On the Resynchronization Attack*

Jovan Dj. Goli¢! and Guglielmo Morgari?

1 System on Chip, Telecom Italia Lab
Via Guglielmo Reiss Romoli 274, 1-10148 Turin, Italy
golic@inwind.it
2 Telsy Elettronica e Telecomunicazioni
Corso Svizzera 185, 1-10149 Turin, Italy
guglielmo.morgari@telsy.it

Abstract. The resynchronization attack on stream ciphers with a lin-
ear next-state function and a nonlinear output function is further inves-
tigated. The number of initialization vectors required for the secret key
reconstruction when the output function is known is studied in more de-
tail and a connection with the so-called 0-order linear structures of the
output function is established. A more difficult problem when the output
function is unknown is also considered. An efficient branching algorithm
for reconstructing this function along with the secret key is proposed and
analyzed. The number of initialization vectors required is larger in this
case than when the output function is known, and the larger the number,
the lower the complexity.

Keywords: Stream ciphers, Boolean functions, Resynchronization, Re-
construction algorithms

1 Introduction

A typical stream cipher is based on a keystream generator as an autonomous
finite-state automaton whose output sequence is reversibly combined with a
plaintext sequence to yield a ciphertext sequence. A practical stream cipher
also uses a reinitialization algorithm which combines a secret key and a known
parameter called initialization vector (I'V) into an initial state of the keystream
generator. Reinitialization enables reusage of the same secret key with different
IV’s for encrypting relatively short messages by different keystreams. This is
important for resynchronization purposes as well as for late entry in (multiparty)
communication links.

Reinitialization can increase the security due to shorter keystreams available
for cryptanalysis, but can also decrease the security due to multiple keystreams
derived from the same secret key. It is known that reasonably secure keystream
generators can be constructed from a linear next-state function and a nonlinear
output function, e.g., nonlinear filter generators and memoryless combiners, both

* Most of this work was done while the authors were with Rome CryptoDesign Center,
Gemplus, Italy.

T. Johansson (Ed.): FSE 2003, LNCS 2887, pp. 100-110, 2003.
© International Association for Cryptologic Research 2003

On the Resynchronization Attack 101

based on linear feedback shift registers. However, it is shown in [2] that such a
keystream generator when used together with a linear reinitialization algorithm
is totally insecure if the output function depends on a relatively small number of
input variables. More precisely, for an n-bit output Boolean function and a k-bit
secret key, the complexity of the attack is about k2" evaluations of the output
function to obtain a system of linear equations for the secret key, which is then
reconstructed by solving the system. A common and more secure technique for
reinitialization is to produce the initial state of the keystream generator from the
output of the keystream generator itself when loaded with a linear combination
of the secret key and IV (e.g., see [1]). The resynchronization attack [2] may
then be useful for recovering the secret key from a set of previously reconstructed
initial states of the keystream generator.

A keystream generator can be rendered more secure by letting the secret
key control the structure, that is, the next-state and/or output functions. In
particular, only the output function can be chosen by the secret key. As in this
case the resynchronization attack [2] is no longer applicable, it is interesting to
investigate if other, more sophisticated attacks can then be developed.

Sections 2, 3, and 4 are devoted to the first objective of this paper which is
to conduct a more in-depth analysis of the resynchronization attack and thus
obtain more precise estimates of the number of I'V’s required for the secret key
reconstruction given a general output Boolean function. The main properties
of the so-called O-order linear structures of Boolean functions are pointed out
and their impact on the attack is determined. A characterization of Boolean
functions in terms of 0-order and 1-order linear structures is also established. The
second objective, which is to investigate the more difficult case when the output
function is not known, is treated in Sections 5 and 6. An efficient algorithm
for reconstructing this function along with the secret key is developed and its
complexity is analyzed in terms of the number of IV’s available. The main results
and open problems are summarized in Section 7.

2 Problem Statement

According to [2], consider a general binary keystream generator with a linear
next-state function Siy1 = Lgtate(St), where S; is the internal state at time
t, with a linear initialization function So = Linit (K, IV'), where Sy is the initial
state, K is the secret key, and IV is the initialization vector, and with an output
function z; = f(Lout(St)), where z; is the output (keystream) bit at time ¢, f is
a nonlinear Boolean function, and Loy is a linear function.

