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Abstract. We present our further observations on the structure of the
AES algorithm relating to the cyclic properties of the functions used in
this cipher. We note that the maximal period of the linear layer of the
AES algorithm is short, as previously observed by S. Murphy and M.J.B.
Robshaw. However, we also note that when the non-linear and the linear
layer are combined, the maximal period is dramatically increased not
to allow algebraic clues for its cryptanalysis. At the end of this paper
we describe the impact of our observations on the security of the AES
algorithm. We conclude that although the AES algorithm consists of
simple functions, this cipher is much more complicated than might have
been expected.
Keywords: Cyclic Properties, SubBytes transformation, ShiftRows
transformation, MixColumns transformation, Maximal period.

1 Introduction

A well-designed SPN (Substitution Permutation Network) structure block cipher,
Rijndael [4] was recently (26. Nov. 2001) selected as the AES (Advanced Encryp-
tion Standard) algorithm [11]. This cipher has been reputed to be secure against
conventional cryptanalytic methods [4, 8], such as DC (Differential Cryptanaly-
sis) [1] and LC (Linear Cryptanalysis) [7], and throughout the AES process the
security of the AES algorithm was examined with considerable cryptanalytic
methods [2–4, 13, 14]. But despite the novelty of the AES algorithm [5], the fact
that the AES algorithm uses mathematically simple functions [6, 12, 15, 16] has
led to some commentators’ concern about the security of this cipher. In particu-
lar, S. Murphy and M.J.B. Robshaw [15, 16] have modified the original structure
of the AES algorithm so that the affine transformation used for generating the
S-box (non-linear layer) is included in the linear layer, and have shown that any
input to the modified linear layer of the AES algorithm is mapped to itself after
16 iterations of the linear transformation (the maximal period of the modified
linear layer is 16 [15, 16]. Based on this observation, they have remarked that
the linear layer of the AES algorithm may not be so effective at mixing data.
At this stage, to make the concept of “mixing data” clear, we briefly define the
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effect of mixing data, which Murphy and Robshaw considered. We define that in
a set K consisting of n elements, if an input of a function F is mapped to itself
after p iterations of the function, then the effect of mixing data is e = p

n .
In this paper, we present our further observations on the AES algorithm

in terms of the cyclic properties of the AES algorithm. We examine the cyclic
properties of the AES algorithm via each function in the original structure. We
note that the maximal period of each function used in the AES algorithm is
short, and that the maximal period of the composition of the functions used
in the linear layer is also short. We however note that the composition of the
non-linear layer and the linear layer dramatically increases the maximal period
of the basic structure to highly guarantee the effect of mixing data. Specifically,
we have found that:

• any input data block of the SubBytes transformation (non-linear layer) re-
turns to the initial state after 277182 (≈ 218) repeated applications (the
maximal period of the SubBytes transformation is 277182).

• any input data block of the ShiftRows transformation (in the linear layer)
returns to the initial state after 4 repeated applications (the maximal period
of the ShiftRows transformation is 4).

• any input data block of the MixColumns transformation (in the linear layer)
returns to the initial state after 4 repeated applications as well (the maximal
period of the MixColumns transformation is 4).

• when the ShiftRows transformation and the MixColumns transformation in
the linear layer are considered together, the maximal period is 8.

• when the SubBytes transformation (non-linear layer) and the ShiftRows
transformation (in the linear layer) are considered together, the maximal
period is 554364 (≈ 219).

More importantly, we have found that the maximal period of the composition
of the SubBytes transformation (non-linear layer) and the MixColumns trans-
formation (in the linear layer) is 1,440,607,416,177,321,097,705,832,170,004,940
(≈ 2110). Our observations indicate that the structure of the AES algorithm is
good enough to bring magnificent synergy effects in mixing data when the linear
and the non-linear layers are combined. In the last part of this paper we discuss
the relevance of our observations to the security of the AES algorithm.

This paper is organised as follows: the description of the AES algorithm is
presented in Section 2; the cyclic properties of the functions are described in
Section 3; the impact of our observations on the security of the AES algorithm
are discussed in Section 4; and the conclusion is given in Section 5.

2 Description of the AES Algorithm

The AES algorithm is an SPN structure block cipher, which processes variable-
length blocks with variable-length keys (128, 192, and 256). In the standard
case, it processes data blocks of 128 bits with a 128-bit Cipher Key [4, 11]. In
this paper we discuss the standard case because the results of our observations
will be similar in the other cases.
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Fig. 1. Basic structure of the AES algorithm.

