Skip to main content

Attribute Interactions in Medical Data Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2780))

Abstract

There is much empirical evidence about the success of naive Bayesian classification (NBC) in medical applications of attribute-based machine learning. NBC assumes conditional independence between attributes. In classification, such classifiers sum up the pieces of class-related evidence from individual attributes, independently of other attributes. The performance, however, deteriorates significantly when the “interactions” between attributes become critical. We propose an approach to handling attribute interactions within the framework of “voting” classifiers, such as NBC. We propose an operational test for detecting interactions in learning data and a procedure that takes the detected interactions into account while learning. This approach induces a structuring of the domain of attributes, it may lead to improved classifier’s performance and may provide useful novel information for the domain expert when interpreting the results of learning. We report on its application in data analysis and model construction for the prediction of clinical outcome in hip arthroplasty.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shapiro, A.D.: Structured induction in expert systems. Turing Institute Press in association with Addison-Wesley Publishing Company (1987)

    Google Scholar 

  2. Michie, D.: Problem decomposition and the learning of skills. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 17–31. Springer, Heidelberg (1995)

    Google Scholar 

  3. Zupan, B., Bohanec, M., Demšar, J., Bratko, I.: Learning by discovering concept hierarchies. Artificial Intelligence 109, 211–242 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Harris, W.H.: Traumatic arthritis of the hip after dislocation and acetabular fractures: Treatment by mold arthroplasty: end result study using a new method of result evaluation. J. Bone Joint. Surg. 51-A, 737–755 (1969)

    Google Scholar 

  5. Zupan, B., Demšar, J., Smrke, D., Božikov, K., Stankovski, V., Bratko, I., Beck, J.R.: Predicting patient’s long term clinical status after hip arthroplasty using hierarchical decision modeling and data mining. Methods of Information in Medicine 40, 25–31 (2001)

    Google Scholar 

  6. Jakulin, A.: Attribute interactions in machine learning. Master’s thesis, University of Ljubljana, Faculty of Computer and Information Science (2003)

    Google Scholar 

  7. McGill, W.J.: Multivariate information transmission. Psychometrika 19, 97–116 (1954)

    Article  MATH  Google Scholar 

  8. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  9. Struyf, A., Hubert, M., Rousseeuw, P.J.: Integrating robust clustering techniques in S-PLUS. Computational Statistics and Data Analysis 26, 17–37 (1997)

    Article  MATH  Google Scholar 

  10. Kononenko, I.: Semi-naive Bayesian classifier. In: Kodratoff, Y. (ed.) EWSL 1991. Lecture Notes in Computer Science (LNAI), vol. 482. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  11. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  12. Rish, I., Hellerstein, J., Jayram, T.: An analysis of data characteristics that affect naive Bayes performance. Technical Report RC21993, IBM (2001)

    Google Scholar 

  13. Demšar, J., Zupan, B.: Orange: a data mining framework. (2002), http://magix.fri.unilj.si/orange

  14. Brier, G.W.: Verification of forecasts expressed in terms of probability. Weather Rev. 78, 1–3 (1950)

    Article  Google Scholar 

  15. Margolis, D.J., Halpern, A.C., Rebbeck, T., et al.: Validation of a melanoma prognostic model. Arch. Dermatol. 134, 1597–1601 (1998)

    Article  Google Scholar 

  16. Myllymaki, P., Silander, T., Tirri, H., Uronen, P.: B-Course: A web-based tool for Bayesian and causal data analysis. International Journal on Artificial Intelligence Tools 11, 369–387 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jakulin, A., Bratko, I., Smrke, D., Demšar, J., Zupan, B. (2003). Attribute Interactions in Medical Data Analysis. In: Dojat, M., Keravnou, E.T., Barahona, P. (eds) Artificial Intelligence in Medicine. AIME 2003. Lecture Notes in Computer Science(), vol 2780. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39907-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39907-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20129-8

  • Online ISBN: 978-3-540-39907-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics