
Linear Approximations of Addition Modulo 2n

Johan Wallén

Laboratory for Theoretical Computer Science
Helsinki University of Technology

P.O.Box 5400, FIN-02015 HUT, Espoo, Finland
johan@tcs.hut.fi

Abstract. We present an in-depth algorithmic study of the linear ap-
proximations of addition modulo 2n. Our results are based on a fairly
simple classification of the linear approximations of the carry function.
Using this classification, we derive an Θ(log n)-time algorithm for com-
puting the correlation of linear approximation of addition modulo 2n, an
optimal algorithm for generating all linear approximations with a given
non-zero correlation coefficient, and determine the distribution of the
correlation coefficients. In the generation algorithms, one or two of the
selection vectors can optionally be fixed. The algorithms are practical
and easy to implement.

Keywords: Linear approximations, correlation, modular addition, linear
cryptanalysis.

1 Introduction

Linear cryptanalysis [8] is one of the most powerful general cryptanalytic meth-
ods for block ciphers proposed by date. Since its introduction, resistance against
this attack has been a standard design goal for block ciphers. Although some
design methodologies to achieve this goal have been proposed—for example [12,
10, 4, 13]—many block ciphers are still designed in a rather ad hoc manner, or
dictated by other primary design goals. For these ciphers, it it important to have
efficient methods for evaluating their resistance against linear cryptanalysis.

At the heart of linear cryptanalysis lies the study of the correlation of linear
approximate relations between the input and output of functions. Good linear
approximations of ciphers are usually found heuristically by forming trails con-
sisting of linear approximations of the components of the cipher. In order to
search the space of linear trails, e.g. using a Branch-and-bound algorithm (see
e.g. [5, 9, 1]), we need efficient methods for computing the correlation of linear
approximations of the simplest components of the cipher, as well as methods for
generating the relevant approximations of the components. Towards this goal,
we study a few basic functions often used in block ciphers.

Currently, block ciphers are usually build from local nonlinear mappings,
global linear mappings, and arithmetic operations. The mixture of linear map-
pings and arithmetic operations seems fruitful, since they are suitable for soft-
ware implementation, and their mixture is difficult to analyse mathematically.

T. Johansson (Ed.): FSE 2003, LNCS 2887, pp. 261–273, 2003.
c© International Association for Cryptologic Research 2003

262 Johan Wallén

While the latter property intuitively should make standard cryptanalysis in-
tractable , it also makes it difficult to say something concrete about the security
of the cipher.

Perhaps the simplest arithmetic operations in wide use are addition and sub-
traction modulo 2n. Interestingly, good tools for studying linear approximations
of even these simple mappings have not appeared in the literature to date. In this
paper, we consider algorithms for two important problems for linear approxima-
tions of these operations: for computing the correlation of any given linear ap-
proximation and for generating all approximations with a correlation coefficient
of a given absolute value. Our results are based on a fairly simple classification
of the linear approximations of the carry function. Using this classification, we
derive Θ(log n)-time algorithms for computing the correlation of of linear ap-
proximations of addition and subtraction modulo 2n in a standard RAM model
of computation. The classification also gives optimal (that is, linear in the size
of the output) algorithms for generating all linear approximations of addition or
subtraction with a given non-zero correlation. In the generation algorithms, one
or two of the selection vectors may optionally be fixed. As a simple corollary, we
determine closed-form expressions for the distribution of the correlation coeffi-
cients. We hope that our result will facilitate advanced linear cryptanalysis of
ciphers using modular arithmetic.

Similar results with respect to differential cryptanalysis [2] are discussed in [7,
6]. The simpler case with one addend fixed is considered in [11] with respect to
both linear and differential cryptanalysis.

In the next section, we discuss linear approximations and some preliminary
results. In Sect. 3, we derive our classification of linear approximations of the
carry function, and the corresponding results for addition and subtraction. Using
this classification, we then present the Θ(log n)-time algorithm for computing
the correlation of linear approximations in Sect. 4, and the generation algorithms
in Sect. 5.

2 Preliminaries

2.1 Linear Approximations

Linear cryptanalysis [8] views (a part of) the cipher as a relation between the
plaintext, the ciphertext and the key, and tries to approximate this relation using
linear relations. The following standard terminology is convenient for discussing
these linear approximations.

Let f, g : IFn
2 → IF2 be Boolean functions. The correlation between f and g

is defined by
c(f, g) = 21−n

∣
∣{x ∈ IFn

2 | f(x) = g(x)}∣∣− 1 .

