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Abstract. This paper reports the discovery of linear redundancy in the
S-boxes of many ciphers recently proposed for standardisation (includ-
ing Rijndael, the new AES). We introduce a new method to efficiently
detect affine equivalence of Boolean functions, and hence we study the
variety of equivalence classes existing in random and published S-boxes.
This leads us to propose a new randomness criterion for these compo-
nents. We present experimental data supporting the notion that linear
redundancy is very rare in S-boxes with more than 6 inputs. Finally we
discuss the impact this property may have on implementations, review
the potential for new cryptanalytic attacks, and propose a new tweak for
block ciphers that removes the redundancy. We also provide details of a
highly nonlinear 8*8 non-redundant bijective S-box, which is suitable as
a plug in replacement where required.

1 Introduction

The properties of substitution boxes (called S-boxes) form the basis for argu-
ments regarding the security of symmetric encryption algorithms, and their im-
portance is undoubted. Following Shannon’s theory of secrecy systems proposing
confusion and diffusion in SP-networks [16], and the popularity of the subsequent
Data Encryption Standard [12], S-boxes have been the working heart of many
efficient and secure encryption algorithms. A look up table can be implemented
in a single software instruction, so S-boxes are attractive for fast software en-
cryption. In fact, the vast majority of high quality proposals for symmetric en-
cryption algorithms include the specification of one (or more) S-boxes, together
with a list of security criteria these S-boxes were selected to meet. Clearly a lot
of attention has been given to S-boxes, yet still many open problems remain,
and some important properties, such as the one presented in this paper, have
previously gone unnoticed.

Many papers have investigated the linear approximation and differential (au-
tocorrelation) properties of S-boxes. It has been clearly demonstrated that pow-
erful generic statistical attacks such as differential and linear cryptanalysis can be
resisted by the selection of nearly optimal Boolean functions as components for
the S-boxes. However, it is known that tradeoffs exist with respect to optimising
Boolean functions for several security criteria simultaneously. Several methods
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to generate cryptographically useful S-boxes exist, such as random generation,
using finite field operations and heuristic algorithms. Of these, the finite field
operation of inversion with respect to a polynomial basis achieves best known
combination of high nonlinearity, low autocorrelation and high algebraic degree.
For these reasons the finite field operations have become popular in symmetric
cryptography.

Finite field operations have been used in many ciphers proposed since 1996,
including Shark [14], Square [3], Rijndael [4], as well as several of the NESSIE [18]
proposals Camelia, Hierocrypt, and SC2000. More recently the Japanesse Gov-
ernment’s CRYPTREC [19] standardisation process has had several proposals
that use finite fields (including many of the abovementioned ciphers plus Ci-
pherunicorn A (and E)). In CRYPTREC, the only block cipher proposal not
based on finite field S-boxes is RC6! The South Korean Government is also un-
dertaking an encryption standardisation process[20] and their block cipher sub-
missions that use finite fields include Seed and Zodiac. Also we note the stream
ciphers BMGL (a NESSIE submission) and MUGI (a CRYPTREC submission)
also use finite field based S-boxes. Typically, the designers of these algorithms
have chosen to wrap the finite field inversion inside a bitwise affine transforma-
tion, claiming that this would prevent algebraic attacks over GF (256). However,
in this paper we report the discovery of a property of algebraic linear redundancy
that is inherent in the finite field exponentiation operations, including inversion,
and which is not removed by any surrounding affine transformation. Apart from
finite field operations, S-boxes can possess linear redundancy that stems from
other sources, in particular a small number of inputs (as in Serpent and Q) [11]
and also low order functions (as in Misty, Kasumi and CAST).

In Section 2 of this paper we introduce the concepts relating to equivalence
classes of Boolean functions and present an efficient algorithm to detect affine
equivalence. Our initial discovery of redundancy in the AES S-box is presented
in Section 3. In Section 4 we consider the special case of finite field power permu-
tation based S-boxes, and give a simple and direct proof, due to Wagner, that all
the linear combinations of the output bits are given by Boolean functions that
are equivalent under affine transform! We first demonstrated this fact by a com-
puter experiment on Rijndael’s S-box (that revealed eight transforms between
each pair of functions) but after an early draft of this paper [7] was circulated
many people then offered algebraic proofs for this case. The first proof we re-
ceived was from David Wagner [17] (and longer but somewhat similar proofs
were found by Eric Garrido [8], Don Coppersmith [2] and very probably many
others). It is amazing that a property with this simple a proof went so long
unnoticed.

