
On the Detection
of Anomalous System Call Arguments

Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni Vigna

Reliable Software Group�

Department of Computer Science
University of California, Santa Barbara

{chris,dhm,fredrik,vigna}@cs.ucsb.edu

Abstract. Learning-based anomaly detection systems build models of
the expected behavior of applications by analyzing events that are gen-
erated during their normal operation. Once these models have been es-
tablished, subsequent events are analyzed to identify deviations, given
the assumption that anomalies usually represent evidence of an attack.
Host-based anomaly detection systems often rely on system call traces
to build models and perform intrusion detection. Recently, these systems
have been criticized, and it has been shown how detection can be evaded
by executing an attack using a carefully crafted exploit. This weakness
is caused by the fact that existing models do not take into account all
available features of system calls. In particular, some attacks will go
undetected because the models do not make use of system call arguments.
To solve this problem, we have developed an anomaly detection technique
that utilizes the information contained in these parameters. Based on our
approach, we developed a host-based intrusion detection system that
identifies attacks using a composition of various anomaly metrics.
This paper presents our detection techniques and the tool based on them.
The experimental evaluation shows that it is possible to increase both
the effectiveness and the precision of the detection process compared
to previous approaches. Nevertheless, the system imposes only minimal
overhead.

Keywords: Intrusion detection, anomaly models, system calls.

1 Introduction

Intrusion detection techniques have traditionally been classified as either misuse-
based or anomaly-based.

Systems that use misuse-based techniques [7,17,18] contain a number of at-
tack descriptions, or signatures, that are matched against a stream of audit data
looking for evidence of modeled attacks. These systems are usually efficient and
generate few erroneous detections, called false positives. The main disadvantage
of misuse-based techniques is the fact that they can only detect those attacks
� This research was supported by the Army Research Office, under agreement

DAAD19-01-1-0484.

E. Snekkenes and D. Gollmann (Eds.): ESORICS 2003, LNCS 2808, pp. 326–343, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

On the Detection of Anomalous System Call Arguments 327

that have been specified previously. That is, they cannot detect intrusions for
which they do not have a signature.

Anomaly-based techniques [6,9,12] follow an approach that is complemen-
tary to misuse detection. In their case, detection is based on models of normal
behavior of users and applications, called ‘profiles’. Any deviations from such
established profiles are interpreted as attacks. The main advantage of anomaly-
based techniques is that they are able to identify previously unknown attacks.
By defining an expected, normal state, any abnormal behavior can be detected,
whether it is part of the threat model or not. The advantage of being able to
detect previously unknown attacks is usually paid for with a high number of
false positives.

In the past, a number of host-based anomaly detection approaches have been
proposed that build profiles using system calls [8,25]. More specifically, these
systems rely on models of legitimate system call sequences issued by the appli-
cation during normal operation. During the detection process, every monitored
sequence that is not compliant with previously established profiles is considered
part of an attack.

Recent research [23,24,26] has examined techniques to evade this type of
detection by using mimicry attacks. Mimicry attacks operate by crafting the
injected malicious code in a way that imitates (or mimics) a legitimate system
call sequence. The results show that many models can be easily bypassed.

The weakness of existing systems is mostly due to the lack of comprehensive
models that take advantage of the information contained in system call traces.
In particular, satisfactory machine generated models for system call arguments
have not been developed because the problem has been considered either too
difficult or too expensive computationally.

This paper presents a novel anomaly detection technique that takes advan-
tage of the information contained in system calls by performing an analysis of
their arguments. We present several models to derive profiles for different types
of arguments and a mechanism to evaluate a system call by composing the results
delivered by different anomaly metrics for each of the system call parameters. In
addition, we describe a host-based intrusion detection tool that implements our
approach. A qualitative analysis shows that the system is capable of perform-
ing effective detection while a quantitative evaluation confirms that it is very
efficient.

2 Related Work

Many different anomaly detection techniques have been developed that gather
input from a variety of sources. Examples include data mining on network traf-
fic [16], statistical analysis of audit records [11], and the analysis of operating
system call sequences [8]. As our approach is based on system calls, work in this
area is particularly relevant. Previously presented research falls into the areas of
specification-based and learning-based approaches.

Specification-based techniques rely on application-specific models that are
either written manually (e.g., [12], [3], [5]) or derived using static program anal-
ysis techniques (e.g., [25]). [10] and [19] describe systems that interactively create

328 Christopher Kruegel et al.

application-specific profiles with the help of the user. The profiles are then used
as the input to a real-time intrusion detection system that monitors the corre-
sponding application. When a non-conforming system call invocation is detected,
an alarm is raised.

A major problem of specification-based systems is the fact that they exhibit
only a very limited capability for generalizing from written or derived specifica-
tions. An additional disadvantage of hand-written specification-based models is
the need for human interaction during the training phase. Although it is pos-
sible to include predefined models for popular applications, these might not be
suitable for every user, especially when different application configurations are
used. Systems that use automatically generated specifications often suffer from
significant processing overhead. This is caused by the complexity of the underly-
ing models. Another drawback is the fact that previously presented approaches
do not take into account system call arguments, unless they are constants or can
be easily determined by data flow analysis [25].