This is simply the probability taken over x that f(x) = g(x) scaled to a value in
[−1, 1]. Let u = (um−1, . . . , u0)t ∈ IFm

2 and w = (wn−1, . . . , w0)t ∈ IFn
2 be binary

column vectors, and let h : IFn
2 → IFm

2 . Let w ·x = wn−1xn−1 + · · ·+w1x1 +w0x0
denote the standard dot product. Define the linear function lw : IFn

2 → IF2 by
lw(x) = w · x for all w ∈ IFn

2 . A linear approximation of h is an approximate

Linear Approximations of Addition Modulo 2n 263

relation of the form u ·h(x) = w ·x. Such a linear approximation will be denoted
by the formal expression u

h←− w, or simply u←− w when h is clear from context.
Its efficiency is measured by its correlation C(u h←− w) defined by

C(u h←− w) = c(lu ◦ h, lw) .

Here, u and w are the output and input selection vectors, respectively.

2.2 Fourier Analysis

There is a well-known Fourier-based framework for studying linear approxima-
tions [3]. Let f : IFn

2 → IF2 be a Boolean function. The corresponding real-
valued function f̂ : IFn

2 → IR is defined by f̂(x) = (−1)f(x). With this notation,
c(f, g) = 2−n

∑

x∈IFn
2

f̂(x)ĝ(x). Note also that f + g ↔ f̂ ĝ. Recall that an al-
gebra A over a field IF is a ring, such that A is a vector space over IF, and
a(xy) = (ax)y = x(ay) for all a ∈ IF and x, y ∈ A.

Definition 1. Let Bn = 〈f̂ | f : IFn
2 → IF2〉 be the real algebra generated by the

n-variable Boolean functions. As usual, the addition, multiplication, and multi-
plication by scalars are given by (ξ + η)(x) = ξ(x) + η(x), (ξη)(x) = ξ(x)η(x)
and (aξ)(x) = a(ξ(x)) for all ξ, η ∈ Bn and a ∈ IR.

The algebra Bn is of course unital and commutative.
The vector space Bn is turned into an inner product space by adopting the

standard inner product for real-valued discrete functions. This inner product is
defined by

〈ξ, η〉 = 2−n
∑

x∈IFn
2

(ξη)(x) , ∀ξ, η ∈ Bn .

For Boolean functions, f, g : IFn
2 → IF2, 〈f̂ , ĝ〉 = c(f, g). Since the set of linear

functions {l̂w | w ∈ IFn
2} forms an orthonormal basis for Bn, every ξ ∈ Bn has a

unique representation as

ξ =
∑

w∈IFn
2

αw l̂w , where αw = 〈ξ, l̂w〉 ∈ IR .

The corresponding Fourier transform F : Bn → Bn is given by

F(ξ) = Ξ , where Ξ is the mapping w 	→ 〈ξ, l̂w〉 .

This is usually called the Walsh-Hadamard transform of ξ. For a Boolean func-
tion f : IFn

2 → IF2, the Fourier transform F̂ = F(f̂) simply gives the correlation
between f and the linear functions: F̂ (w) = c(f, lw).

For ξ, η ∈ Bn, their convolution ξ ⊗ η ∈ Bn is given by

(ξ ⊗ η)(x) =
∑

t∈IFn
2

ξ(x + t)η(t) .

264 Johan Wallén

Clearly, Bn is a commutative, unital real algebra also under convolution as mul-
tiplication. The unity is the function δ such that δ(0) = 1 and δ(x) = 0 for
x �= 0. As usual, the Fourier transform is an algebra isomorphism between the
commutative, unital real algebras 〈Bn, +, ·〉 and 〈Bn, +,⊗〉.

Let f : IFn
2 → IFm

2 be a Boolean function. Since the correlation of a linear

approximation of f is given by C(u f←− w) = F(l̂uf)(w), the correlation of linear
approximations can conveniently be studied using the Fourier transform. Since
luf can be expressed as

∑

i:ui=1 fi, where fi denotes the ith component of f , we
have the convolutional representation

C(u f←− w) =
⊗

i:ui=1

F̂i ,

where F̂i = F(f̂i). Especially when using the convolutional representation, it

will be convenient to consider C(u f←− w) as a function of w with u fixed.

3 Linear Approximations of Addition Modulo 2n

3.1 k-Independent Recurrences

We will take a slightly abstract approach to deriving algorithms for studying
linear approximations of addition modulo 2n, since this approach might turn
out to be useful also for some related mappings. The key to the algorithms are
a certain class of k-independent recurrences. The name comes from the fact that
they will be used to express the correlation of linear approximations of functions
whose ith output bit is independent of the (i + k)th input bit an higher.

We let ei ∈ IFn
2 denote a vector whose ith component is 1 and the other 0.

