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Abstract. Representing a λ-calculus term as a DAG rather than a tree allows
us to represent the sharing that arises from β-reduction, thus avoiding combina-
torial explosion in space. By adding uplinks from a child to its parents, we can
efficiently implement β-reduction in a bottom-up manner, thus avoiding combi-
natorial explosion in time required to search the term in a top-down fashion. We
present an algorithm for performing β-reduction on λ-terms represented as up-
linked DAGs; discuss its relation to alternate techniques such as Lamping graphs,
explicit-substitution calculi and director strings; and present some timings of an
implementation. Besides being both fast and parsimonious of space, the algorithm
is particularly suited to applications such as compilers, theorem provers, and type-
manipulation systems that may need to examine terms in-between reductions—
i.e., the “readback” problem for our representation is trivial. Like Lamping graphs,
and unlike director strings or the suspension λ-calculus, the algorithm functions
by side-effecting the term containing the redex; the representation is not a “per-
sistent” one. The algorithm additionally has the charm of being quite simple: a
complete implementation of the core data structures and algorithms is 180 lines
of SML.

1 Introduction

The λ-calculus [2, 5] is a simple language with far-reaching use in the programming-
languages and formal-methods communities, where it is frequently employed to repre-
sent, among other objects, functional programs, formal proofs, and types drawn from
sophisticated type systems. Here, our particular interest is in the needs of client appli-
cations such as compilers, which may use λ-terms to represent both program terms as
well as complex types. We are somewhat less focussed on the needs of graph-reduction
engines, where there is greater representational license—a graph reducer can represent
a particular λ-term as a chunk of machine code (e.g., by means of supercombinator ex-
traction), because its sole focus is on executing the term. A compiler, in contrast, needs
to examine, analyse and transform the term in-between reductions, which requires the
actual syntactic form of the term be available at the intermediate steps.

Of the three basic operations on terms in the λ-calculus—α-conversion, β-reduction,
and η-reduction—it is β-reduction that accomplishes the “heavy lifting” of term ma-
nipulation. (The other two operations are simple to implement.) Unfortunately, naı̈ve
implementations of β-reduction can lead to exponential time and space blowup.
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There are only three forms in the basic language: λ expressions, variable references,
and applications of a function to an argument:

t ∈ Term ::= λx.t | x | tf ta

where “x” stands for a member of some infinite set of variables.
β-reduction is the operation of taking an application term whose function subterm

is a λ-expression, and substituting the argument term for occurrences of the λ’s bound
variable in the function body. The result, called the contractum, can be used in place of
the original application, called the redex. We write

(λx.b) a ⇒ [x �→a]b

to express the idea that the redex applying function λx.b to argument a reduces to the
contractum [x �→ a]b, by which we mean term b, with free occurrences of x replaced
with term a.

We can define the core substitution function with a simple recursion:

[y �→ t][[x]] = t x = y
[y �→ t][[x]] = x x �= y
[x �→ t][[tf ta]] = ([x �→ t]tf )([x �→ t]ta)
[x �→ t][[λy.b]] = λy′.([x �→ t][y �→y′]b) y′ fresh in b and t.

Note that, in the final case above, when we substitute a term t under a λ-expression λy.b,
we must first replace the λ-expression’s variable y with a fresh, unused variable y′ to
ensure that any occurrence of y in t isn’t “captured” by the [x �→ t] substitution. If we
know that there are no free occurrences of y in t, this step is unnecessary—which is the
case if we adopt the convention that every λ-expression binds a unique variable.

It is a straightforward matter to translate the recursive substitution function defined
above into a recursive procedure. Consider the case of performing a substitution [y �→ t]
on an application tf ta. Our procedure will recurse on both subterms of the applica-
tion. . . but we could also use a less positive term in place of “recurse” to indicate the
trouble with the algorithmic handling of this case: search. In the case of an application,
the procedure will blindly search both subterms, even though one or both may have no
occurrences of the variable for which we search. Suppose, for example, that the function
subterm tf , is very large—perhaps millions of nodes—but contains no occurrences of
the substituted variable y. The recursive substitution will needlessly search out the en-
tire subterm, constructing an identical copy of tf . What we want is some way to direct
our recursion so that we don’t waste time searching into subterms that do not contain
occurrences of the variable being replaced.