Let IV;, 1 < i < @, be given IV’s and let the corresponding output bits be
known at times ¢t € T', in the known keystream scenario. They define a system
of nonlinear equations in K of the form

5 = [(L(K)® LY{(IVi), 1<i<Q, teT, (1)
where L; and LY are linear functions derived from

Lout(Livate (Linit (K, 1V3))) = Ly(K) & L (IV;) (2)

state

102 Jovan Dj. Goli¢ and Guglielmo Morgari

and @& denotes the bitwise addition. One problem, considered in [2], is to find
a solution for K when f is known. Another, more difficult problem is to find a
solution for K and f when f is unknown. Note that for a k-bit secret key K and
an n-bit function f, the exhaustive search would require 2% steps for the first
problem and 22" ** steps for the second problem.

3 Zero-Order and First-Order Linear Structures

Solving the system (1) depends on whether the output function has linear struc-
tures or not. Recall that an n-bit vector ~ is called a linear structure of an n-bit
Boolean function f if f(X) @ f(X @) = const. It is known that the set of all
linear structures of f is a vector space. It is shown in [4] that f has nonzero linear
structures iff it can be expressed as g(A(X)) where A is a linear function and
g is a function that is partially linear or that depends on less than n variables.
According to [3], we can divide the linear structures into the so-called 0-order
and 1-order linear structures. A vector « is said to be a 0-order linear structure
of fif f(X)® f(X @®~) = 0. The all-zero vector is called the trivial (0-order)
linear structure. Similarly, a vector « is said to be a 1-order linear structure of
fif f(X)® f(X &v) = 1. The linear structures of f are directly related to
the autocorrelation function of f and can be determined with the complexity
O(n2™) by using the Walsh-Hadamard transform of f (e.g., see [3]).

Here we give without proof a number of novel properties of Boolean functions
related to 0-order linear structures which are interesting for the resynchroniza-
tion attack. For the sake of completeness, we also give some properties of Boolean
functions related to 1-order linear structures. Note that the distinction between
0-order and 1-order linear structures enables us to obtain novel characterizations
of Boolean functions, by Propositions 4 and 8, which are more precise than the
characterizations in terms of linear structures given in [4] and [3]. In particu-
lar, 0-order linear structures account for the degeneracy, whereas 1-order linear
structures account for the partial linearity. Let £, Ly, and £; denote the sets of
all linear structures, all O-order linear structures, and all 1-order linear structures
of a given Boolean function f, respectively.

Proposition 1. The set Ly is a vector space.

Proposition 2. The cardinality |Lo| = 2™ divides ged(f~0)|, |f 1)), where
f716) = {X|f(X) =i}, i = 0,1, and for nonconstant f, m attains its mazimum
n — 1 iff f is affine.

Proposition 3. The binary relation X; = Xo iff X1 ® Xo € Lo (i.e., iff (X D
X1) = f(X @ X3)) is an equivalence relation. The corresponding equivalence
classes {X @ yly € Lo} all have cardinality |Lo|.

Proposition 4. Let Ay be an m-dimensional subspace of {0,1}" and let Ag be
the dual (orthogonal) space of Ag. Then Lo = Ag iff f(X) = g(A(X)) where g is
an (n —m)-bit Boolean function without nontrivial 0-order linear structures and
A is a linear function represented by a matriz, acting on one-column vectors,
whose rows generate Ag- .

On the Resynchronization Attack 103

Proposition 5. The dimension m of Ly is the mazimal nonnegative integer j
such that f(X) = g(A(X)) where g is an (n — j)-bit Boolean function and A is
linear.