If x ∈ IFn
2 , x denotes the component-wise complement of x: xi = xi + 1. Let

eq: IFn
2 × IFn

2 → IFn
2 be defined by eq(x, y)i = 1 if and only if xi = yi. That is,

eq(x, y) = x + y. For x, y ∈ IFn
2 , we let xy = (xn−1yn−1, . . . , x1y1, x0y0)t denote

their component-wise product.

Definition 2. A function f : IFn
2 × IFn

2 → IR is k-independent, if f(x, y) = 0
whenever xj �= 0 or yj �= 0 for some j ≥ k. Let r0, r : IFn

2 × IFn
2 → IR be k-

independent functions. A recurrence Ri = Rr0,r
i is k-independent, if it has the

form

R0(x, y) = r0(x, y) , and

Ri+1(x, y) =
1
2

(

r(xi+k, y) + r(x, yi+k) + Ri(x, y)−Ri(xi+k, yi+k
)

for i > 0, where we for compactness have denoted zi+k = z + ei+k. Note that Rj

is a k + j-independent function for all j.

Note that k-independent recurrences can be efficiently computed, provided that
we efficiently can compute the base cases r and r0. The crucial observation is

Linear Approximations of Addition Modulo 2n 265

that at most one of the terms in the expression for Ri+1 is non-zero, and that
we can determine which of the four terms might be non-zero by looking only
at xi+k and yi+k. The four terms consider the cases (xi+k, yi+k) = (1, 0), (0, 1),
(0, 0), and (1, 1), respectively. This observation yields the following lemma.

Lemma 1. Let Ri = Rr0,r
i be a k-independent recurrence. Then

R0(x, y) = r0(x, y) , and

Ri+1(x, y) =

{
1
2r(xei+k, yei+k) , if xi+k �= yi+k and
1
2 (−1)xi+kRi(xei+k, yei+k) , if xi+k = yi+k .

It turns out that the k-independent recurrences of interest can be solved by
finding a certain type of common prefix of the arguments. Towards this end, we
define the common prefix mask of a vector.

Definition 3. The common prefix mask cpmk
i : IFn

2 → IFn
2 is for all j defined

by cpmk
i (x)j = 1 if and only if k ≤ j < k + i and x� = 1 for all j < � < k + i.

Let wH(x) =
∣
∣{i | xi �= 0}∣∣ denote the Hamming weight of x ∈ IFn

2 .

Lemma 2. Let Ri = Rr0,r
i be a k-independent recurrence. Denote r1 = r, and

let z = cpmk
i (eq(x, y)), � = wH(z) and s = (−1)wH(zxy). Let b = 0, if xz = yz

and let b = 1 otherwise. Then

Ri(x, y) = s · 2�rb(xz, yz) .

Proof. For i = 0, cpmk
0(eq(x, y)) = 0, � = 0, s = 1, and b = 0. Thus, the

lemma holds for i = 0, so consider i + 1. Let x′ = xei+k, y′ = yei+k, z′ =
cpmk

i (eq(x′, y′)), �′ = wH(z′), s′ = (−1)wH(z′x′y′), and b′ = 0, if x′z′ = y′z′ and
b′ = 1 otherwise. By Lemma 1, there are two cases to consider. If xi+k �= yi+k,
z = ei+k, � = 1, s = 1, and b = 1. In this case s·2�rb(xz, yz) = 1

2r(xei+k, yei+k) =
Ri+1(x, y). If xi+k = yi+k, z = ei+k +z′, � = �′+1, s = s′(−1)xi+k , and b = b′. In
this case, s ·2�rb(xz, yz) = 1

2 (−1)xi+k ·s′2�′
rb′(x′z′, y′z′) = 1

2 (−1)xi+kRi(x′, y′) =
Ri+1(x, y). ��

We will next consider the convolution of k-independent recurrences.

Lemma 3. Let Ri = Rδ,δ
i be a 0-independent recurrence, and let f : IFn

2 → IR be
k-independent. Define Si = Ri+k ⊗ f , s = f , and s0 = Rk ⊗ f . Then Si = Ss0,s

i

is a k-independent recurrence.

Proof. Clearly, s0 and s are k-independent. Furthermore, S0 = Rk ⊗ f = s0
by definition. Finally, 2Si+1(x, y) = 2R(i+k)+1(x, y) ⊗ f(x, y) = (δ(xi+k, y) +
δ(x, yi+k) + Ri+k(x, y)−Ri+k(xi+k, yi+k))⊗ f(x, y) = f(xi+k, y) + f(x, yi+k) +
(Ri+k ⊗ f)(x, y) − (Ri+k ⊗ f)(xi+k, yi+k), where we have used the notation
zi+k = z + ei+k. ��

266 Johan Wallén

3.2 Linear Approximations of the Carry Function

In this subsection, we derive a classification of the linear approximations of the
carry function modulo 2n. It will turn out that the correlation of arbritrary
linear approximations of the carry function can be expressed as a recurrence of
the type studied in the previous subsection. We will identify the vectors in IFn

2
and the elements in ZZ2n using the natural correspondence

(xn−1, . . . , x1, x0)t ∈ IFn
2 ↔ xn−12n−1 + · · ·+ x121 + x020 ∈ ZZ2n .