2 Guided Tree Substitution

Let’s turn to a simpler task to develop some intuition. Consider inserting an integer into
a set kept as an ordered binary tree (Fig. 1). There are three things about this simple
algorithm worth noting:
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Procedure addItem(node, i)
if node = nil then

new := NewNode()
new.val := i
new.left := nil
new.right := nil

else if node.val < i then
new := NewNode()
new.val := node.val
new.left := node.left
new.right := addItem(node.right,i)

else if node.val > i then
new := NewNode()
new.val := node.val
new.right := node.right
new.left := addItem(node.left,i)

else new := node
return new

Fig. 1. Make a copy of ordered binary tree node, with added entry i. The original tree is not altered

– No search
The pleasant property of ordered binary trees is that we have enough information as
we recurse down into the tree to proceed only into subtrees that require copying.

– Steer down; build up
The algorithm’s recursive control structure splits decision-making and the actual
work of tree construction: the downward recursion makes the decisions about which
nodes need to be copied, and the upward return path assembles the new tree.

– Shared structure
We copy only nodes along the spine leading from targeted node to the root; the result
tree shares as much structure as possible with the original tree.

3 Guiding Tree Search with Uplinks

Unfortunately, in the case of β-reduction, there’s no simple, compact way of determin-
ing, as we recurse downwards into a tree, which way to go at application nodes—an
application has two children, and we might need to recurse into one, the other, both,
or neither. Suppose, however, that we represent our tree using not only down-links that
allow us to go from a parent to its children, but also with redundant up-links that allow
us to go from a child to its parent. If we can (easily) find the leaf node in the original tree
we wish to replace, we can chase uplinks along the spine from the old leaf to the tree
root, copying as we go (Fig. 2). The core iteration of this algorithm is the c �→c′ upcopy:
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Fig. 2. Replacing a single leaf in a binary tree by following uplinks. Here, we make a copy of the
original tree, replacing leaf c with x

We take a child c and its intended replacement c′, and replicate the parent p of c, making
the c �→c′ substitution. This produces freshly-created node p′; we can now iterate, doing
a p �→p′ upcopy into the parent of p at the next step, and so on, moving up through the
original tree until we reach the root.

Note the similar properties this upcopy algorithm has with the previous algorithm: no
search required; we build as we move upwards; we share as much structure as possible
with the old tree, copying only the nodes along the “spine” leading from the leaf back to
the root. For a balanced tree, the amount of copying is logarithmic in the total number of
nodes. If we can somehow get our hands on the leaf node to be replaced in the old tree,
the construction phase just follows uplinks to the root, instead of using a path saved in
the recursion stack by the downwards search.

4 Upcopy with DAGs

We can avoid space blowup when performing β-reduction on λ-calculus terms if we can
represent them as directed acyclic graphs (DAGs), not trees. Allowing sharing means
that when we substitute a large term for a variable that has five or six references inside
its binding λ-expression, we don’t have to create five or six distinct copies of the term
(that is, one for each place it occurs in the result). We can just have five or six references
to the same term. This has the potential to provide logarithmic compression on the
simple representation of λ-calculus terms as trees. These term DAGs can be thought of
as essentially a space-saving way to represent term trees, so we can require them, like
trees, to have a single top or root node, from which all other nodes can be reached.

When we shift from trees to DAGs, however, our simple functional upcopy algorithm
no longer suffices: we have to deal with the fact that there may be multiple paths from a
leaf node (a variable reference) of our DAG up to the root of the DAG. That is, any term
can have multiple parents. However, we can modify our upwards-copying algorithm in
the standard way one operates on DAGs: we search upwards along all possible paths,
marking nodes as we encounter them. The first time we copy up into a noden, we replicate
it, as in the previous tree algorithm, and continue propagating the copy operation up the
tree to the (possibly multiple) parents of n. However, before we move upwards from
n, we first store the copy n′ away in a “cache” field of n. If we later copy up into n
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Procedure upcopy(childcopy, parent, relation)
if parent.cache is empty then

parcopy := NewNode()
if relation is "left child" then
parcopy.left := childcopy
parcopy.right := parent.right
else
parcopy.right := childcopy
parcopy.left := parent.left
parent.cache := parcopy
for-each <grandp,gprel> in parent.uplinks do

upcopy(parcopy, grandp, gprel)
else

parcopy := parent.cache
if relation is "left child"
then parcopy.left := childcopy
else parcopy.right := childcopy

Fig. 3. Procedure upcopy makes a copy of a binary DAG, replacing the relation child (left or
right) of parent with childcopy

via its other child, the presence of the copy n′ in the cache slot of n will signal the
algorithm that it should not make a second copy of n, and should not proceed upwards
from n—that has already been handled. Instead, it mutates the existing copy, n′, and
returns immediately.