Learning-based techniques do not rely on any a priori assumptions about
the applications. Instead, profiles are built by analyzing system call invocations
during normal execution. An example of this approach is presented by Forrest [8].
During the training phase, the system collects all distinct system call sequences
of a certain specified length. During detection, all actual system call sequences
are compared to the set of legitimate ones, raising an alarm if no match is
found. This approach has been further refined in [15] and [27], where the authors
study similar models and compare their effectiveness to the original technique.
However, these models suffer from the limitation that information about system
call arguments is discarded.

To mitigate this weakness, we propose a learning-based technique that fo-
cuses on the analysis of system call arguments. By doing so, it is possible to
considerably reduce the ability of an attacker to evade detection. We propose to
use different models that examine different features of the arguments of a system
call. This allows anyone to easily extend our system by introducing new models.
To assess an entire system call, the results of the models are combined into a
single anomaly score.

3 Design

Our anomaly detection mechanism is based on the application-specific analysis of
individual system calls. The input to the detection process consists of an ordered
stream S = {s1, s2, . . . } of system call invocations recorded by the operating
system. Every system call invocation s ∈ S has a return value rs and a list
of argument values < as

1, . . . , a
s
n >. We do not take into account relationships

between system calls or sequences of invocations.
For each system call used by an application, a distinct profile is created. For

example, for the sendmail application the system builds a profile for each of the
system calls invoked by sendmail, such as read, write, exec, etc. Each of these
profiles captures the notion of a ‘normal’ system call invocation by characterizing
‘normal’ values for one or more of its arguments.

On the Detection of Anomalous System Call Arguments 329

The expected ‘normal’ values for individual parameters are determined with
the help of models. A model is a set of procedures used to evaluate a certain
feature of a system call argument, such as the length of a string.

A model can operate in one of two modes, learning or detection. In learn-
ing mode, the model is trained and the notion of ‘normality’ is developed by
inspecting examples. Examples are values which are considered part of a regular
execution of a program and are either derived directly from a subset of the input
set S (learning on-the-fly) or provided by previous program executions (learning
from a training set). It is important that the input to the training phase is as
exhaustive and free from anomalous system calls as possible, although some mod-
els exhibit a certain degree of robustness against polluted or incomplete training
data. The gathering of quality training data is a difficult problem by itself and
is not discussed in this paper. We assume that a set of system calls is available
that was created during normal operation of the program under surveillance.
Section 6 describes how we obtained the training data for our experiments.

In detection mode, the task of a model is to return the probability of occur-
rence of a system call argument value based on the model’s prior training phase.
This value reflects the likelihood that a certain feature value is observed, given
the established profile. The assumption is that feature values with a sufficiently
low probability (i.e., abnormal values) indicate a potential attack. To evaluate
the overall anomaly score of an entire system call, the probability values of all
models are aggregated.

Note that anomaly detection is performed separately for each program. This
means that different profiles are created for the same system calls when they
are performed by different applications. Although the same models are used to
examine the parameters of identical system calls, they are instantiated multiple
times and can differ significantly in their notion of ‘normality’.

There are two main assumptions underlying our approach. The first is that
attacks will appear in the arguments of system calls. If an attack can be carried
out without performing system call invocations or without affecting the value of
the parameters of such invocations, then our technique will not detect it. The
second assumption is that the system call parameters used in the execution of an
attack differ substantially from the values used during the normal execution of
an application. If an attack can be carried out using system call parameter values
that are indistinguishable from the values used during normal execution then the
attack will not be detected. The ability to identify abnormal values depends on
the effectiveness and sophistication of the models used to build profiles for the
system call features. Good models should make it extremely difficult to perform
an attack without being detected.

Given the two assumptions above, we developed a number of models to char-
acterize the features of system calls. We used these models to analyze attack data
that escaped detection in previous approaches, data that was used in one of the
most well-known intrusion detection evaluations [13], as well as data collected
on a real Internet server. In all cases, our assumptions proved to be reasonable
and the approach delivered promising results.

330 Christopher Kruegel et al.

4 Models

The following section introduces the models that are used to characterize sys-
tem call arguments and to identify anomalous occurrences. For each model, we
describe the creation process (i.e., the learning phase) and explain the mecha-
nism to derive a probability for an argument value (i.e., the detection phase).
This probability is then used to obtain an anomaly score for the corresponding
argument.

4.1 String Length

Usually, system call string arguments represent canonical file names that point
to an entry in the file system. These arguments are commonly used when files
are accessed (open, stat) or executed (execve). Their length rarely exceeds a
hundred characters and they mostly consist of human-readable characters.

When malicious input is passed to programs, it is often the case that this
input also appears in arguments of system calls. For example, consider a format
string vulnerability in the log function of an application. Assume further that
a failed open call is logged together with the file name. To exploit this kind of
flaw, an attacker has to carefully craft a file name that triggers the format string
vulnerability when the application attempts and fails to open the corresponding
file. In this case, the exploit code manifests itself as an argument to the open
call that contains a string with a length of several hundred bytes.

Learning. The goal of this model is to approximate the actual but unknown
distribution of the lengths of a string argument and detect instances that sig-
nificantly deviate from the observed normal behavior. Clearly, we cannot expect
that the probability density function of the underlying real distribution would
follow a smooth curve. We also have to assume that it has a large variance.
Nevertheless, the model should be able to identify obvious deviations.