Proposition 6. Let S(f) denote the set of all n-bit Boolean functions h such
that for some C, h(X) = f(X ® C). Then |S(f)| = 2™ if |Lo| = 2™.
Proposition 7. Either |L1| = 0 or |L1] = |Lo|. If |£1] > 0, then |f~1(0)] =
FH)L-

Proposition 8. Let A be an (m + 1)-dimensional subspace of {0,1}", let Ay
be an m-dimensional subspace of A, and let Ay = A\ Ag. Then Ly = Ay and
Ly = Ay iff f(X) = g(A(X)) where g is an (n — m + 1)-bit Boolean function
without nontrivial 0-order linear structures that is linear in the first variable (g
has exactly one 1-order linear structure, that is, the vector (1,0,---,0)) and A
is a linear function represented by a matriz whose rows generate Ag and whose
rows without the first row generate A*. Also, Lo = Ag and L1 is empty iff
F(X) = g(A(X)) where g is an (n —m)-bit Boolean function without nontrivial
linear structures and A is a linear function represented by a matrix whose rows
generate Ag .

4 Known Output Function

In the system (1), let ¢; denote the number of different LY(IV;) for a given t. If
we assume that the rank of LY is maximal, n, then for moderately large 2", ¢;
can be approximated by the classical occupancy probabilistic model as

@~ g = (1), 3)
Consequently, the system (1) can be put in the form
= f(Xy@dCf), 1<i<gq, teT, (4)

where X; = L;(K) and C} are all different for each ¢ € T'. For simplicity, in view
of (3), we can assume that ¢; = ¢ for every t € T. Let k be the bit length of K
and let 7 = [T .

When f is a known n-bit function and n is relatively small, the system (4)
can be solved by the method proposed in [2]. Namely, for each chosen ¢, find X;
by exhaustive search, where the required number of different Cf, g, is estimated
to be about n, because the required number of different equations in X; should
roughly be equal to the number of binary variables in X;. This then takes about
n2™ evaluations of f. As each found X; defines n linear equations in K, T has
to be sufficiently large so as to obtain k linearly independent equations in K. In
particular, if 7' is such that the equations determined by X; corresponding to
different ¢t € T are all linearly independent, then the required cardinality of T is
7 = [k/n]. Altogether, this takes about k2™ evaluations of f. At the final stage,
K is obtained by solving the resulting system of linear equations. Our objective
here is to study in more detail the required ¢ and 7 for a general f.

104 Jovan Dj. Goli¢ and Guglielmo Morgari

The first note is about the number of solutions for X;. If f has nontrivial
0-order linear structures, i.e., if the number of O-order linear structures is 2™,
m > 0, then Proposition 3 implies that the number of solutions is a multiple of
2™ and for large enough ¢ it is exactly 2. More precisely, since f can then be
put in the form specified by Propositions 4 and 5, where the function g has no
nontrivial O-order linear structures, it follows that for large enough ¢ there is a
unique solution for the linear function of Xy, A(X:). As A(X;) defines n —m
linear equations, the required cardinality of T then increases to 7 = [k/(n—m)].
However, as the number of variables is then effectively reduced from n to n —m,
the total complexity of obtaining the system of linear equations in K reduces to
about k2"~ evaluations of g.

The second note is about how large ¢ has to be in order to reach the minimal
number of solutions for X;, under the assumption that the vectors C} and X;
are all chosen at random. The minimal value of ¢ needed, gnin, depends on the
choice of these vectors and on f. As nontrivial 0-order linear structures effectively
reduce the number of variables, it is appropriate to investigate randomly chosen
f without nontrivial 0-order linear structures. In the experiments, for a chosen
f, X; is chosen at random, and the ¢ output bits 2! are then produced by
(4) from randomly chosen different vectors C¢. It turns out that an important
parameter affecting guin is the relative number, p, of 1’s in the truth table
of f, p = |f~1(1)]/2". Let Gmin be the average of gumi, over random f and
over random choices of the vectors C} and X;. A simple information-theoretic
argument then yields a necessary condition Gmin > n/H (p), where the value of
the binary entropy function H(p) is the average number of bits of information
about X; provided by each equation in the system. In particular, for p = 1/2 we
get Gmin > n, whereas for p = 0 or p = 1 we naturally get that i, = oo, which
means that the secret key cannot be recovered at all.