The code to copy a binary DAG, replacing a single leaf, is shown in Fig. 3. Every node
in the DAG maintains a set of its uplinks; each uplink is represented as a 〈parent, relation〉
pair. For example, if node c is the left child of node p, then the pair 〈p, left-child〉 will
be one of the elements in c’s uplink set.

The upcopy algorithm explores each edge on all the paths from the root of the
DAG to the copied leaf exactly once; marking parent nodes by depositing copies in
their cache slots prevents the algorithm from redundant exploration. Hence this graph-
marking algorithm runs in time proportional to the number of edges, not the number
of paths (which can be exponential in the number of edges). Were we to “unfold” the
DAG into its equivalent tree, we would realise this exponential blowup in the size of the
tree, and, consequently, also in the time to operate upon it. Note that, analogously to the
tree-copying algorithm, the new DAG shares as much structure as possible with the old
DAG, only copying nodes along the spine (in the DAG case, spines) from the copied
leaf to the root.

After an upcopy has been performed, we can fetch the result DAG from the cache slot
of the original DAG’s root. We must then do another upwards search along the same paths
to clear out the cache fields of the original nodes that were copied, thus resetting the DAG
for future upcopy operations. This cache-clearing pass, again, takes time linear in the
number of edges occurring on the paths from the copied leaf to the root. (Alternatively,
we can keep counter fields on the nodes to discriminate distinct upcopy operations, and
perform a global reset on the term when the current-counter value overflows.)
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5 Operating on λ-DAGs

We now have the core idea of our DAG-based β-reduction algorithm in place, and can
fill in the details specific to our λ-expression domain.

Basic representation. We will represent a λ-calculus term as a rooted DAG.

Sharing. Sharing will be generally allowed, and sharing will be required of variable-
reference terms. That is, any given variable will have no more than one node in the DAG
representing it. If one variable is referenced by (is the child of) multiple parent nodes in
the graph, these nodes will simply all contain pointers to the same data structure.

Bound-variable short-cuts. Every λ-expression node will, in addition to having a ref-
erence to its body node, also have a reference to the variable node that it binds. This, of
course, is how we navigate directly to the leaf node to replace when we begin the upcopy
for a β-reduction operation. Note that this amounts to an α-uniqueness condition—we
require that every λ-expression bind a unique variable.

Cache fields. Every application node has a cache field that may either be empty or
contain another application node. λ-expression nodes do not need cache fields—they
only have one child (the body of the λ-expression), so the upcopy algorithm can only
copy up through a λ-expression once during a β-reduction.

Uplinks. Uplinks are represented by 〈parent, relation〉 pairs, where the three possible
relations are “λ body,” “application function,” and “application argument.” For example,
if a node n has an uplink 〈l, λ-body〉, then l is a λ-expression, and n is its body.

Copying λ-expressions. With all the above structure in place, the algorithm takes shape.
To perform a β-reduction of redex (λx.b) a, where b and a are arbitrary subterms, we
simply initiate an x �→a upcopy. This will copy up through all the paths connecting top
node b and leaf node x, building a copy of the DAG with a in place of x, just as we
desire.

Application nodes, having two children, are handled just as binary-tree nodes in the
general DAG-copy algorithm discussed earlier: copy, cache & continue on the first visit;
mutate the cached copy on a second visit. λ-expression nodes, however, require different
treatment. Suppose, while we are in the midst of performing the reduction above, we
find ourselves performing a c �→ c′ upcopy, for some internal node c, into a λ parent
of c: λy.c. The general structure of the algorithm calls for us to make a copy of the
λ-expression, with body c′. But we must also allocate a fresh variable, y′, for our new
λ-expression, since we require all λ-expressions to bind distinct variables. This gives
us λy′.c′. Unfortunately, if old body c contains references to y, these will also occur in
c′—not y′. We can be sure c′ contains no references to y′, since y′ was created after c′!
We need to fix up body c′ by replacing all its references to y with references to y′.

Luckily, we already have the mechanism to do this: before progressing upwards to
the parents of λy.c, we simply initiate a y �→y′ upcopy through the existing DAG. This
upcopy will proceed along the paths leading from the y reference, up through the DAG,
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to the λy.c node. If there are such paths, they must terminate on a previously-copied
application node, at which point the upcopy algorithm will mutate the cached copy and
return.