To avoid confusion, we sometimes use ⊕ and � to denote addition in IFn
2 and

ZZ2n , respectively.

Definition 4. Let carry : IFn
2 × IFn

2 → IFn
2 be the carry function for addition

modulo 2n defined by carry(x, y) = x ⊕ y ⊕ (x � y), and let ci = carryi denote
the ith component of the carry function for i = 0, . . . , n− 1.

Note that the ith component of the carry function can be recursively computed
as c0(x, y) = 0, and ci+1(x, y) = 1 if and only if at least two of xi, yi and ci(x, y)
are 1. By considering the 8 possible values of xi, yi and ci(x, y), we see that
ĉ0(x, y) = 1 and ĉi+1(x, y) = 1

2

(

(−1)xi + (−1)yi + ĉi(x, y) − (−1)xi+yi ĉi(x, y)
)

.
Thus we have

Lemma 4. The Fourier transform of the carry function ĉi is given by the re-
currence

Ĉ0(v, w) = δ(v, w) , and

Ĉi+1(v, w) =
1
2

(

δ(v + ei, w) + δ(v, w + ei) + Ĉi(v, w)− Ĉi(v + ei, w + ei)
)

,

for i = 0, . . . , n− 1.

Note that this indeed is a 0-independent recurrence.
In the sequel, we will need a convenient notation for stripping off ones from

the high end of vectors.

Definition 5. Let x ∈ IFn
2 and � ∈ {0, . . . , n}. Define strip(x) to be the vector

in IFn
2 that results when the highest component that is 1 in x (if any) is set to

0. By convention, strip(0) = 0. Similarly, let strip(�, x) denote the vector that
results when all but the � lowest ones in x have been set to zero. For example,
strip(2, 1011101) = 0000101.

Let u ∈ IFn
2 and let {i | ui = 1} = {k1, . . . , km} with k� < k�+1. Define j0 = 0

and j�+1 = k�+1 − k� for � = 0, . . . , m− 1. Then

C(u carry←−−− v, w) =
⊗

i:ui=1

Ĉi(v, w) =
m⊗

i=1

Ĉki(v, w) .

Define a sequence of recurrences S0,i, . . . , Sm,i by

S0,i = δ , and

S�+1,i = Ĉi+k�
⊗ S�,j�

,

Linear Approximations of Addition Modulo 2n 267

for � = 0, . . . , m− 1. The crucial observation is that

S�,j�
(v, w) = C(strip(�, u)

carry←−−− v, w)

for all �. Thus, C(u carry←−−− v, w) = Sm,jm(v, w).

Lemma 5. Let S�,i, j�, and k� be as above. Define s�, s
′
� by s1 = s′

1 = δ, and for
� > 0 by s�+1 = S�,j�

and s′
�+1 = s�. Then S�,i = S

s′
�,s�

�,i is a k�−1-independent
recurrence for all � > 0, where k0 = 0.

Proof. For � = 1, the result is clear. If S�,i = S
s′

�,s�

�,i is a k�−1-independent
recurrence for some � ≥ 1, then S�,j�

is a j�+k�−1 = k�-independent function. By
Lemma 3, S�+1,i = Sf0,f

�+1,i is a k�-independent recurrence with f = S�,j�
= s�+1

and f0 = Ĉk�
⊗ S�,j�

= Ĉk�
⊗ (Ĉj�+k�−1 ⊗ S�−1,j�−1) = Ĉk�

⊗ Ĉk�
⊗ S�−1,j�−1 =

S�−1,j�−1 = s′
�+1. ��

For any function f , we let f0 denote the identity function and f i+1 = f ◦ f i.
Lemmas 2 and 5 now give

Lemma 6. The correlation of any linear approximation of the carry function is
given recursively as follows. First, C(0 carry←−−− v, w) = δ(v, w). Second, if u �= 0,
let j ∈ {0, . . . , n − 1} be maximal such that uj = 1. If strip(u) �= 0, let k be
maximal such that strip(u)k = 1. Otherwise, let k = 0. Denote i = j − k. Let
z = cpmk

i (eq(v, w)), � = wH(z), and s = (−1)wH(zvw). If vz = wz, set b = 2. Set
b = 1 otherwise. Then

C(u carry←−−− v, w) = s · 2−�C(stripb(u)
carry←−−− vz, wz) .

