus) and k (for
challenge length) be security parameters, where l >> k. This scheme consists of
the following three algorithms.

– Set-up. This algorithm is run by a trusted third party (TTP). Given a se-
curity parameter l, TTP chooses a safe RSA modulus N = PQ, where
P = 2P ′ + 1, Q = 2Q′ + 1, and |P ′| = |Q′| = l/2. Denote by G = QRN and
lG = |ord(G)| = l. TTP chooses two generators of G, G and H, uniformly
at random; i.e., G = 〈G〉 = 〈H〉. Note that Fact 1 implies that this can be
easily done.

– Commit. To commit to an integer x, the prover chooses r ∈R Z�N/4� and
sends C = HxGr mod N to the verifier.

– Open. To open a commitment, the prover must send x, r, b such that C =
HxGrb mod N , b = ±1.

Lemma 3. ([DF02]) The above commitment scheme is perfectly hiding and com-
putationally binding.

A Protocol for Proving That One Knows the Factorization of a Com-
mitted Value. Suppose X is a given random integer such that |X| = λ1. Let
ε > 1 be a security parameter for statistical zero-knowledge, λ2 denote length
such that l/2 > λ1 > ε(λ2 + k)+ 2. Alice who holds e is to prove that she knows
the factorization of e = e1e2, where e1 ∈ {X − 2λ2 , · · ·, X + 2λ2} and e2 �= 0,±1.
The protocol goes as follows.

1. The prover, Alice, chooses r1 ∈R ±{0, 1}l+k and generates C1 = He1Gr1

mod N , C3 = (C1)e2 mod N . In order to prove the knowledge of e = e1e2,
e1, e2, r1, r = r1e2 such that

C1 = He1Gr1 mod N
∧

C3 = HeGr mod N
∧

C3 = (C1)e2 mod N ,

she executes as follows:
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– choose e′
1 ∈R ±{0, 1}ε(λ2+k), e′

2 ∈R ±{0, 1}ε(λ1+k+1), e′ ∈R ±
{0, 1}ε(2λ1+k+1), r′

1 ∈R ±{0, 1}ε(l+2k), r′ ∈R ±{0, 1}ε(l+λ2+2k+1).
– compute C ′

1 = He′
1Gr′

1 mod N , C ′
3a = He′

Gr′
mod N , C ′

3b = (C1)e′
2

mod N .
– send (C1, C3, C

′
1, C

′
3a, C ′

3b) to the verifier.

2. The verifier, Bob, chooses c ∈R {0, 1}k and sends c to Alice.
3. Alice sends Bob (se1 , sr1 , se2 , se, sr), where se1 = e′

1 − c(e1 − X), sr1 =
r′
1 − c · r1, se = e′ − c · e, sr = r′ − cr, se2 = e′

2 − c · e2 (all in Z).
4. Bob accepts if the following holds: Hse1 Gsr1 = C ′

1C
−c
1 Hc2λ1 mod N , Hse

Gsr = C ′
3aC−c

3 mod N , C
se2
1 = C ′

3bC
−c
3 mod N , se1 ∈ {−2ε(λ2+k)+1, · ·

·, 2ε(λ2+k)+1}, se2 ∈ {−2ε(λ1+k+1)+1, ···, 2ε(λ1+k+1)+1}, se ∈ {−2ε(2λ1+k+1)+1

, · · ·, 2ε(2λ1+k+1)+1}, C3 �= 1, and C3 �= (C1)b mod N where b = ±1.

The proof of the following lemma is available in [TX03].

Lemma 4. The above protocol is an honest verifier statistical zero-knowledge
proof of knowledge e, e1, e2 such that e = e1e2, e1 ∈ {X − 2ε(λ2+k)+2, · · ·,
X + 2ε(λ2+k)+2}, e2 ∈ {−2ε(λ1+k+1)+2, · · ·, 2ε(λ1+k+1)+2} \ {0,±1}, e ∈ {
−2ε(2λ1+k+1)+2, · · ·, 2ε(2λ1+k+1)+2}.