We approximate the mean µ̇ and the variance σ̇2 of the real string length
distribution by calculating the sample mean µ and the sample variance σ2 for
the lengths l1, l2, . . . , ln of the argument strings processed during the learning
phase.

Detection. Given the estimated string length distribution with parameters µ
and σ2, it is the task of the detection phase to assess the regularity of an argu-
ment string with length l. The probability of l is calculated using the Chebyshev
inequality [4].

The Chebyshev inequality puts an upper bound on the probability that the
difference between the value of a random variable x and µ exceeds a certain
threshold t, for an arbitrary distribution with variance σ2 and mean µ. Note
that although this upper bound is symmetric around the mean, the underlying
distribution is not restricted (and our data shows that the string length was not
symmetric in the experiments). To obtain an upper bound on the probability that
the length of a string deviates more from the mean than the current instance,

On the Detection of Anomalous System Call Arguments 331

the threshold t is substituted with the distance between the string length l of
the current instance and the mean µ of the string length distribution.

Only strings with lengths that exceed µ are assumed to be malicious. This
is reflected in our probability calculation as only the upper bound for strings
that are longer than the mean is relevant. Note that an attacker cannot disguise
malicious input by padding the string and thus increasing its length, because an
increase in length can only reduce the probability value.

The probability value p(l) for a string with length l, given that l ≥ µ, is
calculated as shown below. For strings shorter than µ, p(l) = 1.

p(l) = p(|x − µ| > |l − µ|) =
σ2

(l − µ)2
(1)

We chose the Chebyshev inequality as a reasonable and efficient metric to
model decreasing probabilities for strings with lengths that increasingly exceed
the mean. In contrast to schemes that define a valid interval (e.g., by recording all
strings encountered during the training phase), the Chebyshev inequality takes
the variance of the data into account and provides the advantage of gradually
changing probability values (instead of a simple ‘yes/no’ decision).

4.2 String Character Distribution

The string character distribution model captures the concept of a ‘normal’ or
‘regular’ string argument by looking at its character distribution. The approach
is based on the observation that strings have a regular structure, are mostly
human-readable, and almost always contain only printable characters.

A large percentage of characters in such strings are drawn from a small subset
of the 256 possible 8-bit values (mainly from letters, numbers, and a few special
characters). As in English text, the characters are not uniformly distributed,
but occur with different frequencies. However, there are similarities between the
character frequencies of parameters of legitimate system calls. This becomes
apparent when the relative frequencies of all possible 256 characters are sorted
in descending order.

Our algorithm is based only on the frequency values themselves and does
not rely on the distributions of particular characters. That is, it does not matter
whether the character with the most occurrences is an ‘a’ or a ‘/’. In the follow-
ing, the sorted, relative character frequencies of a string are called its character
distribution. For example, consider the text string ‘passwd’ with the correspond-
ing ASCII values of ‘112 97 115 115 119 100’. The absolute frequency distribution
is 2 for 115 and 1 for the four others. When these absolute counts are transformed
into sorted, relative frequencies (i.e., the character distribution), the resulting
values are 0.33, 0.17, 0.17, 0.17, 0.17 followed by 0 occurring 251 times.

The character distribution of an argument that is perfectly normal (i.e., non-
anomalous) is called the argument’s idealized character distribution (ICD). The
idealized character distribution is a discrete distribution with:

ICD : D �→ P with D = {n ∈ N|0 ≤ n ≤ 255}, P = {p ∈ R|0 ≤ p ≤ 1} and
∑255

i=0 ICD(i) = 1.0.

332 Christopher Kruegel et al.

In contrast to signature-based approaches, the character distribution model
has the advantage that it cannot be evaded by some well-known attempts to hide
malicious code inside a string. In fact, signature-based systems often contain
rules that raise an alarm when long sequences of 0x90 bytes (the nop operation
in Intel x86-based architectures) are detected in a packet. An intruder may
substitute these sequences with instructions that have a similar behavior (e.g.,
add rA,rA,0, which adds 0 to the value in register A and stores the result
back to A). By doing this, it is possible to prevent signature-based systems
from detecting the attack. Such sequences, nonetheless, cause a distortion of the
string’s character distribution, and, therefore, the character distribution analysis
still yields a high anomaly score.

Learning. The idealized character distribution is determined during the train-
ing phase. For each observed argument string, its character distribution is stored.
The idealized character distribution is then approximated by calculating the av-
erage of all stored character distributions. This is done by setting ICD(n) to the
mean of the nth entry of the stored character distributions ∀n : 0 ≤ n ≤ 255. Be-
cause all individual character distributions sum up to unity, their average will do
so as well. This ensures that the idealized character distribution is well-defined.

Detection. Given an idealized character distribution ICD, the task of the de-
tection phase is to determine the probability that the character distribution of an
argument is an actual sample drawn from its ICD. This probability is calculated
by a statistical test.