However, the experiments by computer simulations show that g, is larger
than n/H (p) as well as that the probability that gm:, is considerably larger than
this lower bound is not small. As a consequence, both the number of IV’s re-
quired and the attack complexity increase. An explanation for this is that the
information contents of individual (nonlinear) equations are generally not mutu-
ally independent. Fig. 1 displays the estimates of the probability distribution of
¢min Obtained from 10,000 randomly chosen 8-bit f for p = 1/2 and p = 1/4. Fig.
2 displays the average values of gmin as a function of p obtained from 100,000
randomly chosen 8-bit f along with the lower bound n/H(p). Similar curves
were also obtained for n = 6,10. Accordingly, more I'V’s are required for non-
balanced than balanced f for the attack to be successful. In other words, the
cryptographically most interesting case p = 1/2 requires the minimal number of
IV’s on average.

5 Unknown Output Function — Complete I'V Set

When f is not known, e.g., when it is defined by a secret key, the attack from
the preceding section is not applicable. We first consider the case when there

On the Resynchronization Attack 105

0,25 |

I
o

fo) e e - e o o
T 1t

o
w
o

9 min

N w IN
(@] o o
NN RN RN AN RN R

-
@]

\\\Y“\\\\‘\\\\‘\\\\‘\\\\‘\\\\

\ \ \
1/16 2/16 3/16

@)

T T T T T
4/16 5/16 6/16 7/16 8/16 p

Fig. 2. Average values of gmin and n/H (p), for n = 8.

exists at least one value of ¢ such that ¢ = 2". In accordance with (3), this on
average requires that Q = 2" In 2", provided that 7 = 1. For 7 > 1, this average
value is somewhat reduced, depending on 7. For any such ¢, the set of all n-bit
functions h consistent with (4) is exactly the set S(f) of cardinality 2"~ from
Proposition 6. So, the most one can get from the system (4) is the set S(f),
to which f belongs. Once the set S(f) is recovered, the method then consists
of running the attack from the preceding section for each candidate function
h € S(f) and of testing the obtained secret key K on additional output bits,
n — m on average. Both f and K are thus recovered with the complexity only
2"~ times larger than when f is known.

106 Jovan Dj. Goli¢ and Guglielmo Morgari
6 Unknown Output Function — Incomplete IV Set

In this section, we consider a more difficult case when ¢; < 2™ for every t € T,
so that the set S(f) cannot be recovered from any single value of ¢. In order to
obtain this set, we have to combine the information from different observation
times ¢, and this can be achieved by the following algorithm. The times ¢ are
first arranged in order of descending values of ¢; and denoted as 1,2,---,7.

Then initially, for each 1 < ¢ < 7, compute a partially defined function hY
representing S(hY) that is consistent with (4) at time t. More precisely, ¢; binary
values of hY are defined by using (4) with the all-zero vector instead of X, that
is,

WEeh) =z, 1<i<q, 1<t<r, (5)

while the remaining values of h? remain undefined. If we denote the undefined
values by the symbol b, then each h? effectively takes three output values: 0, 1,
and b.

The algorithm essentially consists of searching through a tree of candidate
functions h representing all S(h) that are consistent with the current and pre-
vious observations combined. More precisely, a three-valued function, with a
generic notation h, is assigned to each node in the tree in the following way. Ini-
tially, at level 1, start from a single node with the associated candidate function
h = hY, and then proceed iteratively. Consider a node at level j with the associ-
ated function h. The successor nodes to this node are derived from all different
Y € {0,1}" such that

hX) = K (X oY) (6)
for every X e {0,1}" such that neither 2(X) nor hY (X @ Y) is equal to b.
For each such Y, then use (6) to modify h for every X such that h(X) = b #
hY 1 (X @ Y) by setting h(X) = A9, (X @ Y). The modified h is the candidate
function associated with the successor node corresponding to Y.