Why must these paths all terminate on some previously copied application node?
Because we have already traversed a path from x up to λy.c, copying and caching as we
went. Any path upwards from the y reference must eventually encounter λy.c, as well—
this is guaranteed by lexical scope. The two paths must, then, converge on a common
application node—the only nodes that have two children. That node was copied and
cached by the original x-to-λy.c traversal.

When the y �→ y′ upcopy finishes updating the new DAG structure and returns, the
algorithm resumes processing the original c �→c′ upcopy, whose next step is to proceed
upwards with a (λy.c) �→ (λy′.c′) upcopy to all of the parents of λy.c, secure that the
c′ sub-DAG is now correct.

The single-DAG requirement. We’ve glossed over a limitation of the uplink represen-
tation, which is that a certain kind of sharing is not allowed: after a β-reduction, the
original redex must die. That is, the model we have is that we start with a λ-calculus
term, represented as a DAG. We choose a redex node somewhere within this DAG,
reduce it, and alter the original DAG to replace the redex with the contractum. When
done, the original term has been changed—where the redex used to be, we now find the
contractum. What we can’t do is to choose a redex, reduce it, and then continue to refer to
the redex or maintain an original, unreduced copy of the DAG. Contracting a redex kills
the redex; the term data structure is not “pure functional” or “persistent” in the sense of
the old values being unchanged. (We can, however, first “clone” a multiply-referenced
redex, splitting the parents between the original and the clone, and then contract only
one of the redex nodes.)

This limitation is due to the presence of the uplinks. They mean that a subterm can
belong to only one rooted DAG, in much the same way that the backpointers in a doubly-
linked list mean that a list element can belong to only one list (unlike a singly-linked list,
where multiple lists can share a common tail). The upcopy algorithm assumes that the
uplinks exactly mirror the parent→child downlinks, and traces up through all of them.
This rules out the possibility of having a node belong to multiple distinct rooted DAGs,
such as a “before” and “after” pair related by the β-reduction of some redex occurring
within the “before” term.

Hence the algorithm, once it has finished the copying phase, takes the final step
of disconnecting the redex from its parents, and replacing it with the contractum. The
redex application node is now considered dead, since it has no parents, and can be
removed from the parent/uplink sets of its children and deallocated. Should one of its
two children thus have its parent set become empty, it, too, can be removed from the
parent sets of its children and deallocated, and so forth. Thus we follow our upwards-
recursive construction phase with a downwards-recursive deallocation phase.

It’s important to stress, again, that this deallocation phase is not optional. A dead
node must be removed from the parent sets of its children, lest we subsequently waste
time doing an upcopy from a child up into a dead parent during a later reduction.
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Termination and the top application. Another detail we’ve not yet treated is termination
of the upcopy phase. One way to handle this is simply to check as we move up through the
DAG to see if we’ve arrived at the λ-expression being reduced, at which point we could
save away the new term in some location and return without further upward copying.
But there is an alternate way to handle this. Suppose we are contracting redex(λx.b) n,
for arbitrary sub-terms b and n. At the beginning of the reduction operation, we first
check to see if x has no references (an easy check: is its uplink set empty?). If so, the
answer is b; we are done.

Otherwise, we begin at the λ-expression being reduced and scan downwards from λ-
expression to body, until we encounter a non-λ-expression node—either a variable or an
application. If we halt at a variable, it must be x—otherwise x would have no references,
and we’ve already ruled that out. This case can also be handled easily: we simply scan
back through this chain of nested λ-expressions, wrapping fresh λ-expressions around
n as we go.

Finally, we arrive at the general case: the downward scan halts at the topmost appli-
cation node a of sub-term b. We make an identical copy a′ of a, i.e. one that shares both
the function and argument children, and install a′ in the cache slot of a.

Now we can initiate an x �→ n upcopy, knowing that all upwards copying must
terminate on a previously-copied application node. This is guaranteed by the critical,
key invariant of the DAG: all paths from a variable reference upward to the root must
encounter the λ-node binding that variable—this is simply lexical-scoping in the DAG
context. The presence of a′ in the cache slot of a will prevent upward copying from
proceeding above a. Node a acts as a sentinel for the search; we can eliminate the root
check from the upcopy code, for time savings.

