
A Framework for Counterexample Generation and
Exploration

Marsha Chechik and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

{chechik, arie}@cs.toronto.edu

Abstract. Model-checking is becoming an accepted technique for debugging
hardware and software systems. Debugging is based on the “Check / Analyze / Fix”
loop: check the system against a desired property, producing a counterexample
when the property fails to hold; analyze the generated counterexample to locate
the source of the error; fix the flawed artifact – the property or the model. The
success of model-checking non-trivial systems critically depends on making this
Check / Analyze / Fix loop as tight as possible. In this paper, we concentrate on
the Analyze part of the debugging loop. To this end, we present a framework for
generating, structuring and exploring counterexamples either interactively or with
the help of user-specified strategies.

1 Introduction

Model-checking is an automated verification technique that receives a finite-state de-
scription of a system and a temporal logic property and decides whether the property
holds in the system. Model-checking is rapidly becoming an accepted technique for ana-
lyzing software and hardware system. In addition to telling the user whether the desired
temporal property holds, it can also generate a counterexample, explaining the reason
why this property failed. Typically, counterexamples are given in terms of states and
transitions of the model and can be effectively used for debugging. The counterexam-
ple generation ability has been one of the major advantages of model-checking when
compared to other verification methods.

During debugging, a model-checker is used as a part of the Check / Analyze / Fix
loop: check the model, analyze the produced counterexample, fix the model or the
property. Copty et al. [7] describe several stages of debugging: (1) the specification
debugging stage, during which we fix the properties to make them trustworthy; (2) the
model debugging stage, during which the actual bugs in the model are being found; and
(3) the quality assurance stage which addresses the problem of “regression verification”
– making sure that fixing one error does not introduce new ones.

Counterexamples can also be used for design exploration [2]. A model-checker en-
ables the user to specify scenarios of interest without specifying the exact input sequences
leading to them, and can also reason about multiple executions of the system in parallel.
Thus, the user can provide a set of constraints in the form of a temporal logic property
that an “interesting” trace through the system should satisfy, and the model-checker
computes such traces while checking the property.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 220–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Framework for Counterexample Generation and Exploration 221

Explaining why a property p fails to hold (a counterexample) is the same as ex-
plaining why a property ¬p holds (a witness). In this paper, we often use witnesses and
counterexamples interchangeably, referring to them collectively as evidence.

Some version of the Check/Analyze/Fix loop frequently applies, and the goal of this
work is to make this loop tighter. The Check phase involves running a model-checker,
which is an exponential algorithm that often takes hours to run even for moderately-sized
models [7]. So, it is desirable to minimize the number of model-checking runs while
maximizing the information obtained from each run.

The Analyze phase is measured in terms of the time that an engineer spends exploring
the generated evidence, and thus is costly as well. It is possible for model-checkers to
generate too much evidence [9], flooding the user with information, and making it hard
to build a mental picture of what is going on. In this case, the user may spend too
much time and energy trying to reach the portion of interest or get confused about
the purpose of a given sub-trace in the overall explanation. Also, since the size of the
property under analysis is typically much smaller than the size of the system, formula-
specific patterns often repeat themselves throughout the evidence [9], and users fail to
notice them. It is therefore desirable to have control over just how much evidence is
generated by the model-checker. This can be accomplished via interactive explanations
– evidence generation based on user preferences. Interactive explanations can allow users
to put a bound on the time that the model-checker spends computing the evidence, and
continue exploring it manually; control which option is used to facilitate the generation
of “interesting” evidence; and control the amount of information that is generated and
presented by restricting the scope of exploration according to some criterion of interest.
Clearly, interactive explanations makes the problem of generating and understanding
evidence tractable:

– The amount of evidence generated is based on what the user is willing to understand.
This helps scalability of our approach to large models.

– The amount of evidence displayed makes it easier to identify “interesting” cases and
helps with debugging.

Since model-checking runs are expensive, it is desirable to enable users to fix as many
errors as possible before repeating the verification, rather than eliminating one counterex-
ample at a time. For example, we would like to know that f ∧ g fails to hold because
both f and g are false. To this end, providing the user with all disjoint counterexamples
to a given property can significantly shorten the debugging time.