As Figure 1 shows, the AES algorithm consists of a non-linear layer (SubBytes
transformation) and linear layer (ShiftRows transformation and MixColumns
transformation). Each byte in the block is bytewise substituted by the Sub-
Bytes transformation using a 256-byte S-box, and then every byte in each row
is cyclicly shifted by a certain value (row #0: 0, row #1: 1, row #2: 2, row #3:
3) by the ShiftRows transformation. After this, all four bytes in each column are
mixed through the MixColumns transformation by the matrix formula in Figure
2. Here, each column is considered as a polynomial over GF (28), and multiplied
with a fixed polynomial 03 · x3 + 01 · x2 + 01 · x + 02 (modulo x4 + 1). After
these operations, a 128-bit round key extended from the Cipher Key is XORed
in the last part of the round. The MixColumns transformation is omitted in the
last round (10th round), but before the first round a 128-bit initial round key is
XORed through the initial round key addition routine. The round keys are de-
rived from the Cipher Key by the following manner: Let us denote the columns
in the Cipher Key by CK0,CK1,CK2,CK3, the columns in the round keys by
K0,K1,K2,. . .,K43, and the round constants by Rcon. Then the columns in the
round keys are






K0 = CK0, K1 = CK1, K2 = CK2, K3 = CK3,
Kn = Kn−4 ⊕ SubBytes(RotBytes(Kn−1)) ⊕ Rcon if 4 | n
Kn = Kn−4 ⊕ Kn−1 otherwise.

3 Cyclic Properties of the Functions

In this section, we refer to cyclic properties of the functions used in the AES
algorithm. The cyclic property of each function is examined first, and then the
cyclic properties of the combined functions are obtained. For future reference,
we define fn(I) = f ◦ f ◦ f ◦ · · · ◦ f(I).



226 Beomsik Song and Jennifer Seberry

O0c

O1c

O2c

O3c

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

=

i0c

i1c

i2c

i3c

Fig. 2. Mixing of four bytes in a column.

3.1 Cyclic Property of Each Function

Cyclic Property of the SubBytes Transformation. From the analysis of
256 substitution values in the S-box, we have found the maximal period of the
SubBytes transformation (non-linear layer).

Property 1 Every input byte of the S-box returns to the initial value after some
t repeated applications of the substitution. In other words, for any input i of the
S-box=S,

St(i) = i.

The 256 values of the input byte can be classified into five small groups as in
Table 1 according to the values of t. The number of values in each group (the
period of each group) is 87, 81, 59, 27, and 2 respectively.

In Table 1, each value in each group is mapped to the value next to it.
For example ‘f2’ → ‘89’ → ‘a7’ → · · · → ‘04’ → ‘f2’, and ‘73’ → ‘8f’ → ‘73’.
From Property 1, we can see that although the S-box is a non-linear function,
every input block of the SubBytes transformation is mapped to itself after some
repeated applications of the SubBytes transformation. Indeed, we see that if
each byte in an input block (16 bytes) is ‘8f’ or ‘73’ (in group 5), then this
block returns to the initial state after just two applications of the SubBytes
transformation. From Property 1, if we consider the L.C.M (Least Common
Multiple) of 87, 81, 59, 27, and 2, then we find the following cyclic property of
the SubBytes transformation.

Property 2 For any input block I of the SubBytes transformation,

SubBytes277182(I) = I.

That is, the maximal period of the SubBytes transformation is 277182. The min-
imal period of the SubBytes transformation is 2 when each byte in the input block
I is ‘8f ’ or ‘73’.

Cyclic Property of the ShiftRows Transformation. The cyclic property
of the ShiftRows transformation is immediately found from the shift values (row
#0: 0, row #1: 1, row #2: 2, row #3: 3) in each row.
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Table 1. Classifying the substitution values in the S-box.

f2, 89, a7, 5c, 4a, d6, f6, 42, 2c, 71, a3, 0a, 67, 85, 97, 88, c4, 1c, 9c, de,
1d, a4, 49, 3b, e2, 98, 46, 5a, be, ae, e4, 69, f9, 99, ee, 28, 34, 18, ad, 95,
2a, e5, d9, 35, 96, 90, 60, d0, 70, 51, d1, 3e, b2, 37, 9a, b8, 6c, 50, 53, ed,
55, fc, b0, e7, 94, 22, 93, dc, 86, 44, 1b, af, 79, b6, 4e, 2f, 15, 59, cb, 1f,
c0, ba, f4, bf, 08, 30, 04