In Section 5 we present some experimental results on the equivalence class
variety possessed by random S-boxes, and hence propose a new randomness
criterion: that all output functions should have distinct equivalence classes. In
Section 6 we offer some discussion about the consequences for encryption al-
gorithms. We consider improved implementation tradeoffs that result from the
redundancy, and discuss some possible avenues towards new cryptanalysis. Fi-
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nally we suggest altering (or Tweaking [9]) S-boxes affected by these results,
as a barrier against any future cryptanalysis that may result from this kind of
non-randomness. We show that this tweak removes the class redundancy with-
out greatly reducing the nonlinearity and differential security properties of the
S-box.

In Appendix A we give examples of the matrix transforms that map between
the output bits of the Rijndael S-box, and their inverses appear in Appendix B.
Appendix C contains the look-up-table for the best non-redundant 8*8 S-box
we have so-far generated by tweaking the AES S-box. It has nonlinearity 106
and algebraic order 7, which is the best combination known for a non-redundant
S-box. We propose this s-box as a suitable plug-in replacement for ciphers such
as AES.

2 Equivalence Classes of Boolean Functions
Boolean functions are represented by their truth tables. When there exists an
affine transformation that maps between two Boolean functions, then those func-
tions are said to be affine equivalent and are grouped together in the same equiv-
alence class. Two n-input Boolean functions f and g are considered equivalent
if there exists a non-singular binary matrix D, two n-element binary vectors a, b
and a binary constant c such that

g(x) = f(DxT ⊕ aT ) ⊕ b · xT ⊕ c,

where b · xT = b1x1 ⊕ b2x2 ⊕ · · · ⊕ bnxn denotes a linear function of x selected
by b. The study of Boolean functions can be greatly enhanced by considering
equivalence classes. Many properties of cryptographic interest are unchanged by
affine transform, such as algebraic degree and nonlinearity. More generally, the
absolute values of the Walsh transform and the autocorrelation function are both
re-arranged by affine transform.

It seems little has been written on equivalence classes since the 1972
Berlekamp and Welch paper [1] on n = 5 described all 48 classes in terms of
their Algebraic Normal Form (ANF). It seems to be well known that the num-
ber of equivalence classes increases exponentially with n, for example see [5].
Concretely, the 1991 Maiorana [10] paper states that there exist 150,357 classes
for n = 6, including 2082 different WHT distributions, but there is no anal-
ysis of structure for cryptology. More recently, equivalence classes have been
used to provide restricted inputs to random and heuristic searches seeking bet-
ter Boolean functions [13]. However, it has remained an open problem to easily
distinguish between equivalent functions and indeed determine such mappings
for functions of any n.

In seeking other methods to approach the class distinguishing problem, we
investigated the local structure by considering the set of functions at Hamming
distance one from a given Boolean function.

Definition 1. The 1-local neighbourhood of a Boolean function f consists of all 2n

Boolean functions fi, i ∈ Zn
2 , constructed such that dist(f , fi)=1. Furthermore

the connected functions are given by
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fi(x) =
{

f(x) x �= i
f(x) ⊕ 1 x = i

We now prove that if f and g are equivalent, then there exists a function gj

at distance 1 from g, that is equivalent to a corresponding function fi at distance
1 from f under the same affine transform that relates f and g. This result also
provides a useful property for consideration when trying to determine whether
two functions are equivalent.

Theorem 1. If fi is a connecting function of f(x), defined as above, then there
exists a connecting function gj of g(x) = f(DxT ⊕ aT ) ⊕ bT · xT ⊕ c such that
gj(x) = fi(DxT ⊕ aT ) ⊕ bT · xT ⊕ c and j = (D−1(iT ⊕ aT ))T .