Contributions of this Paper. In this paper, we propose a framework for structuring
and interactively exploring evidence. The framework is based on the idea that the most
general type of evidence to why a property holds or fails to hold is a proof. Such proofs
can be presented to the user in the form of proof-like counterexamples [12] without sac-
rificing any of the intuitiveness and close relation to the model that users have learned to
expect from model-checkers. Basing the evidence on proofs allows us to unify a number
of existing ad-hoc approaches to exploring counterexamples. In particular, notions of
forward and backward exploration as well as starting and stopping conditions are natural
in the proof setting. Proofs can also be used to control what kind of evidence is being
generated. The primary sources of such choices are:

222 M. Chechik and A. Gurfinkel

1. determining which part of the property to explain (e.g., if the property is p ∨ q,
should the presented evidence be for p or for q?) and

2. determining which part of the model to use for the explanation (e.g., if the property
is “there exists a next state where p holds” and the model has several such states,
which should be presented?).

The above choices can be made by the user interactively or automated in the form
of strategies (e.g., if faced with a choice of states for the explanation, always choose the
one where some predicate x holds). The application of strategies is implemented in our
framework by changing the proof rules used to generate evidence. The modification of
proof rules can be permanent for the duration of the entire run of the model-checker,
and thus can be facilitated by history-free strategies. Alternatively, the application of
strategies can depend on the previously-observed behaviour of the system. For example,
to see the infinite alternation between x and y, we may want to specify a strategy that
oscillates between preferring a state where x holds and a state where y holds.

Finally, from the software engineering point of view, our framework provides a
simple, unified way to interact with the counterexample generator. The interaction is
based on defining strategies that combine property-based and model-based choices. For
example, we can specify a strategy that prefers the part of the model that the user has
explored previously, while attempting to satisfy a part of the property for which the
witness is the shortest.

Clearly, most users cannot understand large proofs. In our framework, proofs are
used in the back-end. They help generate and navigate through the evidence, without
the need to be presented to the user. Instead, users see witnesses and counterexamples.
Furthermore, large proofs are never computed in our approach since proof fragments are
generated from the model-checking runs as part of interactive explorations to facilitate
user-understanding. Application of strategies for dynamic proof generation is the major
technical contribution of this paper, when compared to our previous work reported
in [12].

In this paper, we illustrate the framework using a simple example rather than validat-
ing its effectiveness via a sizable case study. Here, we draw on industrial experience [7]
that being able to limit the amount of evidence shown and generating several counterex-
amples at once is extremely effective in reducing the effort that engineers spend looking
for a real cause of an error. Our framework unifies a number of existing approaches
and allows users to create additional strategies that may further improve the debugging
process. Thus, it can be used for explaining the reason why the property failed or suc-
ceeded, determining whether the property was correct (“specification debugging”), and
for general model exploration.

Related Work. The problem of generating and analyzing counterexamples for model-
checking can be divided into three categories: generating the counterexample efficiently,
obtaining a visual presentation suitable for interactive exploration, and automatically
analyzing the counterexample to extract the exact source of the error.

The original counterexample generation algorithm, implemented in most symbolic
model-checkers, was proposed by Clarke et al. [5], and was later extended to handle
arbitrary universal properties [6, 12], i.e., properties that quantify over all paths of the
model. An alternative approach was independently suggested by Namjoshi [13] and Tan

A Framework for Counterexample Generation and Exploration 223

and Cleaveland [16] with the goal to extend the counterexample generation technique to
all (as opposed to just universal) branching temporal properties. The proposed methods
identify what information must be stored from the intermediate run of the model-checker
to reconstruct the proof of correctness of the result. A similar technique for linear prop-
erties was explored by Peled et al. [14].

The problem of the visual presentation of generated counterexamples was addressed
by Dong et al. [9, 8]. The authors developed a tool that simplifies the counterexample
exploration by presenting evidence through various graphical views. In particular, they
found that one of the most important parts of the visualization process is highlighting
the correspondence between the analyzed property and the generated counterexample.