7c, 10, ca, 74, 92, 4f, 84, 5f, cf, 8a, 7e, f3, 0d, d7, 0e, ab, 62, aa, ac, 91,
81, 0c, fe, bb, ea, 87, 17, f0, 8c, 64, 43, 1a, a2, 3a, 80, cd, bd, 7a, da, 57,
5b, 39, 12, c9, dd, c1, 78, bc, 65, 4d, e3, 11, 82, 13, 7d, ff, 16, 47, a0, e0,
e1, f8, 41, 83, ec, ce, 8b, 3d, 27, cc, 4b, b3, 6d, 3c, eb, e9, 1e, 72, 40, 09,
01

00, 63, fb, 0f, 76, 38, 07, c5, a6, 24, 36, 05, 6b, 7f, d2, b5, d5, 03, 7b, 21,
fd, 54, 20, b7, a9, d3, 66, 33, c3, 2e, 31, c7, c6, b4, 8d, 5d, 4c, 29, a5, 06,
6f, a8, c2, 25, 3f, 75, 9d, 5e, 58, 6a, 02, 77, f5, e6, 8e, 19, d4, 48, 52

ef, df, 9e, 0b, 2b, f1, a1, 32, 23, 26, f7, 68, 45, 6e, 9f, db, b9, 56, b1, c8, e8,
9b, 14, fa, 2d, d8, 61

73, 8f

Group #1 (maximal period: 87)

Group #2 (maximal period: 81)

Group #3 (maximal period: 59)

Group #4 (maximal period: 27)

Group #5 (maximal period: 2)

* Each value in each table is followed by its substitution value

Property 3 For any input block I of the ShiftRows transformation,

ShiftRows(ShiftRows(ShiftRows(ShiftRows(I)))) = I.

In other words, the maximal period of the ShiftRows transformation is 4. The
minimal period of the ShiftRows transformation is 1 when all bytes in the input
block I are the same.

Cyclic Property of the MixColumns Transformation. In terms of the
MixColumns transformation, we have found that the maximal period of this
function is 4. Let us look carefully once again at the algebraic structure of
the MixColumns transformation described in Section 2. As realised, each input
column (four bytes) is considered as a polynomial over GF (28) and multiplied
modulo x4 + 1 with a fixed polynomial b(x) = 03 · x3 + 01 · x2 + 01 · x + 02.
This can be written as a matrix multiplication, as in Figure 2, and from this
matrix formula we can obtain the relation between an input column (Ic) and
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the corresponding output column (Oc). Hence, we can find that for any input
column Ic (four bytes),

M(M(M(M(Ic)))) = Ic

where M is the matrix multiplication described in Figure 2. When all four bytes
of Ic are the same,

M(Ic) = Ic.

If we now consider one input block (four columns) of the MixColumns transfor-
mation described in Figure 1, then we find the following property.

Property 4 For any input block I (16 bytes) of the MixColumns transformation,

MixColumns(MixColumns(MixColumns(MixColumns(I)))) = I.

In other words, the maximal period of the MixColumns transformation is 4. The
minimal period of the MixColumns transformation is 1 when the bytes are the
same in each column.

3.2 Cyclic Properties of Combined Functions

We now refer to the cyclic properties of cases when the above functions are com-
bined. We first refer to the maximal period of the linear layer (the composition
of the ShiftRows transformation and the MixColumns transformation). In the
case when the ShiftRows transformation and the MixColumns transformation
are considered together, we obtain the maximal period of the linear layer.

Property 5 Any input block I of the linear layer is mapped to itself after 8
repeated applications of the linear layer. In other words, the maximal period of
the linear layer is 8.

From the two minimal periods referred to in Property 3 and Property 4 we
obtain the following property.

Property 6 Any input block I of the linear layer, in which all bytes are the
same, is mapped to itself after one application of the linear layer. That is, the
minimal period of the linear layer is 1.

When the SubBytes transformation (non-linear layer) and the ShiftRows
transformation (in the linear layer) are combined, we obtain the following cyclic
property from the L.C.M of the two maximal periods referred to in Property 2
and Property 3.

Property 7 Any input block I of the composition of the SubBytes transforma-
tion and the ShiftRows transformation is mapped to itself after 554364 repeated
applications of the composition. In other words, the maximal period of the com-
position of the SubBytes transformation and the ShiftRows transformation is
554364.
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Property 8 In Property 7, if all bytes in the input block I are the same and
are either ‘73’ or ‘8f ’, then this block is mapped to itself after two repeated
applications of the composition. That is, the minimal period of the composition
of the SubBytes transformation and the ShiftRows transformation is 2.