Our next goal is to extract all the common prefix masks computed in the
previous lemma, and combine them into a single common prefix mask depending
on u. This gives a more convenient formulation of the previous lemma.

Definition 6. The common prefix mask cpm: IFn
2 × IFn

2 → IFn
2 is defined recur-

sively as follows. First, cpm(0, y) = 0. Second, if x �= 0, let j be maximal such
that xj = 1. If strip(x) �= 0, let k be maximal such that strip(x)k = 1. Otherwise,
let k = 0. Denote i = j − k and z = cpmk

i (y) If zy = z, set b = 2. Set b = 1
otherwise. Then

cpm(x, y) = cpmk
i (y) + cpm(stripb(x), y) .

Theorem 1. Let u, v, w ∈ IFn
2 , and let z = cpm(u, eq(v, w)). Then

C(u carry←−−− v, w) =

{

0 , if vz �= 0 or wz �= 0, and
(−1)wH(vw) · 2−wH(z) , otherwise.

Since the only nonlinear part of addition modulo 2n is the carry function, it
should be no surprise that the linear properties of addition completely reduce
to those of the carry function. Subtraction is also straightforward. When we are
approximating the relation x�y = z by u

�←− v, w, we are actually approximating
the relation z � y = x by v

�←− u, w. With this observation, it is trivial to prove

268 Johan Wallén

Lemma 7. Let u, v, w ∈ IFn
2 . The correlations of linear approximations of ad-

dition and subtraction modulo 2n are given by

C(u �←− v, w) = C(u carry←−−− v + u, w + u) , and

C(u �←− v, w) = C(v carry←−−− u + v, w + v) .

Moreover, the mappings (u, v, w) 	→ (u, v + u, w + u) and (u, v, w) 	→ (v, u +
v, w + v) are permutations in (IFn

2)3.

4 The Common Prefix Mask

4.1 RAM Model

We will use a standard RAM model of computation consisting of n-bit memory
cells, logical and arithmetic operations, and conditional branches. Specifically,
we will use bitwise and (∧), or (∨), exclusive or (⊕) and negation (·), logical
shifts (� and �), and addition and subtraction modulo 2n (� and �). As a
notational convenience, we will allow our algorithms to return values of the form
s2−k, where s ∈ {0, 1,−1}. In our RAM model, this can be handled by returning
s and k in two registers.

4.2 Computing cpm

To make the domain of cpm clear, we write cpmn = cpm: IFn
2 × IFn

2 → IFn
2 . We

will extend the definition of cpm to a 3-parameter version.

Definition 7. Let cpmn : {0, 1}× IFn
2 × IFn

2 → IFn
2 be defined by cpmn(b, x, y) =

(zn−1, . . . , z0)t, where z = cpmn+1((b, x)t, (0, y)t).

Lemma 8 (Splitting lemma). Let n = k + � with k, � > 0. For any vector
x ∈ IFn

2 , let xL ∈ IFk
2 and xR ∈ IF�

2 be such that x = (xL, xR)t. Then

cpmn(x, y) = (cpmk(xL, yL), cpm�(b, x
R, yR))t ,

where b = xL
0 if and only if (yL

0 , cpmk(xL, yL)0) �= (1, 1).

Proof. Let w = wH(xL) and zL = cpmk(xL, yL). If w = 0, the result is trivial.
If w = 1 and xL

0 = 1, b = 1 and the result holds. If w = 1 and xL
0 = 0, b = 1

if and only if zL
0 = 1 and yL

0 = 1. If w = 2 and xL
0 = 1, b = 0 if and only if

zL
0 = 1 and yL

0 = 1. Finally, if w = 2 and xL
0 = 0, or w > 2, the result follows by

induction. ��
Using this lemma, we can easily come up with an Θ(log n)-time algorithm

for computing cpmn(x, y). For simplicity, we assume that n is a power of two (if
not, the arguments can be padded with zeros). The basic idea is to compute both
cpmn(0, x, y) and cpmn(1, x, y) by splitting the arguments in halves, recursively
compute the masks for the halves in parallel in a bit-sliced manner, and then
combine the correct upper halves with the correct lower halves using the splitting
lemma. Applying this idea bottom-up gives the following algorithm.

Linear Approximations of Addition Modulo 2n 269

Theorem 2. Let n be a power of 2, let α(i) ∈ IFn
2 consist of blocks of 2i ones

and zeros starting from the lest significant end (e.g. α(1) = 0011 · · · 0011), and
let x, y ∈ IFn

2 . The following algorithm computes cpm(x, y) using Θ(log n) time
and constant space in addition to the Θ(log n) space used for the constants α(i).