This test should yield a high confidence in the correctness of the hypothesis
for normal (i.e., non-anomalous) arguments while it should reject anomalous
ones. A number of statistical tests can be used to determine the agreement
between the idealized character distribution and the actual sample. We use a
variant of the Pearson χ2-test as a ‘goodness-of-fit’ test [4]. It was chosen because
it is simple and efficient to assess the ‘normality’ of the character distribution.

The χ2-test requires that the function domain is divided into a small number
of intervals, or bins. In addition, it is preferable that all bins contain at least
‘some’ elements; the literature considers five to be sufficient for most cases. As
the exact division of the domain does not influence the outcome of the test
significantly, we have chosen the six segments for the domain of ICD as follows:
{[0], [1,3], [4,6], [7,11], [12,15], [16,255]}. Although the choice of these six bins is
somewhat arbitrary, it reflects the fact that the relative frequencies are sorted
in descending order. Therefore, the values of ICD(x) are higher when x is small,
and thus all bins contain some elements with a high probability.

When a new system call argument is analyzed, the number of occurrences
of each character in the string is determined. Afterward, the values are sorted
in descending order and combined by aggregating values that belong to the
same segment. The χ2-test is then used to calculate the probability that the
given sample has been drawn from the idealized character distribution. The
derived probability value p is used as the return value for this model. When the
probability that the sample is drawn from the idealized character distribution
increases, p increases as well.

On the Detection of Anomalous System Call Arguments 333

4.3 Structural Inference

Often, the manifestation of an exploit is immediately visible in system call ar-
guments as unusually long strings or strings that contain repetitions of non-
printable characters. There are situations, however, when an attacker is able to
craft her attack in a manner that makes its manifestation appear more regular.
For example, non-printable characters can be replaced by groups of printable
characters. In such situations, we need a more detailed model of the system call
argument. This model can be acquired by analyzing the argument’s structure.
For our purposes, the structure of an argument is the regular grammar that
describes all of its normal, legitimate values.

For example, consider the first parameter of the open system call. It is a
null-terminated character string that specifies the canonical name of the file
that should be opened. Assume that during normal operation, an application
only opens files that are located in the application’s home directory and its sub-
directories. For this application, the structure of the first argument of the open
system call should reflect the fact that file names always start with the abso-
lute path name to the program’s home directory followed by a (possibly empty)
relative path and the file name. In addition, it can be inferred that the relative
path is an alternation of slashes and strings. If the directory names consist of
lowercase characters only, this additional constraint can be determined as well.
When an attacker exploits a vulnerability in this application and attempts to
open an ‘anomalous’ file such as ‘/etc/passwd’, an alert should be raised, as
this file access does not adhere to the inferred pattern.

Learning. When structural inference is applied to a system call argument,
the resulting grammar must be able to produce at least all training examples.
Unfortunately, there is no unique grammar that can be derived from a set of input
elements. When no negative examples are given (i.e., elements that should not
be derivable from the grammar), it is always possible to create either a grammar
that contains exactly the training data or a grammar that allows production of
arbitrary strings. The first case is a form of over-simplification, as the resulting
grammar is only able to derive the learned input without providing any level of
abstraction. This means that no new information is deduced. The second case
is a form of over-generalization because the grammar is capable of producing all
possible strings, but there is no structural information left.

The basic approach used for our structural inference is to generalize the gram-
mar as long as it seems to be ‘reasonable’ and stop before too much structural
information is lost. The notion of ‘reasonable generalization’ is specified with
the help of Markov models and Bayesian probability.

In a first step, we consider the set of training items as the output of a prob-
abilistic grammar. A probabilistic grammar is a grammar that assigns probabil-
ities to each of its productions. That means that some words are more likely to
be produced than others. This fits well with the evidence gathered from system
calls, as some parameter values appear more often, and is important information
that should not be lost in the modeling step.

334 Christopher Kruegel et al.

A probabilistic regular grammar can be transformed into a non-deterministic
finite automaton (NFA). Each state S of the automaton has a set of nS possible
output symbols o which are emitted with a probability of pS(o). Each transition
t is marked with a probability p(t) that characterizes the likelihood that the
transition is taken. An automaton that has probabilities associated with its
symbol emissions and its transitions can also be considered a Markov model.

The output of the Markov model consists of all paths from its start state to
its terminal state. A probability value can be assigned to each output word w
(that is, a sequence of output symbols o1, o2, . . . , ok). This probability value (as
shown in Equation 2) is calculated as the sum of the probabilities of all distinct
paths through the automaton that produce w. The probability of a single path
is the product of the probabilities of the emitted symbols pSi

(oi) and the taken
transitions p(ti). The probabilities of all possible output words w sum up to 1.

p(w) = p(o1, o2, . . . , ok) =
∑

(paths p for w)

∏

(states ∈ p)

pSi
(oi) ∗ p(ti) (2)

The target of the structural inference process is to find a NFA that has
the highest likelihood for the given training elements. An excellent technique
to derive a Markov model from empirical data is explained in [21]. It uses the
Bayesian theorem to state this goal as

p(Model|TrainingData) =
p(TrainingData|Model) ∗ p(Model)

p(TrainingData)
(3)

The probability of the training data is considered a scaling factor in Equa-
tion 3 and it is subsequently ignored. As we are interested in maximizing the
a posteriori probability (i.e., the left-hand side of the equation), we have to
maximize the product shown in the enumerator on the right-hand side of the
equation. The first term – the probability of the training data given the model
– can be calculated for a certain automaton (i.e., for a certain model) by adding
the probabilities calculated for each input training element as discussed above.
The second term – the prior probability of the model – is not as straightforward.
It has to reflect the fact that, in general, smaller models are preferred. The model
probability is calculated heuristically and takes into account the total number
of states as well as the number of transitions and emissions at each state. This
is justified by the fact that smaller models can be described with less states as
well as fewer emissions and transitions.