More importantly, we show that although the maximal periods of both the
non-linear layer and the linear layer are short, the maximal period is surprisingly
increased in the composition of the non-linear layer and the MixColumns trans-
formation. We first change the order of the SubBytes transformation and the
ShiftRows transformation with each other as shown in Figure 3 (b) (the order
of these two functions is changeable).
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Fig. 3. Re-ordering of SubBytes and ShiftRows.

We then consider the S-box and the MixColumns transformation together.
As a result, we obtain an extended S-box, ES-box, which consists of 232 non-
linear substitution paths, as shown in Figure 3 (c) and Table 2. Now, using the
same idea used to obtain Property 1, we classify the 232 four-byte input values
of the ES-box into 52 small groups according to their periods.

The number of values in each group (the period of each group) is
1,088,297,796 (≈ 230), 637,481,159 (≈ 229), 129,021,490 (≈ 227), 64,376,666
(≈ 226), and so on. Table 3 shows the classification of all substitution values
in the ES-box, which has been obtained from our analysis (see the appendix for
more details).

From these values of the periods we finally find that the maximal pe-
riod of the composition of the SubBytes transformation (non-linear layer) and
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Table 2. ES-box.

0x00000000 0x00000001 • • • • 0xabcdef12 • • • 0xffffffff

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

0x63636363 0x7c7c425d • • • • 0x0eb03a4d • • • 0x16161616

I

ES(I)

Table 3. Classifying the substitution values in the ES-box.

1088297796, 637481159, 637481159, 637481159, 637481159, 129021490,

129021490, 129021490, 129021490, 64376666, 64376666, 11782972, 39488,

16934, 13548, 13548, 10756, 7582, 5640, 5640, 3560, 1902, 1902, 548, 548,

136, 90, 90, 87, 81, 59, 47, 47, 47, 47, 40, 36, 36, 27, 24, 21, 21, 15,

15, 12, 8, 4, 4, 4, 2, 2, 2

e.g. Period of group #1 : 1088297796, Period of group #2 : 637481159,

Period of group #6 : 129021490, Period of group #12 : 11782972.

the MixColumns transformation (in the linear layer) is 1,440,607,416,177,321,
097,705,832,170,004,940 (≈ 2110). Here, we note that the maximal period of this
composition is the largest L.C.M of any four values above. This is because one
input block consists of four columns.

We now discuss shorter periods of the composition of the the SubBytes trans-
formation and the MixColumns transformation which cryptanalysts may be con-
cerned about. We first refer to the minimal period. In very rare cases where
each column in an input block I is ‘73737373’, ‘8f8f8f8f’, ‘5da35da3’, ‘c086c086’,
‘a35da35d’ or ‘86c086c0’ (each of these values is mapped to itself after 2 itera-
tions of ES-box: see the appendix), for example,

I = 8f8f8f8f c086c086 73737373 5da35da3,

the period of the composition of the SubBytes transformation and the Mix-
Columns transformation is 2 (this is the minimal period of the composition of
the SubBytes transformation and the MixColumns transformation). We next
refer to the periods of the composition of the SubBytes transformation and the
MixColumns transformation for input blocks in which all bytes are the same. If
all bytes in an input block I of the composition of the SubBytes transformation
and the MixColumns transformation are the same, then this block leads to an
output block in which all bytes are the same. In this case, the period of the com-
position of the SubBytes transformation and the MixColumns transformation is
the same as the period of the S-box referred to in Table 1. For example, if the
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bytes in an input block I of the combined function of the SubBytes transforma-
tion and the MixColumns transformation are all ‘f2’, then this block is mapped
to itself after 87 iterations of this combined function (see Group #1 in Table 1
and Period 87 in the appendix).

In the next section, we discuss that input blocks having short periods could
provide some algebraic clues for cryptanalysis, as some previous works have ex-
pected [15, 16]. We show that input blocks having short periods, when compared
with others, could have relatively simple hidden algebraic relations with the cor-
responding output blocks. However, we also note that although in some cases
the composition of the non-linear layer and the linear layer has short periods
which could provide some algebraic clues for cryptanalysis, the key schedule of
the AES algorithm does not allow the short periods to go on.