1. Initialise β = 1010 · · · 1010, z0 = 0, and z1 = �1.
2. For i = 0, . . . , log2 n− 1, do

(a) Let γb = ((y ∧ zb ∧ x) ∨ (y ∧ zb ∧ x)) ∧ β for b ∈ {0, 1}.
(b) Set γb ← γb � (γb � 2i) for b ∈ {0, 1}.
(c) Let tb = (zb ∧ α(i)) ∨ (z0 ∧ γb ∧ α(i)) ∨ (z1 ∧ γb) for b ∈ {0, 1}.
(d) Set zb ← tb for b ∈ {0, 1}.
(e) Set β ← (β � 2i) ∧ α(i+1).

3. Return z0.

Note that α(i) and the values of β used in the algorithm only depend on n. For
convenience, we introduce the following notation. Let β(i) ∈ IFn

2 be such that
β

(i)
� = 1 iff �−2i is a non-negative multiple of 2i+1 (e.g. β(1) = 0100 · · · 01000100).

For b ∈ {0, 1}, let

z(i)(b, x, y) = (cpm2i(b, x(n/2i−1), y(n/2i−1)), . . . , cpm2i(b, x(0), y(0)))t ,

where x = (x(n/2i−1), . . . , x(0))t and y = (y(n/2i−1), . . . , y(0))t. We also let x →
y, z denote the function “if x then y else z”. That is, x→ y, z = (x∧y)∨ (x∧z).

Proof (of Theorem 2). The algorithm clearly terminates in time Θ(log n) and
uses constant space in addition to the masks α(i). The initial value of β can also
be constructed in logarithmic time. We show by induction on i that β = β(i)

and zb = z(i)(b, x, y) at the start of the ith iteration of the for-loop. For i = 0,
this clearly holds, so let i ≥ 0. Consider the vectors x, y and zb split into
2i+1-bit blocks, and let x′, y′, and z′

b denote one of these blocks. After step 2a,
γb,� = (y� ∧ zb,�) → x�, x� when � − 2i is a multiple of 2i+1, and γb,� = 0
otherwise. Let ξ denote the bit of γb corresponding to the middle bit of the
block under consideration. By induction and the splitting lemma, cpm(b, x′, y′) =
(cpm(b, x′L, y′L), cpm(ξ, x′R, y′R))t. After step 2b, a block of the form χ00 · · · 0
in γb has been transformed to a block of the form 0χχ · · ·χ. In step 2c, the upper
half of each block z′

b is combined with the corresponding lower half of the block
z′
ξ to give t′b = cpm(b, x′, y′). That is, tb = z(i+1)(b, x, y). Finally, β = β(i+1)

after step 2e. ��

Since the Hamming weight can be computed in time O(log n), we have the
following corollary.

Corollary 1. Let u, v, w ∈ IFn
2 . The correlation coefficients C(u �←− v, w) and

C(u �←− v, w) can be computed in time Θ(log n) (using the algorithm in Theorem 2
and the expressions in Theorem 1 and Lemma 7).

270 Johan Wallén

5 Generating Approximations

In this section, we derive a recursive description of the linear approximations
u

carry←−−− v, w with a given non-zero correlation coefficient. For simplicity, we
only consider the absolute values of the correlation coefficients. The recursive
description immediately gives optimal generation algorithms for the linear ap-
proximations. By Theorem 1, the magnitude of C(u carry←−−− v, w) is either zero or
a power of 1

2 . Thus, we start by considering the set of vectors (u, v, w) ∈ (IFn
2)3

such that C(u carry←−−− v, w) = ±2−k.
We will use the splitting lemma to determine the approximations u

carry←−−− v, w
with non-zero correlation and wH(cpmn(u, eq(v, w))) = k. Note that

cpmn(x, y) = (cpmn−1(x
L, yL), cpm1(b, x0, y0))t ,

where b = xL
0 iff (yL

0 , cpmn−1(xL, yL)0) �= (1, 1). Now, cpm1(b, x0, y0) = 1 iff
b = 1 iff either xL

0 = 1 and (yL
0 , cpmn−1(xL, yL)0) �= (1, 1) or xL

0 = 0 and
(yL

0 , cpmn−1(xL, yL)0) = (1, 1). Let the {0, 1}-valued bn(x, y) = 1 iff x0 = 1
and (y0, cpmn(x, y)0) �= (1, 1) or x0 = 0 and (y0, cpmn(x, y)0) = (1, 1), let
F (n, k) = {(u, v, w) ∈ (IFn

2)3 | C(u ←− v, w) = ±2−k, bn(u, eq(v, w)) = 1}, and
let G(n, k) = {(u, v, w) ∈ (IFn

2)3 | C(u ←− v, w) = ±2−k, bn(u, eq(v, w)) = 0}.
Let A(n, k) = {(u, v, w) ∈ (IFn

2)3 | C(u ←− v, w) = ±2−k}. Then A(n, k) is
formed from F (n − 1, k − 1) and G(n − 1, k) by appending any three bits to
the approximations in F (n− 1, k− 1) (since u0 and eq(v, w)0 are arbitrary, and
cpmn(u, eq(v, w))0 = 1) and by appending {(0, 0, 0), (1, 0, 0)} to the approxima-
tions in G(n− 1, k) (since u0 is arbitrary and cpmn(u, eq(v, w))0 = 0). Let S =
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}, T = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, and
denote y = eq(v, w). We denote concatenation simply by juxtaposition.