When the upcopy phase finishes, we pass a′ back up through the nested chain of
λ-expressions leading from a back to the top λx.b term. As we pass back up through
each λ-expression λy.t, we allocate a fresh λ-expression term and a fresh variable y′ to
wrap around the value t′ passed up, then perform a y �→y′ upcopy to fix up any variable
references in the new body, and then pass the freshly-created λy′.t′ term on up the chain.
(Note that the extended example shown in Sec. 7 omits this technique to simplify the
presentation.)

6 Fine Points

These fine points of the algorithm can be skipped on a first reading.

Representing uplinks. A node keeps its uplinks chained together in a doubly-linked list,
which allows us to remove an uplink from a node’s uplink set in constant time. We will
need to do this, for example, when we mutate a previously copied node n to change one
of its children—the old child’s uplink to n must be removed from its uplink set.

We simplify the allocation of uplinks by observing that each parent node has a fixed
number of uplinks pointing to it: two in the case of an application and one in the case
of a λ-expression. Therefore, we allocate the uplink nodes along with the parent, and
thread the doubly-linked uplink lists through these pre-allocated nodes.
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An uplink doubly-linked list element appears in the uplink list of the child, but
the element belongs to the parent. For example, when we allocate a new application
node, we simultaneously allocate two uplink items: one for the function-child uplink to
the application, and one for the argument-child uplink to the application. These three
data structures have identical lifetimes; the uplinks live as long as the parent node they
reference. We stash them in fields of the application node for convenient retrieval as
needed. When we mutate the application node to change one of its children, we also
shift the corresponding uplink structure from the old child’s uplink list to the new child’s
uplink list, thus keeping the uplink pointer information consistent with the downlink
pointer information.

The single-reference fast path. Consider a redex (λx.b) n, where the λ-expression being
reduced has exactly one parent. We know what that parent must be: the redex application
itself. This application node is about to die, when all references to it in the term DAG are
replaced by references to the contractum. So the λ-expression itself is about to become
completely parentless—i.e., it, too, is about to die. This means that any node on a path
from x up to the λ-expression will also die. Again, this is the key invariant provided by
lexical scope: all paths from a variable reference upward to the root must encounter the
λ-expression binding that variable. So if the λ-expression has no parents, then all paths
upwards from its variable must terminate at the λ-expression itself.

This opens up the possibility of an alternate, fast way to produce the contractum:
when the λ-expression being reduced has only one parent, mutate the λ-expression’s
body, altering all of x’s parents to refer instead to n. We do no copying at all, and may
immediately take the λ-expression’s body as our answer, discarding the λ-expression
and its variable x (in general, a λ-expression and its variable are always allocated and
deallocated together).

Opportunistic iteration. The algorithm can be implemented so that when a node is
sequencing through its list of uplinks, performing a recursive upcopy on each one, the
final upcopy can be done with a tail recursion (or, if coded in a language like C, as a
straight iteration). This means that when there is no sharing of nodes by parents, the
algorithm tends to iteratively zip up chains of single-parent links without pushing stack
frames.

7 Extended Example

We can see the sequences of steps taken by the algorithm on a complete example in Fig. 4.
Part 4(a) shows the initial redex, which is (λx.(x(λy.x(uy)))(λy.x(uy))) t, where the
(λy.x(uy)) subterm is shared, and t and u are arbitrary, unspecified subterms with no
free occurrences of x or y. To help motivate the point of the algorithm, imagine that the
sub-terms t and u are enormous—things we’d like to avoid copying or searching—and
that the λx node has other parents besides application 1—so we cannot blindly mutate it
at will, without corrupting what the other parents see. (If the λx node doesn’t have other
parents, then the single-reference fast-path described in the previous section applies, and
we are allowed to mutate the term, for a very fast reduction.)
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Fig. 4. A trace of a bottom-up reduction of the term (λx.(x(λy.x(uy)))(λy.x(uy)))t, where the
(λy.x(uy)) term is shared, and sub-terms t and u are not specified

In the following subfigure, 4(b), we focus in on the body of the λ-expression being
reduced. We iterate over the parents of its variable-reference x, doing an x �→ t upcopy;
this is the redex-mandated substitution that kicks off the entire reduction. The first parent
of x is application 3, which is copied, producing application 3′, which has function child
t instead of the variable reference x, but has the same argument child as the original
application 3, namely the λy term. The copy 3′ is saved away in 3’s cache slot, in case
we upcopy into 3 from its argument child in the future.