5.3 Verifiable Encryption of a Committed Value

In order to facilitate the Open process, we need to force the signer to present
an encryption of her accumulated value e for which she proves that she knows
its non-trivial factorization e = e1e2. For this purpose, we need a verifiable
encryption scheme. Here we present such a scheme based on the CGHN public
key cryptosystem.

Specifically, suppose public values N , G, and H are chosen according to the
commitment scheme in Section 5.2. Let pk = 〈n, t〉 be a CGHN public key and
sk = 〈n, t, p, q〉 be the corresponding private key, where n = pq, |n| = |N |,
and t is a prime such that |t| > k. The prover generates a ciphertext Y =
(1 + n)xrt mod n2 and a commitment C = HxGz mod N , where r ∈ Z∗

n and
z ∈R Z�N/4�. The prover needs to show that the ciphertext Y indeed corresponds
to the committed secret x. The protocol is as follows:
1. The prover chooses x′ ∈R ±{0, 1}ε(l2+k), r′ ∈R Z∗

n, z′ ∈R {0, 1}ε(l+k),
computes and sends to the verifier Y ′ = (1 + n)x′

(r′)t mod n2 and C ′ =
Hx′

Gz′
mod N .

2. The verifier responses with a random challenge c ∈R {0, 1}k.
3. The prover sends to the verifier sx = x′− cx (in Z), sr = r−cr′ mod n2, and

sz = z′ − cz (in Z).
4. The verifier accepts if the following holds: sx ∈ {−2ε(l2+k)+1, 2ε(l2+k)+1},

(1 + n)sx(sr)t = Y ′Y −c mod n2, and HsxGsz = C ′C−c mod N .

Lemma 5. ([TX03]) The above protocol is an honest-verifier statistical zero-
knowledge proof of knowledge x, r, z.
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6 A New Group Signature Scheme

As highlighted in Section 3, the basic idea underlying our group signature scheme
is to utilize an accumulator accumulating composites such as e = e1e2, where e1
and e2 are only known to the user who generates it. Suppose v is the accumu-
lator value. This knowledge allows the user to conduct an ownership-proof by
demonstrating that she knows the factorization of a committed e, whereas the
witness w facilitates an authorization-proof that we = v mod n.

6.1 Setup

Initialization of the system includes that a group manager establishes some
cryptographic parameters and that a TTP establishes some common auxiliary
strings. Specifically:

1. Let l, k, and ε > 1 be security parameters. Let X be a random integer of
length |X| = λ1. Suppose λ2 denotes length such that l/2 > λ1 > ε(λ2 +
k) + 2. Denote by A = X − 2λ2 and B = X + 2λ2 . Define the integral ranges
that Λ1 = {A, · · ·, B}, Λ2 = {2λ1 , · · ·, 2λ1+1 − 1}, and Γ = {−22λ1+1, · ·
·, 22λ1+1}. Define XA,B = {e1e2 : e1 ∈ S1

∧
e2 ∈ S2}, where S1 = {e : e ∈

primes
∧

e ∈ Λ1} and S2 = {e : e ∈ primes
∧

e ∈ Λ2} . We assume that no
probabilistic polynomial-time (in l) algorithm is able to factor e ∈R XA,B ;
this is where we need the stronger factoring assumption (see Section 7 for
more discussion). Note that we have (1) 4 < A, (2) B(2λ1+1 − 1) < A3. Let
X′

A,B ⊆ {5, · · ·, A3−1} such that XA,B ⊆ X′
A,B . The group manager executes

as follows:
– It chooses a safe RSA modulus n = (2p′+1)(2q′+1) such that |p′| = |q′| =

l/2. This uniquely determines QRn, the quadratic residues subgroup
modulo n.

– It establishes an instance of ElGamal public key cryptosystem. Let 〈y1 =
gx1
1 mod n; x1〉 be the pair of public and private keys such that g1 ∈R

QRn and x1 ∈R Z∗
p′q′ .

– It establishes an instance of CGHN cryptosystem. Let 〈n, t; n, t, p, q〉 be
the pair of public and private keys, where t is a prime such that |t| > k.

– It establishes an instance of the dynamic accumulator by choosing u ∈R

QRn, establishing (currently empty) public archives A for storing val-
ues corresponding to added group members, and D for storing values
corresponding to deleted group members.