4 Impact on the Security of the AES Algorithm

In this section, we discuss the impact of our observations on the security of the
AES algorithm. We show that input blocks having short periods (the effect of
mixing data e = p

n is very small) are apt to give hidden algebraic clues for
cryptanalysis when compared with others. To do this, we first find some input
blocks having shortest periods in the composition of the non-linear layer and the
linear layer (the SubBytes transformation+the ShiftRows transformation+the
MixColumns transformation).

Property 9 For any input block I of the composition of the non-linear layer and
the linear layer (the SubBytes transformation, the ShiftRows transformation,
and the MixColumns transformation), if all bytes in I are the same, then all
bytes in the output block are also the same. In this case, the composition of
the non-linear layer and the linear layer is equivalent to the S-box because the
ShiftRows transformation and the MixColumns transformation do not affect the
data transformation.

Property 10 For any input block I of the composition of the non-linear layer
and the linear layer, if all bytes in I are equal to i (any value), then the period of
the composition of the non-linear layer and the linear layer for this input block
is the same as the period of the S-box for i.

For example, if the bytes in an input block I of the composition of the non-
linear layer and the linear layer are all ‘ef’, then this input block is mapped to
itself after 27 iterations (the period of the S-box for ‘ef’ is 27 as given in Table
1). This means that the effect of mixing data of the composition of the non-linear
layer and the linear layer is e = 27

2128 for this input block (2128 is the number of
all possible blocks presented by 128 bits).

Property 11 In Property 10, if all bytes in I are the same and are either ‘73’
or ‘8f ’, then I is mapped to itself after 2 iterations of the composition of the
non-linear layer and the linear layer. In other words, the minimal period of the
composition of the non-linear layer and the linear layer is 2 (the minimal effect
of mixing data of the non-linear layer and the linear layer is e = 2

2128 ).
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We now show that input blocks having short periods could provide some
algebraic clues for cryptanalysis if the key schedule of the AES algorithm were
not well-designed. Let us assume that contrary to the original key schedule of
the AES algorithm, for any Cipher Key in which all bytes are the same, a certain
key schedule generates round keys in which each round key has all its bytes the
same. (This does not actually appear in the original key schedule.) For example,
suppose that the initial round key consists of all ‘78’, that the first round key
consists of all ‘6f’, . . ., and that the tenth round key consists of all ‘63’. Then, if
we consider the encryption procedure, we see, from Property 9, that any plaintext
in which all bytes are the same leads to a ciphertext in which all bytes are the
same. This means that if anyone uses, for encryption, a Cipher Key in which all
bytes are the same, then attackers will easily become aware of this fact with a
chosen plaintext in which all bytes are the same. As long as the attackers realise
this fact, it will be easy to find the Cipher Key. They will find the Cipher Key
from 256 key searches. However, we note that this scenario does not occur with
the original key schedule of the AES algorithm because plaintexts having short
periods are not able to keep up the short periods in the original key schedule.
For example, we consider the most simple case where a plaintext, in which all
bytes are ‘73’, is encrypted with a Cipher Key in which all bytes are ‘00’. In this
case, by Property 11, the period of the composition of the non-linear layer and
the linear layer is 2 for the intermediate text

I0 = 73737373 73737373 73737373 73737373

after the initial round key addition. However, we have found that the period
of the composition of the SubBytes transformation (non-linear layer) and the
MixColumns transformation (in the linear layer) becomes 1,088,297,796 (≈ 230)
for the intermediate text

I1 = edececec edececec edececec edececec

after the first round key addition. We here emphasise once again that although
the combined function of the non-linear layer and the linear layer of the AES
algorithm has some short periods in rare cases, the key schedule does not allow
these short periods to go on, thus denying algebraic clues for its cryptanalysis.

5 Conclusions

We have summarised our further observations on the AES algorithm relating to
the cyclic properties of this cipher. Specifically, we have shown that the maximal
period of each function used in the AES algorithm is short, and that the maximal
period of the composition of the functions used in the linear layer is short as well.
However, more importantly, we have also shown that the well-designed structure
brings remarkable synergy effects in the cyclic property of this cipher when the
linear layer and the non-linear layer are combined. We note that the structure
of the AES algorithm is good enough to guarantee high data mixing effects.
We also note that although the composition of the non-linear layer and the
linear layer of the AES algorithm has, in some cases, short periods which could
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provide some algebraic clues for its cryptanalysis, the well-designed key schedule
does not allow these short periods to go on. We believe that the combination of
the simple functions in the well-designed structure is one of the advantages of
the AES algorithm although some research studies have been recently making
considerable progress [9, 10] in the cryptanalysis of the AES-like block ciphers.
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Appendix: Grouping in the ES-Box