Once we’ve made a copy of a parent node, we must recursively perform an upcopy
for it. That is, we propagate a 3 �→ 3′ upcopy to the parents of application 3. There is
only one such parent, application 2. In subfigure 4(c), we see the result of this upcopy:
the application 2′ is created, with function child 3′ instead of 3; the argument child, λy,
is carried over from the original application 2. Again, application 2′ is saved away in the
cache slot of application 2.

Application 2 is the root of the upcopy DAG, so once it has been copied, control
returns to application 3 and its 3 �→3′ upcopy. Application 3 has only one parent, so it is
done. Control returns to x and its x �→ t upcopy, which proceeds to propagate upwards
to the second parent of x, application 4.
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We see the result of copying application 4 in subfigure 4(d). The new node is 4′,
which has function child t where 4 has x; 4′ shares its argument child, application 5,
with application 4. Once again, the copy 4′ is saved away in the cache slot of application 4.

Having copied application 4, we recursively trigger a 4 �→4′ upcopy, which proceeds
upwards to the sole parent of application 4. We make a copy of λy, allocating a fresh
variable y′, with the new body 4′. This is shown in subfigure 4(e).

Since the new λy′ term binds a fresh variable, while processing the λy term we must
recursively trigger a y �→ y′ upcopy, which begins in subfigure 4(f). We iterate through
the parents of variable-reference y, of which there is only one: application 5. This is
copied, mapping child y to replacement y′ and sharing function child u. The result, 5′,
is saved away in the cache slot of application 5.

We then recursively trigger a 5 �→ 5′ upcopy through the parents of application 5;
there is only one, application 4. Upon examining this parent (subfigure 4(g)), we discover
that 4 already has a copy, 4′, occupying its cache slot. Rather than create a second, new
copy of 4, we simply mutate the existing copy so that its argument child is the new
term 5′. Mutating rather than freshly allocating means the upcopy proceeds no further;
responsibility for proceeding upwards from 4 was handled by the thread of computation
that first encountered it and created 4′. So control returns to application 5, which has no
more parents, and then to y, who also has no more parents, so control finally returns to
the λy term that kicked off the y �→y′ copy back in subfigure 4(f).

In subfigure 4(h), the λy term, having produced its copy λy′, continues the upcopy
by iterating across its parents, recursively doing a λy �→ λy′ upcopy. The first such
parent is application 3, which has already been copied, so it simply mutates its copy to
have argument child λy′ and returns immediately.

The second parent is application 2, which is handled in exactly the same way in
subfigure 4(i). The λy term has no more parents, so it returns control to application 4,
who has no more parents, and so returns control to variable reference x. Since x has no
more parents, we are done. The answer is application 2′, which is shown in subfigure 4(j).
We can change all references to application 1 in the DAG to point, instead, to application
2′, and then deallocate 1. Depending on whether or not the children of application 1
have other parents in the DAG, they may also be eligible for deallocation. This is easily
performed with a downwards deallocation pass, removing dead nodes from the parent
lists of their children, and then recursing if any child thus becomes completely parentless.

8 Experiments

To gain experience with the algorithm, a pair of Georgia Tech undergraduates imple-
mented three β-reduction algorithms: the bottom-up algorithm (BUBS), a reducer based
on the suspension λ-calculus (SLC, see Sec. 9.1), and a simple, base-line reducer, based
on the simple top-down, blind-search recursive procedure described in Sec. 1. For a toy
client application that would generate many requests for reduction, we then built a pair
of simple normalisers (one total and one weak-head) on top of the reducers. We did two
independent implementations, the first in SML, and a second, in C; the C implementa-
tion gave us tighter control over the algorithm and data structures for the purposes of
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CPU time (ms) # reductions
BUBS SLC Simple BUBS Tree

(fact 2) 0 10 10 123 180
(fact 3) 0 20 20 188 388
(fact 4) 0 40 ∞ 286 827
(fact 5) 0 160 ∞ 509 2045
(fact 6) 10 860 ∞ 1439 7082
(fact 7) 20 5620 ∞ 7300 36180
(fact 8) 190 48600 ∞ 52772 245469
nasty-I 30 740 ∞ 7300 8664
pearl10 0 N/A N/A 10 N/A
pearl18 0 N/A N/A 18 N/A
tree10 0 0 0 1023 1023
tree18 740 2530 1980 262143 262143

Fig. 5. Timings for three different implementations of reduction. The system gave us a measure-
ment precision of 10 ms; an entry of 0ms means below the resolution of the timer—i.e., less than
10ms; a measurement of ∞ means the measurement was halted after several cpu-minutes

measurement. The SLC and simple reducers managed storage in the C implementation
with the Boehm-Demers-Weiser garbage collector, version 6.2; the BUBS algorithm
requires no garbage collector.