The model building process starts with an automaton that exactly reflects
the input data and then gradually merges states. This state merging is continued
until the a posteriori probability no longer increases. The interested reader is
referred to [21] and [22] for details.

Detection. Once the Markov model has been built, it can be used by the
detection phase to evaluate string arguments. When the word is a valid output
from the Markov model, the model returns 1. When the value cannot be derived
from the given grammar, the model returns 0.

On the Detection of Anomalous System Call Arguments 335

4.4 Token Finder

The purpose of the token finder model is to determine whether the values of a
certain system call argument are drawn from a limited set of possible alternatives
(i.e., they are tokens or elements of an enumeration). An application often passes
identical values to certain system call parameters, such as flags or handles. When
an attack changes the normal flow of execution and branches into maliciously
injected code, such constraints are often violated. When no enumeration can be
identified, it is assumed that the values are randomly drawn from the argument
type’s value domain (i.e., random identifiers for every system call).

Learning. The classification of an argument as an enumeration or as a random
identifier is based on the observation that the number of different occurrences
of parameter values is bound by some unknown threshold t in the case of an
enumeration, while it is unrestricted in the case of random identifiers.

When the number of different argument instances grows proportional to the
total number of arguments, the use of random identifiers is indicated. If such
an increase cannot be observed and the number of different identifiers follows a
standard diminishing growth curve [14], we assume an enumeration. In this case,
the complete set of identifiers is stored for the subsequent detection phase.

The decision between an enumeration and unique identifiers can be made uti-
lizing a simple statistical test, such as the non-parametric Kolmogorov-Smirnov
variant as suggested in [14]. This paper discusses a problem similar to our token
finder for arguments of SQL queries and its solution can be applied to our model.

Detection. When it was determined that the values of a system call argument
are tokens drawn from an enumeration, any new value is expected to appear in
the set of known identifiers. When it does, 1 is returned, 0 otherwise. When it
is assumed that the parameter values are random identifiers, the model always
returns 1.

5 Implementation

Based on the models presented in the previous section, we have implemented an
intrusion detection system (IDS) that detects anomalies in system call arguments
for Linux 2.4. The program retrieves events that represent system call invocations
from an operating system auditing facility called Snare [20]. It computes an
anomaly score for each system call and logs the event when the derived score
exceeds a certain threshold.

Our intrusion detection tool monitors a selected number of security-critical
applications. These are usually programs that require root privileges during
execution such as server applications and setuid programs. For each program,
the IDS maintains data structures that characterize the normal profile of every
monitored system call. A system call profile consists of a set of models for each
system call argument and a function that calculates the anomaly score for input
events from the corresponding model outputs.

336 Christopher Kruegel et al.

Before the IDS can start the actual detection process, it has to complete
a training phase. This training phase is needed to allow the used models to
determine the characteristics of normal events and to establish anomaly score
thresholds to distinguish between regular and malicious system calls.

The training phase is split into two steps. During the first step, our sys-
tem establishes profiles for the system calls of each monitored application. The
received input events are directly utilized for the learning process of the models.

During the second step, suitable thresholds are established. This is done
by evaluating input events using the profiles created during the previous step.
For each profile, the highest anomaly score is stored and the threshold is set
to a value that is a certain, adjustable percentage higher than this maximum.
The default setting for this percentage (also used for our experiments) is 10%.
By modifying the percentage, the user can adjust the sensitivity of the system
and perform a trade-off between the number of false positives and the expected
detection accuracy. As each profile uses its own threshold, the decision can be
made independently for each system call for every monitored application. This
fine-grained resolution allows one to precisely tune the IDS.

Once the profiles have been established – that is, the models have learned
the characteristics of normal events and suitable thresholds have been derived –
the system switches to detection mode. In this mode, each system call executed
by an application is evaluated with respect to the corresponding profile. If the
computed anomaly value is higher than the established threshold, an alarm is
raised.

The anomaly score AS is equal to the sum of the negative logarithms of the
probability values pm returned by each model m that is part of the profile, that
is, AS =

∑
m − log(pm). To prevent − log(pm) from getting too large when pm

is close to 0, we set a lower bound of 10−6 for pm. The equation is chosen such
that low probability values have a pronounced effect on the final score.

All detection models used by our system are implemented as part of a general
library. This library, called libAnomaly, provides a number of useful abstract en-
tities for the creation of anomaly-based intrusion detection systems and makes
frequently-used detection techniques available. The library has been created in
response to the observation that almost all anomaly-based IDSs have been de-
veloped in an ad-hoc way. Much basic functionality is implemented from scratch
for every new prototype and also the authors themselves have written several
instances of the same detection technique for different projects.