Periods Elements in each group
1088297796 00000003, 7b7b4b53, • • • • • • • • ••, 4487de39
637481159 00000002, 77775f4b, • • • • • • • • ••, 3943ffc4
637481159 00000004, f2f2cb5a, • • • • • • • • ••, a6284276
637481159 00000006, 6f6f777b, • • • • • • • • ••, 24c3a2a6
637481159 00000008, 303096c5, • • • • • • • • ••, d4f75ed0
129021490 00000001, 7c7c425d, • • • • • • • • ••, 40f39ed7
129021490 00000007, c5c59234, • • • • • • • • ••, 25322e95
129021490 00000009, 0101c5a7, • • • • • • • • ••, f8bc508a
129021490 00000010, caca832a, • • • • • • • • ••, 9660fca0
64376666 00000016, 47470f2b, • • • • • • • • ••, c50ccf88
64376666 00000142, 330d8ce2, • • • • • • • • ••, e401999a
11782972 000000ea, 878754b0, • • • • • • • • ••, 638a2857

39488 00020002, 4b5f4b5f, • • • • • • • • ••, 30a530a5
16934 00010001, 5d425d42, • • • • • • • • ••, 6ad56ad5
13548 00023af9, 468fbf7b, • • • • • • • • ••, 6b5493f6
13548 0005fde6, a1c7299d, • • • • • • • • ••, 8bf1558a
10756 001004ad, e474f2ac, • • • • • • • • ••, 245557ee
7582 00070007, 34923492, • • • • • • • • ••, d740d740
5640 00022db0, 60198ddf, • • • • • • • • ••, feb74bd1
5640 0015e186, 91861d8c, • • • • • • • • ••, 5d50a4a6
3560 00094090, ac1ad06d, • • • • • • • • ••, f6110e3e
1902 0000c22b, b73b421a, • • • • • • • • ••, 07a9ec2e
1902 0021e4f9, 2aa0fc18, • • • • • • • • ••, 76a21d37
548 00b800b8, 7d727d72, • • • • • • • • ••, 05a905a9
548 00c600c6, d601d601, • • • • • • • • ••, 85708570
136 01d266c5, a9fe5e55, • • • • • • • • ••, f554d80d
90 02338d7f, 3fdf63b8, • • • • • • • • ••, 3c0c694e
90 0304c1ca, f778e5ef, • • • • • • • • ••, 8683dfa2
87 f2f2f2f2, 89898989, • • • • • • • • ••, 04040404
81 7c7c7c7c, 10101010, • • • • • • • • ••, 01010101
59 00000000, 63636363, • • • • • • • • ••, 52525252
47 0112dc34, 267c8afb, • • • • • • • • ••, c406421d
47 018b9ded, b4b1024d, • • • • • • • • ••, 32926cc7
47 024db4b1, 95eed67c, • • • • • • • • ••, 9ded018b
47 03c975a2, 2d5cc9b9, • • • • • • • • ••, c0c8d6db
40 0aff4adf, bcb47f4e, • • • • • • • • ••, 1864fa71
36 03d603d6, 7af77af7, • • • • • • • • ••, 3e0a3e0a
36 07f107f1, 0d690d69, • • • • • • • • ••, 17a517a5
27 efefefef, dfdfdfdf, • • • • • • • • ••, 61616161
24 03d503d5, 8bf38bf3, • • • • • • • • ••, c6abc6ab
21 050f050f, 514c514c, • • • • • • • • ••, e344e344
21 0f050f05, 4c514c51, • • • • • • • • ••, 44e344e3
15 0e6e0e6e, c3f7c3f7, • • • • • • • • ••, ecbeecbe
15 6e0e6e0e, f7c3f7c3, • • • • • • • • ••, beecbeec
12 0327266c, 1eaab216, • • • • • • • • ••, 837b2f79
8 cac4cac4, a4cca4cc, • • • • • • • • ••, 4a2d4a2d
4 01828fc8, 5627aa2f, 8fc80182, aa2f5627
4 27aa2f56, c801828f, 2f5627aa, 828fc801
4 a37dadf5, 7dadf5a3, adf5a37d, f5a37dad
2 73737373, 8f8f8f8f
2 5da35da3, c086c086
2 a35da35d, 86c086c0
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