Space limitations restrict us to presenting a single set of comparisons from these tests
(Fig. 5). The “fact” entries are factorial computations, with Church-numeral encodings.
“Nasty-I” is a 20,152-node tree of S and K combinators that reduces to I. A “tree i” entry
is a full binary tree of applications, i deep, with I combinators at the leaves; a “pearl i”
is this tree collapsed to a DAG—a linear sequence of i application nodes with a single I
leaf. We compiled the code with gcc 2.95.4 -g -O2 -Wall and performed the test runs on
an 800 MHz PIII (256 KB cache), 128 MB RAM, Debian GNU/Linux 3.0 system. These
measurements are fairly minimal; we are currently porting Shao’s Flint [14] system to
BUBS to get a more realistic test of the algorithm in actual practice.

One of the striking characteristics of the bottom-up algorithm is not only how fast
it is, but how well-behaved it seems to be. The other algorithms we’ve tried have fast
cases, but also other cases that cause them to blow up fairly badly. The bottom-up
algorithm reliably turns in good numbers. We conjecture this is the benefit of being able
to exploit both sharing and non-sharing as they arise in the DAG. If there’s sharing, we
benefit from re-using work. If there’s no sharing, we can exploit the single-parent fast
path. These complementary techniques may combine to help protect the algorithm from
being susceptible to particular inputs.

9 Related Work

A tremendous amount of prior work has been carried out exploring different ways to
implement β-reduction efficiently. In large part, this is due to β-reduction lying at the
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heart of the graph-reduction engines that are used to execute lazy functional languages.
The text by Peyton Jones et al. [13] summarises this whole area very well.

However, the focus of the lazy-language community is on representations tuned for
execution, and the technology they have developed is cleverly specialised to serve this
need. This means, for example, that it’s fair game to fix on a particular reduction order. For
example, graph reducers that overwrite nodes rely on their normalisation order to keep
the necessary indirection nodes from stacking up pathologically. A compiler, in contrast,
is a λ-calculus client that makes reductions in a less predictable order, as analyses reveal
opportunities for transformation.

Also, an implementation tuned for execution has license to encode terms, or parts of
terms, in a form not available for examination, but, rather, purely for execution. This is
precisely what the technique of supercombinator compilation does. Our primary interest
at the beginning of this whole effort was instead to work in a setting where the term
being reduced is always directly available for examination—again, serving the needs of
a compiler, which wants to manipulate and examine terms, not execute them.

9.1 Explicit-Substitution Calculi

One approach to constructing efficient λ-term manipulators is to shift to a language
that syntactically encodes environments. The “suspension λ-calculus” developed by
Nadathur et al. [12] is one such example that has been used with success in theorem
provers and compilers. However, these implementations are quite complex, inflict de
Bruijn encodings on the client, and their “constant-time” reductions simply shift the
burden of the reduction to readback time. In the terms we’ve defined, these technologies
use “blind search” to find the variables being substituted. Also, their use of de Bruijn
encodings is a barrier to sharing internal structure: de Bruijn-index references are context
dependent. E.g., if a term λx.y appears multiple times underneath a λy parent, the index
used for the y reference can vary.

One of the major algorithmic payoffs of these representations, lazy reduction, is not
so useful for compilers, which typically must examine all the nodes of a term in the
course of processing a program. SLC has been successfully employed inside a compiler
to represent Shao’s Flint typed intermediate language [14], but the report on this work
makes clear the impressive, if not heroic, degree of engineering required to exploit this
technology for compiler internals—the path to good performance couples the core SLC
representation with hash consing as well as memoisation of term reductions.