6 Experimental Results

This section details the experiments undertaken to evaluate the classification
effectiveness and performance characteristics of our intrusion detection system.

The goal of our tool is to provide reliable classification of system call events
in a performance-critical server environment. This requires that the system per-
forms accurate detection while keeping the number of false alerts extremely low.

On the Detection of Anomalous System Call Arguments 337

6.1 Classification Effectiveness

To validate the claim that our detection technique is accurate, a number of
experiments were conducted.

For the first experiment, we ran our system on the well-known 1999 MIT
Lincoln Labs Intrusion Detection Evaluation Data [13]. We used data recorded
during two attack free weeks (Week 1 and Week 3) to train our models and then
performed detection on the test data that was recorded during two subsequent
weeks (Week 4 and Week 5).

The truth file provided with the evaluation data lists all attacks carried out
against the network installation during the test period. When analyzing the
attacks, it turned out that many of them were reconnaissance attempts such as
network scans or port sweeps, which are only visible in the network dumps and
do not not leave any traces in the system calls. Therefore, we cannot detect them
with our tool.

Another class of attacks are policy violations. These attacks do not allow an
intruder to elevate privileges directly. Instead, they help to obtain information
that is classified as secret by exploiting some system misconfiguration. This class
of attacks contains intrusions that do not exploit a weakness of the system itself,
but rather take advantage of a mistake that an administrator made in setting up
the system’s access control. Such incidents are not visible for our system either,
as information is leaked by ‘normal’ but unintended use of the system.

The most interesting class of attacks are those that exploit a vulnerability
in a remote or local service, allowing an intruder to elevate her privileges. The
MIT Lincoln Labs data contains 25 instances of attacks that exploit buffer over-
flow vulnerabilities in four different programs. Table 1 summarizes the results
found for the attacks against these four programs: eject, ps, fdformat, and
ffbconfig. In addition, we present results for interesting daemon and setuid
programs to assess the number of the false alerts. The Total column shows the
sum of all system calls that are executed by the corresponding program and an-
alyzed by our system. The Attacks column shows the number of attacks against
the vulnerable programs in the data set. Identified Attacks states the number of
attacks that have been successfully detected by our system and, in parentheses,
the number of corresponding system calls that have been labeled as anomalous.
It is very common that attacks result in a series of anomalous system calls. The
False Alarms column shows the number of system calls that have been flagged
anomalous although these invocations are not related to any attack.

In the second experiment, we evaluated the ability of our system to detect
a number of recent attacks. Four daemon programs and one setuid tool were
installed to simulate a typical Internet server. After the test environment was
prepared, the intrusion detection system was installed and trained for about one
hour. During the training period, we attempted to simulate normal usage of the
system. Then, the intrusion detection system was switched to detection mode and
more extensive tests were conducted for five more hours. No malicious activity
took place. After that, we carried out three actual exploits against the system,
one against wuftpd, one against linuxconf and one against Apache. All of them
were reliably detected. As our system is currently not able to automatically

338 Christopher Kruegel et al.

Table 1. 1999 MIT Lincoln Labs Evaluation Results

Application Total Syscalls Attacks Identified Attacks False Alarms
eject 138 3 3 (14) 0
fdformat 139 6 6 (14) 0
ffbconfig 21 2 2 (2) 0
ps 4,949 14 14 (55) 0
ftpd 3,229 0 0 (0) 14
sendmail 71,743 0 0 (0) 8
telnetd 47,416 0 0 (0) 17
Total 127,635 25 25 (85) 39

Table 2. Detection Accuracy

Application Total Attacks Identified False
Syscalls Attacks Alarms

wuftpd 4,887 1 1 (86) 1
Apache 17,274 1 1 (2) 0
OpenSSH 9,562 0 0 (0) 6
sendmail 15,314 0 0 (0) 5
linuxconf 4,422 1 1 (16) 3
Total 51,459 3 3 (104) 15

Application Total False
Syscalls Alarms

dhcpd 431 0
imapd 418,152 4
qmail 77,672 11
Total 496,255 15

Controlled Environment Real-World Environment

determine when enough training data has been processed, the duration of the
training period was chosen manually.

The left part of Table 2 shows, for each application, the number of analyzed
system calls, the number of detected attacks with their corresponding anomalous
system calls and the number of false alerts. An analysis of the reported false
alerts confirms that all alarms were indications of anomalous behavior that was
not encountered during the training phase. Although the anomalous situations
were not caused by malicious activity, they still represent deviations from the
‘normal’ operation presented during the learning process. While many useful
generalizations took place automatically and no alerts were raised when new files
were accessed, the login of a completely new user or the unexpected termination
of processes were still considered suspicious.

The 7350wu attack exploits an input validation error of wuftpd [1]. It was
chosen because it was used by Wagner and Soto [26] as the basis for a mimicry
attack to evade detection by current techniques based on system call sequences.
Our tool labeled 86 system calls present in the trace of the 7350wu attack as
anomalous, all directly related to the intrusion. 84 of these anomalies were caused
by arguments of the execve system call that contained binary data and were
not structurally similar to argument values seen in the training data.