Proof. Let g(x) = f(DxT ⊕ aT ) ⊕ bT · xT ⊕ c and

fi(x) =
{

f(x) x �= i
f(x) ⊕ 1 x = i

Therefore,

fi(DxT ⊕aT )⊕ bT ·xT ⊕ c =
{

f(DxT ⊕ aT ) ⊕ bT · xT ⊕ c (DxT ⊕ aT )T �= i
f(DxT ⊕ aT ) ⊕ bT · xT ⊕ c ⊕ 1 (DxT ⊕ aT )T = i

fi(DxT ⊕ aT ) ⊕ bT · xT ⊕ c =
{

g(x) x �= ((D−1(iT ⊕ aT ))T = j
g(x) ⊕ 1 x = ((D−1(iT ⊕ aT ))T = j

And hence, fi(DxT ⊕aT )⊕bT ·xT ⊕c is equivalent with gj , a connecting function
of g such that j = (D−1(iT ⊕ aT ))T .

Corollary 1. Let f and g be affine equivalent. Then the 1-local neighbourhood
of f and the 1-local neighbourhood of g are related by a permutation.

Proof. This follows from the non-singularity of D.

3 Redundancy in Rijndael S-Box Functions

It was already known from [4] that the functions in the Rijndael S-box exhibit
identical excellent properties of algebraic degree and nonlinearity. However it was
not well known that the Boolean functions formed by all 255 linear combinations
share the same frequency distributions for absolute walsh transform and absolute
autocorrelation values. Given that these properties are known to be conserved
under affine transform, it suggests the existence of an affine relationship, but
does not prove it.

It turns out that the general problem of determining equivalence between
functions of six inputs and greater has been difficult, and to date the only known
solution was exhaustive search. However, the results of the previous section pro-
vide the theoretical basis for a new technique that we have implemented. This
approach reduces the search space significantly.
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Theorem 1 indicates that the connecting functions of f(x) and those of g(x) =
f(DxT ⊕ aT ) ⊕ b · xT ⊕ c share the same equivalence mapping as f and g.
Hence, rather than only two equivalent functions, we in fact have 2n + 1 pairs
of equivalent functions under the same affine transform. After implementing the
following algorithm, we believe that this provides sufficient data to uniquely
determine D(n × n invertible matrix), (a, b) ∈ Zn

2 and c ∈ Z2 in an efficient
manner.

Test for Affine Equivalence

Input: f(x), g(x) and n
Output: Return D(n × n invertible matrix), (a, b) ∈ Zn

2 and
c ∈ Z2 when test is positive, else return not equivalent.

1. Finding a

(a) From Theorem 1, we know that connecting function i of f will be equivalent
to connecting function j = D−1(i ⊕ a) of g and therefore i = Dj ⊕ a. When
j = 0 we know that i = a.

(b) Thus, determine which connecting functions g(j) could be equivalent to con-
necting function f(0) using algebraic degree and the absolute frequency distri-
bution of the WHT and autocorrelation function of both f and g, the a must
be from the set of valid j′s

(c) Let the set of possible values for a be denoted {a0, a1, ...}.

2. Finding D
(a) From 1, we know that connecting function i of f will be equivalent to connect-

ing function j = D−1(i ⊕ a) of g, and therefore i = Dj ⊕ a for a ∈ {a0, a1, ...}.
(b) When j = ek such that ek be the unit vector with 1 is position k and 0

elsewhere, we see that iT will be the kth column of D ⊕ a.
(c) Thus, determine which f(i) could be equivalent to g(j) when j = ek (∀k ≤ n),

using algebraic degree and the absolute frequency distribution of the WHT
and autocorrelation function of both f and g, to find the possible columns of
D ⊕ a.

(d) Let the set of possible values for Dk ⊕ a be denoted {x(k)0, x(k)1, ...}.
3. Finding b and c

(a) From 2, the only two remaining unknown variables of the transform relating
f and g are b ∈ Zn

2 and c ∈ Z2.
(b) Test each combination of these potential values for a, Dk ⊕ a, b and c to

establish if a valid affine equivalence mappings exists.
(c) If a valid mapping is found, return D(n×n invertible matrix), (a, b) ∈ Zn

2 and
c ∈ Z2. Otherwise, return no mapping found.