The problem of the automatic analysis of counterexamples was addressed by many
researchers but space limitations do not allow us to survey them here. Many of these
techniques (e.g. [11, 1]) are based on comparing all counterexamples to a safety property
(i.e., a temporal property where a counterexample has a finite number of steps) to identify
the common cause of the error.

The goal of our work is to develop a unifying framework for combining various
visualization and analysis techniques. In that, the work of Copty et al. [7] is the closest
to ours. The authors report on a “counterexample wizard” – a tool for counterexam-
ple exploration for safety properties. The key idea of the approach is to compute and
compactly store all counterexamples to a given property. Users can then visualize the
result in various ways, replay several counterexamples in parallel, and apply different
automatic analysis techniques.

Organization. The rest of this paper is organized as follows: We discuss CTL model-
checking in Section 2 and the framework from the user perspective in Section 3. In
Section 4, we discuss the internals of the framework. In Section 5, we enrich the frame-
work with additional proof strategies that allow the user to control which counterexample
gets generated. In Section 6, we discuss how to use our framework to generate several
counterexamples at once. We conclude in Section 7 with the summary of the paper and
discussion of future research directions.

2 CTL Model-Checking

Model-checking is an automated verification technique that receives a system K and a
temporal logic property ϕ and decides whether ϕ holds in K. In this paper, we assume
that K is a Kripke structure consisting of a finite set of states S, a designated initial state
s0, a set of atomic propositions A, a total transition relation R ⊆ S × S, and a labeling
function I : S → 2A that assigns a truth value to each atomic proposition in each state.
An example Kripke structure is shown in Figure 1(a).

We specify properties in Computation Tree Logic (CTL) [4], defined below:

ϕ= a | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ |EXϕ |AXϕ |EFϕ |AFϕ |EGϕ |AGϕ | E[ϕ U ϕ] | A[ϕ U ϕ]

where a is an atomic proposition. The meaning of the temporal operators is: given a state
and paths emanating from it, ϕ holds in one (EX) or all (AX) next states; ϕ holds in
some future state along one (EF) or all (AF) paths, ϕ holds globally along one (EG) or

224 M. Chechik and A. Gurfinkel

p

r
p

r

p
f

7s

6s

5s
f
r

f

p
r

4s

f

0s 1s

2s

3s
p p

r

s0 s1 s2

p
r

s0 s1 s3

Fig. 1. (a) State machine for the module Button; (b) Two witnesses of length 3 for [[EFr]](s0)
for this statemachine

AXϕ � ¬EX¬ϕ AFϕ � A[true U ϕ] E[ϕU0ψ] � ψ

EFϕ � E[true U ϕ] AGϕ � ¬EF¬ϕ E[ϕUiψ] � ψ ∨ (ϕ ∧ EXE[ϕUi−1 ψ])
A[ϕ U ψ] � ¬E[¬ψ U ¬ϕ ∧ ¬ψ] ∧ ¬EG¬ψ

Fig. 2. Definitions of CTL operators

all (AG) paths, and ϕ holds until a point where ψ holds along one (EU) or all (AU) paths.
Some properties of the model in Figure 1(a) are: “it is possible to generate a request”
(EFr) and “once a button is pressed, a request will be generated” (AG(p ⇒ AFr)).

We write [[ϕ]]K(s) to indicate the value of ϕ in the state s of K, and [[ϕ]](s) when K
is clear from the context. A formula ϕ is satisfied in a Kripke structure K if and only if
it is satisfied in its initial state. The operators EX , EG, and EU form an adequate set,
i.e. all other operators can be defined from them, as shown in Figure 2. Semantics EX ,
EG and EU is formally in defined as follows:

[[EXϕ]](s) iff ∃t ∈ S · R(s, t) ∧ [[ϕ]](t)
[[E[ϕUψ]]](s) iff there exists a path s0, . . . , snsuch thats=s0 and [[ψ]](sn)and ∀i < n · [[ϕ]](si)
[[EGϕ]](s) iff there exists an infinite path s0, s1, . . .such that s0 = s and ∀i ∈ nat · [[ϕ]](si)

We also introduce a bounded version of the EU operator, that restricts path quantification
to paths of bounded length, as shown in Figure 2.