The public and private parameters of the group manager are (n, t, g1, y1, u, A,
D,XA,B ,X′

A,B) and (p′, q′), respectively. Note that a signature receiver can
verify group signatures without knowing the dynamically updated A or D.

2. Given a security parameter l, a TTP initializes a safe RSA modulus N =
(2P ′ + 1)(2Q′ + 1), where |P ′| = |Q′| = l/2. It also chooses and publishes
two random elements G, H ∈R QRN , where the logarithm of G and H to
each other is unknown to any participant in the group signature scheme.
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6.2 Join

This protocol is executed between a group member, Alice, and the group man-
ager.

1. Alice chooses two primes e1 ∈R S1 and e2 ∈R S2. This step can be done
before the execution of the protocol.

2. Alice sends e = e1e2 (in Z) to the group manager.
3. If A ·2λ1 < e < B ·(2λ1+1−1), e is odd, and e /∈ A, the group manager stores

Alice’s membership certificate (v, e) where v is the current accumulator value
(when the first user joins the group, v = u). It also updates v in the public
key file as v′ = fn(v, e), and adds e to A.

4. Alice gets her membership certificate (w, e) and checks if fn(w, e) = we =
v′ mod n, where w = v.

Remark. The Join process is very efficient (1 exponentiation for both group
manager and new user) because of the following: If a dishonest user, Eve, does
not choose e that is hard to factor, then any participant (internal or external)
who can find certain non-trivial factor of e may be able to sign on her behalf.

6.3 Revoke

Suppose Eve, who has membership certificate (w, e), is to be expelled from the
group. Then the group manager can revoke her membership by updating the cur-
rent accumulator value v in the public key file: It simply sets v′ = D(φ(n), v, e),
deletes e from A, and adds e to D.

6.4 Update

Whenever there is a Join and/or Revoke event, the group manager updates the
accumulator value from v to v′. Correspondingly, every group member needs to
update her membership certificate. An entry in the archives is called “new” if it
was entered after the last time a legitimate group member performed an update.
Suppose Bob holds a membership certificate (w, e) such that fn(w, e) = v. Then,
he updates his membership certificate to (w′, e) such that fn(w′, e) = v′:
– For all new e∗ ∈ A, w′′ = fn(w,

∏
e∗) and v′′ = fn(v,

∏
e∗).

– For all new e∗ ∈ D, w′ =W(w′′, e,
∏

e∗, v′′, v′).

6.5 Sign

Recall that 〈n, t〉 is the group manager’s CGHN public key, and that y1 =
gx1
1 mod n is the group manager’s ElGamal public key. Suppose that v is the

current accumulator value, and that Alice holds (w, e) such that we = v mod n,
where e = e1e2. Given a message m, Alice generates a group signature as follows.
1. She executes as follows.

– She chooses r1 ∈R Z∗
n and computes a CGHN ciphertext δ = (1 +

en)rt
1 mod n2.
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– She chooses r2 ∈R ±{0, 1}l+k and computes an ElGamal ciphertext
(α, β) where α = gr2

1 mod n and β = w · yr2
1 mod n.

– She chooses r4 ∈R ±{0, 1}l+k and generates commitments σ = He1Gr4

mod N , τ = σe2 = HeGr4e2 mod N .

2. She needs to prove the knowledge of:

– (w, e) such that we = v mod n, where w corresponds to the ElGamal
ciphertext (α, β), and e corresponds to the CGHN ciphertext δ.

– e1 and e2 such that e1 ∈ Λ1, e2 ∈ Λ2, and e = e1e2 ∈ Γ .

For this purpose, she needs to prove the knowledge of e, e1, e2, r1, r2, r3 =
r2e, r4, r5 = r4e2 such that:

δ = (1 + n)ert
1 mod n2

∧

α = gr2
1 mod n

∧
v = βe(

1
y1

)r3 mod n
∧

1 = αe(
1
g1

)r3 mod n
∧

τ = HeGr5 mod N
∧

σ = He1Gr4 mod N
∧

τ = σe2 mod N
∧

e ∈ Γ
∧

e1 ∈ Λ1

∧
e2 ∈ Λ2.