The set F (n, k) can be divided into two cases.

1. The vectors with wH(cpmn−1(uL, yL)) = k, bn−1(uL, yL) = 0, and bn(u, y) =
1. Since (u0, y0) ∈ {(1, 0), (1, 1)} and cpmn(u, y)0 = 0, this set equals G(n−
1, k)(1, 0, 0).

2. The vectors with wH(cpmn−1(uL, yL)) = k − 1, bn−1(uL, yL) = 1 and
bn(x, y) = 1. Since (u0, y0) ∈ {(0, 1), (1, 0)} and cpmn(u, y)0 = 1, this set
equals F (n− 1, k − 1)S.

That is,
F (n, k) = G(n− 1, k)(1, 0, 0) ∪ F (n− 1, k − 1)S .

Clearly, F (1, 0) = {(1, 0, 0)} and F (n, k) = ∅ when k < 0 or k ≥ n.
Similarly, G(n, k) can be divided into two cases:

1. The vectors with wH(cpmn−1(uL, yL)) = k, bn−1(uL, yL) = 0, and bn(u, y) =
0. Since (u0, y0) ∈ {(0, 0), (0, 1)} and cpmn(u, y)0 = 0, this set equals G(n−
1, k)(0, 0, 0).

2. The vectors with wH(cpmn−1(uL, yL)) = k − 1, bn−1(uL, yL) = 1 and
bn(u, y) = 0. Since (u0, y0) ∈ {(0, 0), (1, 1)} and cpmn(u, y)0 = 1, this set
equals F (n− 1, k − 1)T .

Linear Approximations of Addition Modulo 2n 271

That is,
G(n, k) = G(n− 1, k)(0, 0, 0) ∪ F (n− 1, k − 1)T .

Clearly, G(1, 0) = {(0, 0, 0)} and G(n, k) = ∅ when k < 0 or k ≥ n.

Theorem 3. Let A(n, k) = {(u, v, w) ∈ (IFn
2)3 | C(u carry←−−− v, w) = ±2−k}.

Then

A(n, k) = F (n− 1, k − 1)(IF2 × IF2 × IF2) ∪G(n− 1, k){(0, 0, 0), (1, 0, 0)} ,

where F and G are as follows. Let S = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} and
T = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. First, F (1, 0) = {(1, 0, 0)}, G(1, 0) =
{(0, 0, 0)}, and F (n, k) = G(n, k) = ∅ when k < 0 or k ≥ n. Second, when
0 ≤ k < n,

F (n, k) = G(n− 1, k)(1, 0, 0) ∪ F (n− 1, k − 1)S , and
G(n, k) = G(n− 1, k)(0, 0, 0) ∪ F (n− 1, k − 1)T .

Here, juxtaposition denotes concatenation.

From this theorem, it can be seen that there are 8(n− 1) linear approximations
u

carry←−−− v, w with correlation ± 1
2 . In the notation of formal languages, these are

the 8 approximations of the form

0n−21a
carry←−−− 0n−20b, 0n−20c

for arbritrary a, b, c ∈ {0, 1}, and the 8(n− 2) approximations of the form

0n−i−31d0ig
carry←−−− 0n−i−30e0i0, 0n−i−30f0i0

for (d, e, f) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, g ∈ {0, 1} and i ∈ {0, . . . , n−
3}.

The recursive description in Theorem 3 can easily be used to generate all
linear approximations with a given correlation. The straightforward algorithm
uses O(n) space and is linear-time in the number of generated approximations.
Clearly, this immediately generalise to the case where one or two of the selection
vectors are fixed. By Lemma 7, this also generalise to addition and subtraction
modulo 2n.

Corollary 2. The set of linear approximations with correlation ±2−k of the
carry function, addition, or subtraction modulo 2n can be generated in optimal
time (that is, linear in the size of the output) and O(n) space in the RAM
model (by straightforward application of the recurrence in Theorem 3 and the
expressions in Lemma 7). Moreover, one or two of the selection vectors can be
optionally fixed.

Theorem 3 can also be used to determine the distribution of the correlation
coefficients.