3 User View of The Framework

In this section, we illustrate the framework from the user perspective on a familiar
example of an elevator controller system.

3.1 Elevator Controller System

An elevator controller system consists of a single elevator which accepts requests made
by users pressing buttons at the floor landings or inside the elevator. The elevator moves
up and down between floors and opens and closes its doors in response to these requests.

We use the model specified in SMV by Plath & Ryan [15]. We do not present the
state-machine model here because the purpose of our use of counterexamples is model

A Framework for Counterexample Generation and Exploration 225

s
(a)

s s′

(b)
s s′

(c)

Fig. 3. Possible witnesses for EGp in state s: (a) a looping witness, (b) a path followed by a loop,
and (c) two witnesses combining cases (a) and (b)

debugging and model understanding. However, to illustrate a few concepts, we do provide
a state machine for a module Button, shown in Figure 1(a). One instance of the Button
module is produced for each button inside the elevator and on floor landings.

Variable f determines when the request has been fulfilled and the button can be reset.
We model the latching explicitly: variable p determines the state of the button (pressed
or released), whereas r determines whether the request to move to the desired floor has
been generated. We further assume that a request cannot be fulfilled before it has been
generated, i.e., f cannot become true if r is false. In Figure 1(a), we only show true
variables; thus, in state s0, p, r, and f are false.

3.2 Witnesses and Counterexamples

Suppose we are interested in checking the following property of the Button module:
“it is never the case that a request can be fulfilled”, expressed in CTL as AG¬f . The
counterexample to this property is a finite path that starts in the initial state (s0) and
arrives at the state where f is true, e.g., s0, s1, s2, s5. Note that this path is also a witness
to the negation of the above property: EFf , i.e., “it is possible to fulfill a request”.

Consider another property: “whenever a request is generated, it will eventually be
fulfilled”, formalized in CTL as AG(r ⇒ AFf). The counterexample to this property,
or a witness to the equivalent property EF (r ∧ EG¬f), is an infinite behavior that
describes (1) how the system can reach a state where r holds and from then on (2) how
it can avoid entering a state in which f holds. One such path is s0, s1, s2 (reaching r),
followed by a loop at s2 (so f is always false).

Unlike traditional model checkers, our framework does not automatically generate
a single counterexample. Instead, it automates the process of dynamically constructing
one, or several, starting from the initial state. Further, it gives two separate views of the
counterexample: the low-level view, which describes each state explicitly, naming its
variables, and a high-level view that shows the complete trace and annotates each state
with additional information, which we refer to as summaries, describing the significance
of the state with respect to the overall property, and summarizing the rest of the trace.

3.3 Exploring the Elevator Controller Model

We now describe user interactions with the framework while debugging and exploring
the Elevator model.

Generating Several Counterexamples at Once. When we start verifying the system
using the model-checker, it is usually the case that the property we are trying to check
is wrong. Consider the property: “from any state, all paths go through a state where the
elevator is on the third floor and doors are open” (AGAF (floor = 3 ∧ doors = open)).
The first counterexample tells us that it is possible to start on the first floor and stay there

226 M. Chechik and A. Gurfinkel

forever. We may conclude that the first floor is “special”, and instead check that our
desired configuration is reachable from any floor except the first one: AG(floor �= 1 ⇒
AF (floor = 3 ∧ doors = open)). The counterexample we get in this case would lead
us to the second floor and remain there forever, or possibly oscillate between the first
and the second floor, without ever reaching the third. Seeing all three counterexamples
at once would have helped us determine that the elevator never gets to the third floor
unless a request for this floor has been made, and the property should have been updated
to AG(btn3.r ⇒ AF (floor = 3 ∧ door = open)).

Excluding a Known Counterexample via Strategies. Consider the above example.
Instead of modifying the property to exclude our first counterexample, which is of-
ten difficult for engineers, we specify a strategy that attempts to avoid the state where
floor = 1, if possible. A success of this strategy allows us to discover further counterex-
amples without modifying the property.

