10. Some theorems concerning deducibility.

Only for some of these propositions we indicate a proof. (Cf. also Hermes [4].
(10.1) $\vdash \alpha \alpha$.

Use (P_{x}) where not Free $\mathrm{x} \alpha$. Cf. (6.1).
(10.2) If $\vdash \Sigma \alpha$ then $\vdash \Sigma^{\prime} \alpha$, if each member of Σ is a member of Σ^{\prime}.

Use (K_{0}), (K_{1}) and (10.1).
(10.3) If $\vdash \Sigma_{1} \alpha$ and $\vdash \Sigma_{2} \alpha \beta$ then $\vdash \Sigma_{12}^{\beta}$ (syllogism).

Use (10.1), (W), (E).
(10.4) $\vdash=t t$.
(10.5) $\vdash=t_{1} t_{2}=t_{2} t_{1}$.
(10.6) $\vdash=\mathrm{t}_{1} \mathrm{t}_{2}=\mathrm{t}_{2} \mathrm{t}_{3}=\mathrm{t}_{1} \mathrm{t}_{3}$.
(10.7) $\vdash=\mathrm{s}_{1} \mathrm{t}_{1} \ldots=\mathrm{s}_{\mathrm{r}} \mathrm{t}_{\mathrm{r}} \quad=\mathrm{fs}_{1} \ldots \mathrm{~s}_{\mathrm{r}} \mathrm{ft}_{1} \ldots \mathrm{t}_{\mathrm{r}}$.
(10.8) $\vdash=s t$ s t and $\vdash=s t t s$.

Use (10.1), the second rule for identity, the rule of substitution and (10.2).
(10.9) If $\vdash=\alpha \beta$ then $\vdash=\varepsilon \times \alpha \varepsilon x \beta$.

Use (10.8) and (E_{x}).