The charm of the bottom-up technique presented here is its simplicity. The data
structure is essentially just a simple description of the basic syntax as a datatype, with
the single addition of child→parent backpointers. It generalises easily to the richer
languages used by real compilers and other language-manipulation systems. It’s very
simple to examine this data structure during processing; very easy to debug the reduction
engine itself. In contrast to more sophisticated and complex representations such as SLC,
there are really only two important invariants on the structure: (1) all variables are in scope
(any path upwards from a variable reference to the root must go through the variable’s
binding λ-expression), and (2) uplink backpointers mirror downlink references.
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9.2 Director Strings

Director strings [7] are a representation driven by the same core issue that motivates
our uplink-DAG representation: they provide a way to guide search when performing
β-reduction. In the case of director strings, however, one can do the search top-down.
Unfortunately, director strings can impose a quadratic space penalty on our trees. Up-
linked λ-DAGs are guaranteed to have linear space requirements. Whether or not the
space requirements for a director strings representation will blow up in practice de-
pends, of course, on the terms being manipulated. But the attraction of a linear-space
representation is knowing that blow-up is completely impossible.

Like the suspension λ-calculus, director strings have the disadvantage of not being a
direct representation of the original term; there is some translation involved in converting
a λ-calculus term into a director strings.

Director strings can be an excellent representation choice for graph-reducing nor-
malising engines. Again, we are instead primarily focussed on applications that require
fine-grained inter-reduction access to the term structure, such as compilers.

9.3 Optimal λ Reduction

The theory of “optimal λ reduction” [10, 9, 6] (or, OLR), originated by Lévy and Lamp-
ing, and developed by Abadi, Asperti, Gonthier, Guerrini, Lawall, Mairson et al., is a
body of work that shares much with bottom-up β-reduction. Both represent λ-terms
using graph structure, and the key idea of connecting variable-binders directly to value-
consumers of the bound variable is present in both frameworks—and for the same reason,
namely, from a desire that substitution should be proportional to the number of refer-
ences to the bound variable, removing the need to blindly search a term looking for these
references.

However, the two systems are quite different in their details, in fairly deep ways.
Lamping graphs allow incremental reduction by means of adding extra “croissant,”
“bracket” and “fan” nodes to the graph. This exciting alternative model of computation,
however, comes with a cost: the greatly increased complexity of the graph structure and
its associated operations. In particular, in actual use, the croissant and bracket marks can
frequently pile up uselessly along an edge, tying up storage and processing steps. It also
makes it difficult to “read” information from the graph structure. As Gonthier, Abadi
and Lévy state [6], “it seems fair to say that Lamping’s algorithm is rather complicated
and obscure.” The details of this complexity have prevented OLR-based systems from
widespread adoption.

9.4 Two Key Issues: Persistence and Readback

Our comparisons with other techniques have repeatedly invoked the key issues of persis-
tence and readback. Our data structure is not a “persistent” one—performing a reduction
inside a term changes the term. If an application needs to keep the old term around, then
our algorithm is not a candidate (or, at least, not without some serious surgery). So per-
haps it is unfair to compare our algorithm’s run times to those of persistent algorithms,
such as SLC or director strings.
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However, we can turn this around, and claim that the interesting feature of our
algorithm is that it exploits lack of persistence. If an application doesn’t need persistence,
it shouldn’t have to pay for it. The standard set of choices are invariably persistent; our
algorithm provides an alternative design point. (Note that reduction on Lamping graphs is
also not persistent, which is, again, either a limitation or a source of efficiency, depending
on your point of view.)

The other key, cross-cutting issue is readback. An application that doesn’t need to
examine term structure in-between reductions has greater flexibility in its requirements.
If readback is a requirement, however, then Lamping graphs and the SLC are much less
attractive. Readback with our representation is free: one of the pleasant properties of a
DAG is that it can be viewed just as easily as a tree; there is no need to convert it.

Thus, bottom-up β-reduction is a technology which is well suited to applications
which (1) don’t need persistence, but (2) do need fine-grained readback.

10 Conclusion

We certainly are not the first to consider using graph structure to represent terms of the
λ-calculus; the ideas go back at least to 1954 [4, 15]. The key point we are making is
that two of these ideas work together:

– representing λ-terms as DAGS to allow sharing induced by β-reduction, and
– introducing child→parent backpointers and λ→variable links to efficiently direct

search and construction.

The first idea allows sharing within a term, while the second allows sharing across a
reduction, but they are, in fact, mutually enabling: in order to exploit the backpointers,
we need the DAG representation to allow us to build terms without having to replicate
the subterm being substituted for the variable. This is the source of speed and space
efficiency.

The algorithm is simple and directly represents the term without any obscuring
transform, such as combinators, de Bruijn indices or suspensions, a pleasant feature
for λ-calculus clients who need to examine the terms. It is also, in the parlance of the
graph-reduction community, fully lazy.
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