Specifically, she executes as follows:

(a) She executes the following steps:
– Choose e′ ∈ ±{0, 1}ε(2λ1+k+1) and r′

1 ∈R Z∗
n, and compute δ′ =

(1 + n)e′
(r′

1)
t mod n2.

– Choose r′
2 ∈R ±{0, 1}ε(l+2k), r′

3 ∈R ±{0, 1}ε(l+2λ1+2k+1), and gener-
ate:

α′ = g
r′
2

1 mod n, v′ = βe′
(

1
y1

)r′
3 mod n, ω′ = αe′

(
1
g1

)r′
3 .

– Choose e′
1 ∈R ±{0, 1}ε(λ2+k), e′

2 ∈ ±{0, 1}ε(λ1+k+1), r′
4 ∈R ±

{0, 1}ε(l+2k), r′
5 ∈R ±{0, 1}ε(l+λ1+2k+1), and generate:

τ ′
1 = He′

Gr′
5 mod N, σ′ = He′

1Gr′
4 mod N, τ ′

2 = σe′
2 mod N.

(b) She computes c = H(m, n, t, g1, y1, N, G, H, δ, α, β, τ, σ, δ′, α′, v′, ω′, τ ′
1,

σ′, τ ′
2), where H : {0, 1}∗ → {0, 1}k behaves like a random oracle.

(c) She computes (all the operations, except the computation of sr1 , are in
Z):

se = e′ − c · e, se1 = e′
1 − c · (e1 −X), se2 = e′

2 − c · e2,

sr1 = r−c
1 · r′

1 mod n2, sr2 = r′
2 − c · r2, sr3 = r′

3 − c · r3,

sr4 = r′
4 − c · r4, sr5 = r′

5 − c · r5.

(d) She sends Bob (m, c, n, t, g1, y1, N, G, H, δ, α, β, σ, τ, se, se1 , se2 , sr1 , sr2 ,
sr3 , sr4 , sr5).

Cost: Our Sign requires 17 exponentiations, whereas [CL02] requires 25 expo-
nentiations. Note that 2 of our 17 exponentiations are rt mod n2 but t << n
(e.g., |t| = 161). See [TX03] for further discussions.
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6.6 Verify

Given (m, c, n, t, g1, y1, N, G, H, δ, α, β, σ, τ, se, se1 , se2 , sr1 , sr2 , sr3 , sr4 , sr5), Bob
checks if it is a valid signature as follows.

1. Bob computes c′ = H(m, n, t, g1, y1, N, G, H, δ, α, β, τ, σ, δ′, α′, v′, ω′, τ ′
1, σ

′,
τ ′
2), where

δ′ = (1 + n)se(sr1)
tδc mod n2, α′ = g

sr2
1 αc mod n,

v′ = βse(
1
y1

)sr3 vc mod n, ω′ = αse( 1
g1

)sr3 mod n,

τ ′
1 = HseGsr5 τ c mod N, σ′ = Hse1−c·2λ1

Gsr4 σc mod N,

τ ′
2 = σse2 τ c mod N.

2. Bob accepts if c = c′, se1 ∈ {−2ε(λ2+k)+1, · · ·, 2ε(λ2+k)+1}, se2 ∈
{−2ε(λ1+k+1)+1, · · ·, 2ε(λ1+k+1)+1}, se ∈ {−2ε(2λ1+k+1)+1, · · ·, 2ε(2λ1+k+1)+1},
τ �= 1 mod N , and τ �= σb mod N where b = ±1.

Cost: Verify, without any optimizations, requires 16 exponentiations which is
somewhat more efficient than 21 exponentiations in [CL02]. However, we believe
that the Verify process in the latter is incomplete; a complete version would
require a few more exponentiations. See [TX03] for further discussions.

6.7 Open

Given a valid group signature (m, c, n, t, g1, y1, N, G, H, δ, α, β, σ, η, τ, se, se1 , se2 ,
sr1 , sr2 , sr3 , sr4 , sr5), the group manager can identify the signer by decrypting
both w and e such that we = v mod n. It also needs to prove that the decryption
of w is correct; namely DLOG(g1, y1) = DLOG(α, β/w).