272 Johan Wallén

Corollary 3. Let N(n, k) =
∣
∣{(u, v, w) ∈ (IFn

2)3 | C(u←− v, w) = ±2−k}∣∣. Then

N(n, k) = 22k+1
(

n− 1
k

)

for all 0 ≤ k < n and N(n, k) = 0 otherwise. Thus, the number of linear
approximations with non-zero correlation is 2 · 5n−1.

Proof. Based on Theorem 3, it is easy to see that

N(n, k) =

0 , if k < 0 or k ≥ n,
2 , if n = 1 and k = 0, and
4N(n− 1, k − 1) + N(n− 1, k) , otherwise.

The claim clearly holds for n = 1. By induction, N(n, k) = 4N(n − 1, k −
1) + N(n − 1, k) = 4 · 22(k−1)+1

(
n−2
k−1

)

+ 22k+1
(
n−2

k

)

= 22k+1
(
n−1

k

)

. Finally,
∑n−1

k=0 N(n, k) = 2
∑n−1

k=0

(
n−1

k

)

4k = 2 · 5n−1. ��
If we let X be a random variable with the distribution

Pr[X = k] = Pr
u,v,w

[− log2 |C(u←− v, w)| = k | C(u←− v, w) �= 0] ,

we see that

Pr[X = k] =
(

n− 1
k

) (
4
5

)k (
1
5

)n−1−k

for all 0 ≤ k < n, since 2 · 5n−1
(
n−1

k

) (4
5

)k (1
5

)n−1−k = 22k+1
(
n−1

k

)

. Thus, X is
binomially distributed with mean 4

5 (n− 1) and variance 4
25 (n− 1).

6 Conclusions

In this paper, we have considered improved algorithms for several combinatorial
problems related to linear approximations of addition modulo 2n. Our approach
might seem unnecessarily complicated considering the surprising simplicity of
the results (especially Theorem 3), but should lead to natural generalisations to
other recursively defined function. This generalisation and applications to block
ciphers are, however, left to later papers. A reference implementation of the
algorithms is available from the author.

Acknowledgements

This work was supported by the Finnish Defence Forces Research Institute of
Technology.

Linear Approximations of Addition Modulo 2n 273

References

1. Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. Best differential character-
istic search for FEAL. In Fast Software Encryption 1997, volume 1267 of LNCS,
pages 41–53. Springer-Verlag, 1997.

2. Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer-Verlag, 1993.

3. Florent Chabaud and Serge Vaudenay. Links between differential and linear crypt-
analysis. In Advances in Cryptology–Eurocrypt 1994, volume 950 of LNCS, pages
356–365. Springer-Verlag, 1995.

4. Joan Daemen. Cipher and Hash Function Design: Methods Based on Linear and
Differential Cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, March
1995.

5. E.L. Lawler and D.E. Wood. Branch-and-bound methods: a survey. Operations
Research, 14(4):699–719, 1966.

6. Helger Lipmaa. On differential properties of Pseudo-Hadamard transform and
related mappings. In Progress in Cryptology–Indocrypt 2002, volume 2551 of LNCS,
pages 48–61. Springer-Verlag, 2002.

7. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential
properties of addition. In Fast Software Encryption 2001, volume 2355 of LNCS,
pages 336–350. Springer-Verlag, 2002.

8. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology–Eurocrypt 1993, volume 765 of LNCS, pages 386–397. Springer-Verlag,
1993.

9. Mitsuru Matsui. On correlation between the order of S-boxes and the strength
of DES. In Advances in Cryptology–Eurocrypt 1994, volume 950 of LNCS, pages
366–375. Springer-Verlag, 1995.

10. Mitsuru Matsui. New structure of block ciphers with provable security against
differential and linear cryptanalysis. In Fast Software Encryption 1996, volume
1039 of LNCS, pages 205–218. Springer-Verlag, 1996.

11. Hiroshi Miyano. Addend dependency of differential/linear probability of addition.
IEICE Trans. Fundamentals, E81-A(1):106–109, 1998.

12. Kaisa Nyberg. Linear approximations of block ciphers. In Advances in Cryptology–
Eurocrypt 1994, volume 950 of LNCS, pages 439–444. Springer-Verlag, 1995.

13. Serge Vaudenay. Provable security for block ciphers by decorrelation. In STACS
1998, volume 1373 of LNCS, pages 249–275. Springer-Verlag, 1998.

	1 Introduction
	2 Preliminaries
	2.1 Linear Approximations
	2.2 Fourier Analysis

	3 Linear Approximations of Addition Modulo 2^n
	3.1 k-Independent Recurrences
	3.2 Linear Approximations of the Carry Function

	4 The Common Pre.x Mask
	4.1 RAM Model
	4.2 Computing cpm

	5 Generating Approximations
	6 Conclusions
	References