This algorithm provides a general procedure that can be applied to determine
an affine equivalence relationship between two functions, or to prove that one
does not exist. We should stress that the complexity varies greatly according to
the actual pair of functions. We simply note that it is very efficient for testing
most pairs of functions, including the functions in the Rijndael S-box.

This algorithm was applied to both the individual outputs and the linear
combinations of the Rijndael S-box. In this case, for all pairs of functions con-
sidered, it was found that the search space was reduced to 215 possible affine
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mappings. It was therefore a feasible task to automate this procedure and find
the matricies. Exactly eight distinct linear transforms were identified relating
any pair of functions from the S-box. One example mapping from each set relat-
ing the individual output functions is listed in Appendix A. The corresponding
inverse matrices are in Appendix B.

4 Finite Fields

The polynomial basis representation of finite fields with characteristic 2 are
discussed in the AES submission of Rijndael [4]. That document describes how
to generate the S-box but does not examine its cryptographic properties in any
great depth. We now present the first known proof of the linear redundancy in
finite field inversion, due to David Wagner after he saw our initial posting to the
IACR e-print archive [7].

Theorem 3. [17] The component output functions of finite field inversion are
related by linear transform.

Proof. Let Tr : GF (28)− > GF (2) denote the trace function, and let S :
GF (28)− > GF (28) be the AES S-box, i.e., inversion: S(x) = x−1.

The basic fact required is that the linear function fi : GF (28)− > GF (2)
extracting the i-th bit of its input can be expressed in the form fi(x) = Tr(cix)
for some constant ci in GF (28) that depends only on i.

Now we can see that

fj(S(x)) = Tr(cjx
−1)

= Tr(cid
−1
i,j x−1)

= fi((di,jx)−1)
= fi(S(di,jx))

where the constant dij in GF (28) is given by di,j = cic
−1
j .

Of course, multiplying (in GF (28)) by any constant in GF (28) is a GF (2)-
linear map, hence for each i, j there is an 8 ∗ 8 matrix Mi,j over GF (2) so that
di,jx = Mi,jx. We find that fj(S(x)) = fi(S(Mi,jx)), which is the result claimed.

We briefly note that Wagner’s proof works for any linear combination of the
outputs and moreover it can be adjusted to apply to any single term exponen-
tiation. Inversion is the specific power mapping given by x−1 = x2n−2

.

5 Proposing a New Criterion for S-Boxes

In this section we discuss the variety of different equivalence classes and consider
it as an indicator of non-randomness for S-boxes. These results show how unusual
it is for an S-box on 6 or more inputs to have any linear redundancy at all. For
the case n ≤ 4 there are so few equivalence classes that we expect there to be
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Table 1. Class Redundancy of Random Bijective S-boxes n = 5, 1000 Trials

# classes frequency

5 4

6 20

7 86

8 220

9 246

10 228

11 146

12 39

13 8

14 3

some redundancy. Consider that there are only 8 clases for n = 4, so every 4 ∗ 4
S-box must have some linear redundancy as there are 15 linear combinations.

When n = 5 there are 48 equivalent classes. For a 5*5 S-box to have all
different classes, 31 are required, so it is difficult to avoid some redundancy. The
distribution of number of classes for 5*5 bijective S-boxes is shown in the table 1.
The average number of different classes is 9.

For n=6 and more there are so many available classes that it is difficult to
find linear redundant S-boxes at random. Our experiments show that 3.3% of
random 6*6 bijections have 62 different classes, and one class used twice. The
rest had no redundancy with 63 classes. Our experiments at n = 7, 8 found all
S-boxes had no redundancy (in trials of 1000 random bijections). From these
results we see that linear redundancy is very rare for 6 or more inputs, hence we
propose a new randomness criterion for S-boxes.

Proposition 1. Let B[.] be an S-box with 6 or more variables. Then B[.] fails the
equivalence class variety test iff the S-box has any linear redundancy.

In the previous section we showed that finite field power mappings inherently
possess saturated linear redundancy and so they clearly fail our new test for non-
randomness.

6 Discussion

In this section we discuss some of the potential impact of these results on im-
plementation, security and design.