1. It decrypts the CGHN ciphertext δ to obtain e, and decrypts the ElGamal
ciphertext 〈α, β〉 to obtain w. It must hold that A3 > e > 1.

2. There are further two cases.

(a) If e ∈ A, then it publishes: (1) the values w and e, and (2) the proof that
DLOG(g1, y1) = DLOG(α, β/w). Note that knowing w and e does not
expose neither previous, nor future (even if the system policy allows),
signatures generated by the same group member.

(b) If e /∈ A, then it must hold that e|∏∀e′∈A e′. Therefore, there must
exist e′ ∈ A such that e′ > gcd(e, e′) > 1. Therefore, the group member
corresponding to accumulated e′ is identified (and revoked).

6.8 Analysis

Theorem 2. ([TX03]) The above scheme is a secure group signature scheme.

Corollary 1. The interactive version of the above group signature scheme is a
secure identity escrow scheme.
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7 Discussion

On Factorization Assumption. For typical group signature applications we
suggest that the group manager use 2048-bit RSA moduli. For other parameters,
we suggest (as an example): λ1 = 950, λ2 = 700, ε = 1.1, k = 160. This
means that we assume the hardness of factoring large 2-prime composites, where
(λ1 − λ2) high-order bits of one prime are known. This assumption is stronger
than the standard factorization assumption. However, despite the fixed prefix,
it still seems reasonable to assume the hardness of factoring such a composite.
(We note that a very similar assumption was used before, e.g., by Camenisch
and Michels in [CM98].) Given partial knowledge of the factorization, the best
factoring algorithm currently available indicates that, if the higher 475-bits of
a prime factor are known, then one can factor n [C96]. Beyond that, no better
result is available [C03]. Note that if the higher bits of one prime factor are
known, then the higher bits of another factor are also exposed. Nevertheless,
knowing 〈σ, τ = σe2 mod N〉 still requires an adversary to compute e2 in O(2350)
time (see [G00] and the references therein).

“Lazy” Accumulator Update? In a group signature scheme based on a dy-
namic accumulator, it is necessary for both signer and verifier to get the updated
accumulator whenever there is a member leaves. In the Camenisch-Lysyanskaya
scheme, they suggest a nice trick whereby a Join may not have to trigger a group
member to get the updated accumulator value. While this trick enables potential
gain in communications, it may incur some serious problems in practice. Con-
sider the following scenario: since Alice is lazy, she does not contact the group
manager to check the current accumulator value. Instead, she waits for a broad-
cast message from the group manager. If this message is blocked by an adversary,
there is no way for Alice to tell if there has been an accumulator update. Con-
sequently, Alice would generate a group signature which is valid with respect
to the outdated accumulator value, i.e., the previous accumulator incarnation.
However, the signature is invalid with respect to the current accumulator value.
It is unclear how a potential dispute involving this signature can be resolved. At
best, the verifier can abuse such a signature.

We suggest that Alice should be diligent and prevent such anomalies by
actively querying the group manager for the current accumulator value. This
way, if she does not elicit any reply from the group manager, she can simple
refuse to generate any group signatures.

On TTP Presence. Our scheme operates in the common auxiliary string model
which assumes a common string (the specification of a commitment scheme) gen-
erated by a trusted third party (TTP) and made available to all participants. The
inconvenience posed by this is not significant owing to the following mitigating
factors:
– The TTP’s role is only to initialize the cryptographic setting of a commit-

ment scheme. In fact, the TTP can simply disappear after publishing the
commitment scheme parameters since it is not involved in any future trans-
actions.
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– A single TTP could serve multiple group signature settings, thereby amor-
tizing the complexity. Moreover, threshold cryptography can be used to im-
plement a distributed TTP (see [ACS02]).

– Currently, the most efficient method of obtaining identity escrow schemes
(such as [KP98]) that are concurrently secure is based on the existence of
common auxiliary strings [D00]. Therefore, the identity escrow scheme de-
rived from our group signature scheme can be made concurrently secure
without incurring any extra complexity.

8 Conclusion

We presented a dynamic accumulator construct that accumulates composites,
and an efficient protocol for proving knowledge of the factorization of a com-
mitted value. Based on these techniques, we developed a novel, efficient and
provably secure group signature scheme.
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