If there does not exist such an Y, then there are no successors to the con-
sidered node. This means that the candidate function A assigned to this node is
inconsistent with the observations and as such is incorrect, although it may be
fully defined. Such an end node is called a failure end node. On the other hand,
if there exists such an Y, then the candidate function assigned to any successor
node has at most as many undefined values as the candidate function assigned
to the considered node. Any node with a binary, fully defined candidate function
is called a success end node if it has a (unique) successor and every subsequent
node, if generated, would have a (unique) successor. In practice, if the tree is
examined by the depth-first search with backtracking, with a negligible space
complexity, this can be checked on a small number of additional nodes. Alterna-
tively, one can apply the width-first search by storing and examining one level
of the tree at a time. In this case, at each level, one does not have to examine
different nodes with the same candidate function more than once, which means

On the Resynchronization Attack 107

X, X, X, X, X, X,
011 100 000 001 100 100
c, c, c, c, c, c,
i=1 110 110 101 111 101 000
i=2 010 001 010 010 110 111
i=3 000 010 000 000 100 101
i=4 101 111 001 110 111 100
ZI1 ZI2 Zi3 Zi4 ZIS Zi6
i=1 1 (0] 1 0 (0} 1
i=2 0 1 0 0 0 0
i=3 0 0 1 0 1 0
i=4 0 0 0 1 0 1

Fig. 3. The vectors X; and C; and the output bits z{, in Example 1.

that only the nodes with different candidate functions assigned are further pro-
cessed. The algorithm then stops when a level with a single node with a fully
defined candidate function is reached.

In theory, even if 7 = oo, it is possible, but extremely unlikely, that a success
end node is never reached. In this case, after a certain point, the new observation
times contain no additional information about f and the obtained candidate
functions are not being updated at all.

After a success end node is found, the set S(f) is recovered and the rest is
the same as when the IV set is complete. The effectiveness of the algorithm
can be measured by the number of different observation times required to reach
a solution and by the total number of nodes examined. Both depend on the
number of IV’s available. The worst-case time complexity is reflected by the
total number of nodes in the whole tree. The complexity per node is at most 22"
elementary operations with the values 0, 1, and b.

Ezample 1. Let f(xy,29,23) = 1 ® a1 B o @ w129 D w123, T = 6, and ¢ =
g = 4,1 <t < 6. Further, let the output bits 2} be produced by (4) from
the vectors X; and C} as displayed in Fig. 3. Then all the different candidate
functions obtained are shown in Fig. 4, where h; stands for a generic candidate
function at time ¢. For each 2 < ¢ < 6, the numbers of the form [; — [are also
shown, where [; stands for the total number of candidate functions obtained and

108 Jovan Dj. Goli¢ and Guglielmo Morgari

h, h, h, h, h, h,

44 66 136 9 »6 131
ofoJoJo[ofoJo[oJo[o[o][oJoJo[o[Jo[ofo[o[oJo[o[oJo
b b[blofofo[b[1[o[ofofo]b[1][1[ofofo[b[1][1[0]0o]o0
ofofofofofofof[of[o[of[of[o[o[of[o]o[offofo[o][o[o0o[0]o0
bl 1ol b o1 1ot [t a[[1o 111110 1][1]1
blo[1[o][bfo[o[1[o[b[ofofofo[1[b[1o[ofo[1[b[1]1
ofofoJofofofof[of[o[ofo][o[o[of[o]o[ofofo[o][o[o0o[0]o0
T e
bl b]o[1] b[b[ofo[1[b]ofofo[ofo[o[b[o[o]ofo[o][b]1

Fig. 4. Candidate functions h, in Example 1.

Iy stands for the total number of (displayed) different functions among them,
because different candidate functions at time ¢ — 1 can give rise to the same
candidate function at time t¢.

At time ¢ = 3 there appear 3 fully defined candidate functions, whereas at
time ¢t = 4 there are also 3 such functions, but only 2 of them are from time ¢ = 3.
So, at time t = 4, one fully defined candidate function disappears as inconsistent,
while a new one appears. At time ¢t = 5 the set of candidate functions is not
updated and at time ¢t = 6 a unique consistent solution, hg, is found, which
is different from all the previously obtained fully defined candidate functions.
Note that f # hg, but f € S(hg). More precisely, f(X) = hg(X @ X1), where
X7 = 011 (see Fig. 3).