6.1 Impact on Implementation

The most obvious consequence from these observations is the impact on the min-
imum size of hardware implementations. Clearly any implementation that used
combinatorial logic to implement one S-box (with the time/space tradeoff) could
achieve a much smaller size now by implementing only one Boolean function in-
stead of eight. The hardware cost for some additional XORs is much less than
the hardware savings, however the speed of the reduced size implementation will



Linear Redundancy in S-Boxes 81

be reduced by a factor of 8. We note that very small hardware implementations
may be economically suitable for future ubiquitous computing.

We note that simplified hardware for finite field inverse is already known
from [15]. Here we point out that method implemented GF (2n) inversion using
nonlinear Boolean logic surrounding a single instance of inversion in GF (2n/2).
Our redundancy result holds for that finite field operation also, so our improve-
ment can be applied to that method to achieve further space reductions. We
futher note that the combined construction can be used to implement inversion
over GF (216) using only a single Boolean function of 8 inputs, thus making
designs using these larger S-boxes easier to implement.

6.2 Impact on Security

The impact on security is more difficult to assess. It takes time for the crypto-
graphic community to consider the many attacks that may be possible. To begin
the discussion, we suggest these avenues for cryptanalysts to investigate:

– A distinguishing attack may be possible on reduced round ciphers using
linear redundant S-boxes. There is more research needed to discover just how
the surrounding structures influence the equivalence property over multiple
rounds. Whenever redundancy persists over several rounds, then the cipher
does not display random behaviour and could be easily distinguished from
random.

– The linear redundancy could be exploited to reduce plaintext requirements
of some existing attack techniques, open the door for new kinds of related
key attacks, or improve the efficiency of other cryptanalyses such as using
(perhaps multiple) non-linear approximations, higher order derivatives, in-
terpolation, the square/integral attack, and algebraic attacks.

– The single formula to represent Rijndael, presented at SAC2001 [6], is sim-
plified by this result, since the division operation in the continued fraction
is really inversion in the finite field. We invite cryptanalysts to investigate
how this redundancy affects the complexity of solving the equation from [6].

– Some ciphers, including Rijndael, use an inversion based S-box in the key
schedule. We wonder what security consequences this might have! What is
the effect of linearly redundant round keys on the effectiveness of linear and
differential cryptanalysis?

It seems clear that there are many potential ways to investigate the appli-
cation of linear redundant S-boxes to cryptanalysis. We challenge the crypto-
graphic community to find these new attacks or prove they do not exist. Until
such proof appears, there must remain some doubt about the security of ciphers
using redundant S-boxes, given the extreme non-randomness of these structures.

6.3 Proposal for Tweaking Redundant S-Boxes

In case new attacks are found that exploit linear redundancy in S-boxes, we
make the following suggestion for tweaking [9] the S-box of Rijndael, or any
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Table 2. Properties of Tweaked AES-Sbox 10000 Trials

nonlinearity order DDT frequency

96 7 8 1

98 6 8 4

98 7 6 1

98 7 8 1

100 6 6 21

100 6 8 48

100 6 10 3

100 7 6 9

100 7 8 13

100 7 10 1

102 6 6 382

102 6 8 723

102 6 10 20

102 6 12 1

102 7 6 146

102 7 8 307

102 7 10 8

104 6 6 2037

104 6 8 2776

104 6 10 56

104 6 12 1

104 7 6 895

104 7 8 1246

104 7 10 19

106 6 6 506

106 6 8 414

106 6 10 7

106 7 6 181

106 7 8 172

106 7 10 1

other cipher with a redundant 8*8 S-box. Divide a 128-bit public tweak value
into 8 pairs of bytes. Then for each pair, swap entries in the S-box indexed by
the bytes. This process can be done quickly in software and our experimental
results show that only a few saps are reqired to remove the linear equivalence
property, and that at worst the tweaked S-box is as good as random with regard
to linear and differential probabilities. The designers of Rijndael noted that,
given effectiveness of the wide-trail strategy, a random S-box should be enough
to provide security against differential and linear cryptanalysis. The tweaked
S-boxes we propose are typically higher nonlinearity than random 8*8 S-boxes.