It should be noted that none of these anomalies would be missing were the
exploit disguised using the mimicry technique suggested by Wagner and Soto
[26]. Since each system call is examined independently, the insertion of interven-

On the Detection of Anomalous System Call Arguments 339

ing system calls to modify their sequence does not affect the classification of the
others as anomalies. This shows that our technique is not affected by attempts
to imitate normal system call sequences. Note that this does not imply that
our IDS is immune to all possible mimicry attacks. However, by combining our
system with a sequence-based approach the potential attack space is reduced
significantly. This is due to the fact that the approaches are complimentary and
an attacker would have to subvert both systems.

The attack against linuxconf exploits a recently discovered vulnerability [2]
in the program’s handling of environment variables. When the exploit was run,
the intrusion detection system identified 16 anomalous open system calls with
suspicious path arguments that caused the string length, the character distri-
bution and the structural inference model to report an anomalous occurrence.
Another example is the structural inference model alerting on open being invoked
with the argument ‘segfault.eng/segfault.eng’. This is a path which is used
directly by the exploit and never occurs during normal program execution.

The attack against apache exploits the KEY ARG vulnerability in OpenSSL
v0.9.6d for Apache/mod ssl. When the attack is launched, our system detects
two anomalous system calls. One of these calls, execve, is reported because
Apache does not create a bash process during normal operation.

The third experiment was conducted to obtain a realistic picture of the num-
ber of false alerts that can be expected when the system is deployed on a real-
world server. We installed our program on the group’s e-mail server, trained the
models for a period of two days and then performed detection on several im-
portant daemons (qmail, imapd, dhcpd) for the subsequent five days. The right
part of Table 2 shows the number of analyzed system calls as well as the num-
ber of false alerts raised during the five days, listed for each of the monitored
applications.

6.2 System Efficiency

To quantify the overhead of our intrusion detection system, we have measured
its time and space performance characteristics.

The memory space required by each model is practically independent of the
size of the training input. Although temporary memory usage during the learning
phase can grow proportional to the size of the training data, eventually the
models abstract this information and occupy a near constant amount of space.
This is reflected in Table 3 that shows the memory used by our system for two
different runs after it had been trained with data from normal executions of
wuftpd and linuxconf, respectively. The results confirm that memory usage is
very similar for both test runs, although the size of the input files is different by
a factor of 2.5.

To obtain measures that can quantify the impact of our intrusion detection
system on a heavily utilized server, we set up a small dedicated network consist-
ing of three PCs (1.4 GHz Pentium IV, 512 MB RAM, Linux 2.4) connected via
a 100 Mbps Ethernet. One server machine hosted the intrusion detection system
and wuftpd. The remaining two PCs ran multiple FTP client applications which
continuously downloaded files from the server. This experiment was run three

340 Christopher Kruegel et al.

Table 3. IDS Memory Usage

Application Training Data Size Memory Usage
wuftpd 37,152K 5,842K
linuxconf 14,663K 5,264K

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

C
P

U
 lo

ad

System calls per second

No auditing
Snare

Snare and IDS

Fig. 1. CPU Load for different System Call Rates

times: once with wuftpd only, once with wuftpd and the auditing facility, and
finally once with wuftpd, the auditing, and our intrusion detection system. In
no cases were audit records dropped.

The server performance experienced by each client was virtually indistin-
guishable for all three cases. This indicates that the number of system calls that
have to be analyzed every second by the intrusion detection system (210 on aver-
age in this case) is too low to be noticeable as performance degradation. Further
analysis showed that the bottleneck in this experiment was the network.

To increase the system call rate to a point that would actually stress the
system, we developed a synthetic benchmark that can execute a variable number
of system calls per second at a rate that far exceeds the rate of system calls
normally invoked by server applications. By measuring the resulting CPU load
for different rates of system calls, we obtain a quantitative picture of the impact
of our detection tool and its ability to operate under very high loads.

We ran the benchmark tool on an otherwise idle system for varying system
call rates three times: once without any auditing, once with system call auditing
(i.e., Snare), and finally once with system call auditing (i.e., Snare) and our

On the Detection of Anomalous System Call Arguments 341

intrusion detection system. Figure 1 shows the resulting CPU load observed on
the system as an average of 10 runs.

The benchmark application used approximately 40% of the CPU on an idle
system without auditing. As the number of system calls per second increased,
a negligible impact on the CPU was observed, both with auditing turned com-
pletely off and with auditing in place. When our intrusion detection system was
enabled, the CPU load increased up to 58%, when the benchmark performed
about 3000 system calls per second. Note that this rise was caused by a nearly
fifteen-fold increase of the number of system calls per second compared to the
number that needed to be analyzed when wuftp was serving clients on a satu-
rated fast Ethernet.

7 Conclusions

For a long time system calls and their arguments have been known to provide
extensive and high quality audit data. Their analysis is used in security appli-
cations to perform signature-based intrusion detection or policy-based access
control. However, learning-based anomaly intrusion detection has traditionally
focused only on the sequence of system call invocations. The parameters have
been neglected because their analysis has been considered either too difficult or
too expensive computationally.