In the experiments, we used (4) with randomly generated distinct vectors
© for variable values of ¢. It turns out that a typical tree first grows and then
gradually shrinks to a single node with a partially defined candidate function.
Finally, it takes a number of additional levels for this function to be updated into
a fully defined function, at which point the algorithms stops. Fig. 5 shows the
dependence of the logarithm to the base 2 of the number of nodes with different
candidate functions upon the tree level, for the trees obtained from the same
randomly chosen balanced 8-bit function f and a number of different q. It is not
shown that in this particular experiment the success end nodes were reached
after t = 68, 45,47, and 57 levels for ¢ = 24, 28,32, and 36, respectively.

Let Tmin denote the minimal number of levels in a tree until a level with a
single success end node is reached and let N denote the total number of nodes
with different candidate functions at each level. Further, let 7ini, = 2™ In2"/q
denote an approximation for 7,;, according to the classical occupancy model.
Fig. 6 displays the logarithms to the base 2 of the average values of N, Ty,
and T, for variable values of ¢, where the averages were obtained over 1000
randomly generated 8-bit functions f.

It is interesting that for the values of ¢ larger than a critical point gs (ga ~ 55,
for n = 8), Tmin & N, meaning that for almost all f each node in the tree has a
unique successor. Branching occurs for ¢ < g2, and for the values of ¢ smaller than
another critical point, ¢1 (¢1 =~ 35, for n = 8), N grows rapidly as ¢ decreases.
In particular, if ¢ ~ n, then the complexity appears to be prohibitively high.

On the Resynchronization Attack 109

1 6 / © q=20
/ \ s =24
/ \ = 0=28
/ /'/ \
[/ \ —<—g=32
\
12 - \\ + =36 i
\
\
A
\’ [
0 . : . . * % »* »* g » *
1 3 5 7 9 11 13 t

Fig. 5. Logs of the number of nodes as a function of the tree level.

Recall that on average, ¢ has to be larger than n for the rest of the attack to be
applicable. For ¢ < g2, Tmin appears to be a very good approximation. Similar
behavior is expected for any value of n.

7 Conclusions

It is shown that the number of initialization vectors required for a successful
resynchronization attack can be larger than the number of binary inputs to
the output function. The main properties of the so-called 0-order and 1-order
linear structures of Boolean functions are established and it is pointed out that
the nonzero 0-order linear structures of the output function can simplify the
resynchronization attack.

More importantly, a new algorithm is proposed which shows that the attack
can also work when the output function is not known provided that the number

110 Jovan Dj. Goli¢ and Guglielmo Morgari

O \\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\
0 32 64 96 128 160 192 224 256 q

Fig. 6. Average values of Timin, Tmin, and NV, for n = 8.

of initialization vectors is sufficiently large. This algorithm is able of reconstruct-
ing both the output function and the secret key, and the larger the number of
initialization vectors, the lower the complexity.

If the number of initialization vectors is relatively small, then the complexity
becomes prohibitively high. In this case, analyzing the complexity of this algo-
rithm theoretically as well as finding other, possibly more effective algorithms
are problems interesting for future investigations.

References

1. A. Clark, E. Dawson, J. Fuller, J. Dj. Goli¢, H.-J. Lee, W. Millan, S.-J. Moon, and
L. Simpson, “The LILI-II keystream generator,” Information Security and Privacy
- ACISP 2002, Lecture Notes in Computer Science, vol. 2384, pp. 25-39, 2002.

2. J. Daemen, R. Govaerts, and J. Vandewalle, “Resynchronization weakness in syn-
chronous stream ciphers,” Advances in Cryptology - EUROCRYPT ’93, Lecture
Notes in Computer Science, vol. 765, pp. 159-167, 1994.

3. S. Dubuc, “Characterization of linear structures,” Designs, Codes and Cryptogra-
phy, vol. 22, pp. 33-45, 2001.

4. X. Lai, “Additive and linear structures of cryptographic functions,” Fast Software
Encryption - FSE ’94, Lecture Notes in Computer Science, vol. 1008, pp. 75-85,
1995.

	1 Introduction
	2 Problem Statement
	3 Zero-Order and First-Order Linear Structures
	4 Known Output Function
	5 Unknown Output Function – Complete IV Set
	6 Unknown Output Function – Incomplete IV Set
	7 Conclusions
	References