Preferring/Avoiding the Explored Part of the Model. Our model of the elevator con-
troller comes with a number of desired properties, e.g., “the elevator never moves with its
doors open”, “every request for the elevator is eventually fulfilled”, etc. When analyzing
a few of these, we quickly get familiar with part of the model, e.g., we discover that the
elevator can stay in a state where floor=1, doors are closed, the state of the controller is
notMoving, and the direction of the elevator is up. We call this state Idle.

Strategies allow engineers to use their knowledge of “designated” states, such as Idle,
to guide the counterexample generator towards them in the case where an AF property
is false. In particular, using the information about the state of the doors, the direction
of the movement, and the state of the controller, we define a distance function between
the Idle state and the current state of the model and specify a strategy that picks a state
where this distance is minimized.

Note that an additional benefit of using this strategy during debugging is that we
can stay within a better-understood part of the model. On the other hand, if the goal of
model-checking is model exploration [2], we may instead choose to avoid the known
behavior by maximizing the distance between the next state in the proof and Idle.

Choosing the “Best” Loop Using Summaries. Generating the shortest counterexample
for an arbitrary temporal property is NP-hard [5], and thus conventional model-checkers
apply a greedy strategy by computing the shortest counterexample to each subformula.
In the case of counterexamples to AFp (or witnesses to EG¬p), even this strategy is
hard to implement. Instead, model-checkers consider a state s to satisfy EGp if either
there is a path on which p holds in each state that loops around s (see Figure 3(a)) or
there is a successor of s in which p holds and there is a looping path of p-states around
it (see Figure 3(b)). Thus, the algorithm to compute a witness to EGp in state s checks
whether there is a path that leads back to s and on which p holds in each state, terminates
if such a path is found, and otherwise picks a successor of s where EGp holds as the new
state and continues. Such an algorithm picks the first loop on a path, even if it is long
and hard to explore. We illustrate this scenario in Figure 3(c): the dashed loop around s′

may be short and simple, whereas conventional model-checkers always return the solid
loop around s, if one exists, as the witness to EGp.

Our framework allows the user to define strategies to loop around a familiar state
(e.g., Idle) or use state summaries to choose the most interesting loop. Consider the

A Framework for Counterexample Generation and Exploration 227

witness to a property EGp in the state s1 of the model in Figure 1(a). Clearly, there are
several paths that satisfy it: s1, followed by a loop around s2; a loop s1, s2, s4, s1; a
loop s1, s2, s4, s6, s1, etc. The framework displays the state s1 and indicates that EGp
holds in it; this is the current “explanation” of the state s1. Clicking on EGp produces
further explanations of why EGp holds in s1: (1) s1 is part of a three-state loop and
p holds in each state of the loop; (2) there is a successor state of s1 from which we
can explain EGp. Clicking on the second explanation tells us that the successor state
of interest is s2, and EGp holds in it. Clicking on this EGp tells us the reason: (2a):
there is a self-loop (a loop of length 0) around s2 and p holds in s2; (2b): there is a
successor state of s2 in which EGp holds. At this point, we can either go back to the
first explanation and in a few clicks reveal the three states of the loop, or decide that the
self-loop around s2 provides the better explanation. Of course, we can continue looking
for other explanations until all possible p-loops have been discovered.

Alternatively, after the first explanation that tells us that s1 is part of a three-state loop,
we may choose to define a strategy that examines the model from state s1 up to depth
three to see whether there are other witnesses to EGp and how long the corresponding
loops are, and then chooses the shortest such loop to explore.

4 Framework

The framework for generating and visualizing counterexamples is shown in Figure 4.
Dashed lines indicate optional inputs. The user interaction with the framework starts
by providing a proof keeper with a model K and a property ϕ. The proof keeper is the
central part of the framework, responsible for generating (a fragment of) the proof and
presenting it to the user. First, it calls a model-checker to find out whether ϕ is satisfied
or violated by the model. It then uses the database of proof rules, according to a user-
specified proof strategy, to prove that fact. In this step, it uses the model-checker to decide
which proof rules are applicable and to ensure the soundness of the proof. (Additional
runs of the model-checker can be avoided by efficiently computing and storing evidence,
as discussed in [16, 13, 12].) The current proof fragment produced by the proof keeper
is shown to the user via a visualization engine. The interaction of the user with this
part of the framework is captured by user-supplied visualization strategies. In the rest of
this section we discuss the framework in more detail. The framework augmented with
additional proof strategies is described in Section 5.