This paper presents a novel approach that overcomes this deficiency and takes
into account the information contained in system call arguments. We introduce
several models that learn the characteristics of legitimate parameter values and
are capable of finding malicious instances. Based on the proposed detection tech-
niques, we developed a host-based intrusion detection tool that monitors running
applications to identify malicious behavior. Our experimental evaluation shows
that the system is effective in its detection and efficient in its resource usage.

References

1. Advisory: Input validation problems in wuftpd.
http://www.cert.org/advisories/CA-2000-13.html, 2000.

2. Advisory: Buffer overflow in linuxconf.
http://www.idefense.com/advisory/08.28.02.txt, 2002.

3. M. Bernaschi, E. Gabrielli, and L. V. Mancini. REMUS: a Security-Enhanced
Operating System. ACM Transactions on Information and System Security, 5(36),
February 2002.

4. Patrick Billingsley. Probability and Measure. Wiley-Interscience, 3 edition, April
1995.

5. Suresh N. Chari and Pau-Chen Cheng. Bluebox: A policy-driven, host-based in-
trusion detection system. In Proceedings of the 2002 ISOC Symposium on Network
and Distributed System Security (NDSS’02), San Diego, CA, 2002.

6. D.E. Denning. An Intrusion Detection Model. IEEE Transactions on Software
Engineering, 13(2):222–232, February 1987.

342 Christopher Kruegel et al.

7. S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An Attack Language for
State-based Intrusion Detection. Journal of Computer Security, 10(1/2):71–104,
2002.

8. S. Forrest. A Sense of Self for UNIX Processes. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 120–128, Oakland, CA, May 1996.

9. A.K. Ghosh, J. Wanken, and F. Charron. Detecting Anomalous and Unknown
Intrusions Against Programs. In Proceedings of the Annual Computer Security
Application Conference (ACSAC’98), pages 259–267, Scottsdale, AZ, December
1998.

10. Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure en-
vironment for untrusted helper applications. In Proceedings of the 6th Usenix
Security Symposium, San Jose, CA, USA, 1996.

11. H. S. Javitz and A. Valdes. The SRI IDES Statistical Anomaly Detector. In
Proceedings of the IEEE Symposium on Security and Privacy, May 1991.

12. C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-Critical
Programs in Distributed Systems: A Specification-based Approach. In Proceedings
of the 1997 IEEE Symposium on Security and Privacy, pages 175–187, May 1997.

13. MIT Lincoln Laboratory. DARPA Intrusion Detection Evaluation.
http://www.ll.mit.edu/IST/ideval/, 1999.

14. Sin Yeung Lee, Wai Lup Low, and Pei Yuen Wong. Learning Fingerprints for a
Database Intrusion Detection System. In 7th European Symposium on Research in
Computer Security (ESORICS), 2002.

15. W. Lee, S. Stolfo, and P. Chan. Learning Patterns from Unix Process Execu-
tion Traces for Intrusion Detection. In Proceedings of the AAAI Workshop: AI
Approaches to Fraud Detection and Risk Management, July 1997.

16. W. Lee, S. Stolfo, and K. Mok. Mining in a Data-flow Environment: Experience
in Network Intrusion Detection. In Proceedings of the 5th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining (KDD ’99), San Diego,
CA, August 1999.

17. U. Lindqvist and P.A. Porras. Detecting Computer and Network Misuse with
the Production-Based Expert System Toolset (P-BEST). In IEEE Symposium on
Security and Privacy, pages 146–161, Oakland, California, May 1999.

18. V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, January
1998.

19. Niels Provos. Improving host security with system call policies. In Proceedings of
the 12th Usenix Security Symposium, Washington, DC, 2003.

20. SNARE - System iNtrusion Analysis and Reporting Environment.
http://www.intersectalliance.com/projects/Snare.

21. Andreas Stolcke and Stephen Omohundro. HiddenMarkov Model Induction by
Bayesian Model Merging. Advances in Neural Information Processing Systems,
1993.

22. Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by
bayesian model merging. In International Conference on Grammatical Inference,
1994.

23. K. Tan and R. Maxion. ”Why 6?” Defining the Operational Limits of Stide, an
Anomaly-Based Intrusion Detector. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 188–202, Oakland, CA, May 2002.

On the Detection of Anomalous System Call Arguments 343

24. K.M.C. Tan, K.S. Killourhy, and R.A. Maxion. Undermining an Anomaly-Based
Intrusion Detection System Using Common Exploits. In Proceedings of the 5th

International Symposium on Recent Advances in Intrusion Detection, pages 54–73,
Zurich, Switzerland, October 2002.

25. D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In Proceedings
of the IEEE Symposium on Security and Privacy, Oakland, CA, May 2001. IEEE
Press.

26. D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion Detection
Systems. In Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, pages 255–264, Washington DC, USA, November 2002.

27. C. Warrender, S. Forrest, and B.A. Pearlmutter. Detecting intrusions using system
calls: Alternative data models. In IEEE Symposium on Security and Privacy, pages
133–145, 1999.

	1 Introduction
	2 Related Work
	3 Design
	4 Models
	4.1 String Length
	4.2 String Character Distribution
	4.3 Structural Inference
	4.4 Token Finder

	5 Implementation
	6 Experimental Results
	6.1 Classification Effectiveness
	6.2 System Efficiency

	7 Conclusions
	References