Using this tweak, an 8 ∗ 8 S-box is altered in (up to) 16 places, which is 1
16

of the S-box. Each round of Rijndael, for example, uses 16 S-boxes, so there
is a good probability that these changes have some effect in each round of the
encryption. The equivalence class property is removed by this tweak and if the
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key-schedule is allowed to use the original S-box, then the per-block encryption
speed is not affected by this tweak. Alternatively, (if tweaking is not allowed) an
extra 128-bit sub-key can be generated from the keyschedule and used to tweak
the S-box before encryption.

We have performed some experiments to discover the distribution of prop-
erties in S-boxes generated by this tweak. An iteration of the experiment is
swapping the outputs for a pair of randomly chosen inputs, and analysing the
linearity and class variety of the resulting S-box. In 1000 trials we found that an
average of 7.62 iterations was sufficient to eliminate any linear redundancy. The
average S-box nonlinearity after this process was found to be 103.90. Table 2
shows the frequency distribution of the final S-box nonlinearity, starting with
the Rijndael S-box in all cases.

In Appendix C we present the best S-box we have found so far by this method.
It is the best from those found to have nonlin=106, order=7 and maximum XOR
difference distribution table (DDT) value 6. We believe this S-box is suitable as
a drop-in replacement for any (currently redundant) 8*8 S-box.

7 Conclusion

The property of linear redundnacy in S-boxes has been introduced, following the
discovery of that property in the S-box of Rijndael. Moreover it is now proven
that finite field representations over polynomial basis have exponentiation opera-
tions (including inversion) that display linear redundancy in all their component
Boolean functions and all of their linear combinations. This kind of S-box is used
my many recently proposed ciphers. The immeadiate impact of these discover-
ies on the design, implementation and cryptanalysis of ciphers using redundant
mappings has been discussed, but clearly much more needs to be done on this
topic. A non-randomness property is defined and we propose a way to remove
the redundancy from affected S-boxes using some key-material or a tweak value.
A highly nonlinear and non-redundant 8*8 S-box has been provided as a possible
replacement.
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Appendix A – Rijndael Equivalence Relationships

The AES sbox functions are bi(x) = 1&{AES[x] >> (i − 1)}, for 1 ≤ i ≤ 8.

b2(x) = b1(D12x)

b3(x) = b1(D13x) ⊕ 1

b4(x) = b1(D14x) ⊕ 1

b5(x) = b1(D15x) ⊕ 1
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b6(x) = b1(D16x)

b7(x) = b1(D17x)

b8(x) = b1(D18x) ⊕ 1

D12 =




1 0 1 1 0 0 1 0
0 1 0 1 0 1 1 0
0 0 0 1 0 0 1 0
1 0 0 1 1 0 0 0
0 1 0 1 1 1 0 0
1 0 0 0 1 1 1 0
1 1 0 1 0 0 0 0
1 0 0 0 1 1 0 1


D13 =




1 1 1 1 0 1 1 0
0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 1
1 1 0 1 0 0 0 0
0 0 0 1 0 0 1 0
1 1 1 0 1 1 1 0
0 1 1 0 0 0 1 0




D14 =




0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 1
1 1 0 1 0 0 0 1
1 1 1 0 0 1 1 0
1 0 1 0 1 0 1 1
0 1 1 0 1 0 1 0
0 1 0 0 1 0 0 0


D15 =




0 0 1 1 1 1 1 0
0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
1 0 0 0 1 1 0 0
1 1 1 1 0 1 1 0
0 0 1 0 1 1 1 0




D16 =




1 1 0 1 1 0 0 0
1 0 0 0 0 0 1 0
0 1 1 0 1 1 0 0
1 1 0 0 0 0 0 1
0 1 1 0 1 1 1 0
1 0 1 1 1 0 1 0
1 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1


D17 =




0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 1 1
0 0 1 0 1 0 0 1
0 1 0 1 0 0 0 1
0 1 0 0 1 0 1 0
1 0 0 1 0 0 1 1




D18 =




1 0 1 1 0 1 1 0
1 1 1 0 0 0 0 0
0 1 0 1 1 0 1 1
0 1 1 1 0 0 0 0
1 0 0 1 1 0 1 1
1 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1
1 1 0 0 0 0 0 1




Appendix B – Inverse Equivalence Relationships

D21 =




0 1 1 1 1 0 0 0
0 1 0 1 0 1 0 0
1 1 0 1 1 0 0 0
0 0 1 0 1 1 1 0
0 1 0 0 0 1 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 1 1


D31 =




1 1 0 0 0 1 0 0
1 1 1 0 1 1 0 0
1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0
0 1 1 0 0 1 0 1
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 1




D41 =




0 1 1 1 0 0 0 0
0 0 1 0 1 1 0 1
1 0 1 1 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0
1 0 1 1 1 0 1 1
0 1 0 1 1 0 1 1


D51 =




0 0 1 0 1 0 0 0
0 1 1 0 1 0 1 1
0 0 1 0 0 1 0 1
1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1
1 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0
1 1 0 1 0 1 0 1
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D61 =




0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 0
0 1 1 1 0 1 1 0
0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 1
1 0 1 0 0 0 1 1
0 0 1 0 1 0 0 0
1 0 1 0 0 0 1 0


D71 =




0 0 1 0 0 1 1 0
1 0 0 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 1 1 0 1 1 1
0 0 1 0 0 0 0 1
0 1 1 1 0 1 0 0
1 0 1 0 0 0 1 1
1 0 1 1 0 0 1 1




D81 =




1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0
0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 0
1 1 1 1 1 1 0 0
0 0 1 1 0 1 0 1
1 0 0 0 1 1 0 1
0 0 1 0 1 0 0 1




Appendix C – A Replacement S-Box

The following bijective s-box has nonlinearity 106 and algebraic order 7. It con-
tains no fixed points and no linear redundancy. The sbox has a DDT maximum
of 6. The distribution of properties over all 255 XOR combinations of the sbox
output functions is shown in Tables 3 and 4.

SBox[256]={
63, 7C, 77, DD, F2, 6B, 6F, C5,30, 01, 67, 2B, FE, D7, AB, 76,
CA, 82, C9, 7D, FA, 59, 47, F0,AD, D4, A2, AF, 9C, A4, 72, C0,
B7, FD, 93, 26, 36, 3F, F7, CC,34, A5, E5, F1, 71, D8, 31, 17,
04, C7, 23, C3, 18, 96, 05, 9A,07, 12, 80, E2, EB, 27, B2, 75,
09, 83, 2C, 1A, 1B, 6E, 10, A0,52, 3B, D6, B3, 29, 74, 2F, 84,
53, D1, 00, ED, 20, FC, B1, 5B,6A, CB, BE, 39, 4A, 4C, 58, CF,
D0, EF, AA, FB, 43, 4D, 56, 85,45, F9, 02, 7F, 50, 3C, 9F, A8,
51, A3, 40, 8F, 92, 9D, 38, F5,BC, B6, DA, 21, 15, FF, F3, D2,
CD, 0C, 13, EC, 5F, 97, 44, 5A,C4, A7, 7E, 3D, 64, 5D, 19, 73,
60, 81, 4F, DC, 22, 2A, 90, 88,46, EE, B8, 14, DE, 5E, 0B, DB,
E0, 32, 3A, 0A, 49, 06, 24, 5C,C2, D3, AC, 62, 91, 95, E4, 79,
E7, C8, 16, 6D, 8D, D5, 4E, A9,6C, 33, F4, EA, 65, 7A, AE, 08,
BA, 78, 25, 2E, 1C, A6, B4, C6,E8, 7B, E3, 1F, 4B, BD, 8B, 8A,
70, 3E, B5, 66, 48, 03, F6, 0E,61, 35, 57, B9, 86, C1, 1D, 9E,
E1, F8, 98, 11, 69, D9, 8E, 94,9B, 1E, 87, E9, CE, 55, 28, DF,
8C, A1, 89, 0D, BF, E6, 42, 68,41, 99, 2D, 0F, B0, 54, BB, 37}

Table 3. Frequency Distribution of Sbox
Nonlinearity

nonlinearity frequency

106 8

108 76

110 147

112 24

Table 4. Frequency Distribution of Sbox
Maximum Autocorrelation

maximum autocorrelation frequency

32 1

40 93

48 134

56 27
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