4.1 Proof Rules

Several proof rules from the CTL proof system are given in Figure 5. These include all
proof rules of the propositional logic that deal with disjunction and conjunction, such
as the ∧-, ∨-rules, i.e., to prove a ∧ b, we need to prove a and b separately, and to
prove a ∨ b, we need to prove either a or b. Additionally, our proof system uses the
axiomatization of the given Kripke structure K, describing its transition relation R and
values of each atomic proposition in each state. For example, some of the axioms of the
model in Figure 1(a) are: there is a transition between s0 and s1 (R(s0, s1)); there is no
transition between s0 and s3 (¬R(s0, s3)); p is true in s1 (I(s1, p)), etc.

228 M. Chechik and A. Gurfinkel

Visualization
strategies

Proof keeper Model checker

Proof

Visualization engine

counterexample
(evidence)

strategies

Property

Model

Basic proof
strategy

axioms of Kripke structures
axioms of the model

proof rules for prop. logic
proof rules for temporal logic

proof rules
Database of

Fig. 4. Overview of the framework

a b
∧-rule

a ∧ b

∃t ∈ S · R(s, t) ∧ [[ϕ]](t)
EX

[[EXϕ]](s)

[[ψ]](s)
EU0

[[E[ϕ U0 ψ]]](s)

a
∨-rule

a ∨ b

∃n · [[E[ϕ Un ψ]]](s)
EU

[[E[ϕ U ψ]]](s)

f(d)
one-point rule

∃x ∈ D · f(x)

b
∨-rule

a ∨ b

[[ψ ∨ (ϕ ∧ EXE[ϕ Un−1 ψ])]](s)
EUi

[[E[ϕ Un ψ]]](s)

Fig. 5. Some CTL proof rules

The proof system is then extended with proof rules for each temporal operator. In
this paper, we only show proof rules for EX and EU , and refer the reader to [12] for a
complete description of the proof system for CTL and for results on its soundness and
completeness. The proof rule for the EX operator follows directly from its definition,
i.e., to prove EXϕ at a state s, we need to find a state t which is a successor of s and
in which ϕ holds. Note that this proof rule introduces an existential quantifier, which is
later eliminated by the application of the one-point rule. The completeness of the proof
rule for the EU operator follows from the fact that our models are finite. Thus, any path
witnessing an EU formula has a bounded length. Finally, the proof rules for the bounded
EU operator simply unroll it according to the bound, using the definitions of EU0 and
EUi given in Section 2.

4.2 Generating Proofs

For a given property ϕ, a proof of its validity is constructed by applying the basic proof
strategy: (1) the database of the proof rules is consulted to find all applicable proof rules
based on the syntax of the property; (2) a model-checker chooses those for which the
valid proof can be constructed; (3) the rule to be applied is randomly chosen from the
resulting set. In [12], we give more detail on the use of the model-checker to guide an
automatic proof construction and show that the above strategy is terminating for CTL.

A Framework for Counterexample Generation and Exploration 229

R(s0, s1)

R(s1, s2)

[[r]](s2)
∨-rule

[[f ∨ r]](s2)
EX

[[EX(f ∨ r)]](s1)
EX

[[EXEX(f ∨ r)]](s0)
EUi

[[E[� U2 (f ∨ r)]]](s0)
one-point rule

∃n · [[E[� Un (f ∨ r)]]](s0)
EU

[[E[� U (f ∨ r)]]](s0)
EF

[[EF (f ∨ r)]](s0)

[[r]](s2)

[[f ∨ r]](s2)

∃t · R(s1, t) ∧ [[f ∨ r]](t)

[[EX(f ∨ r)]](s1)

[[EXEX(f ∨ r)]](s0)

[[E[� U2 f ∨ r]]](s0)

[[EF (f ∨ r)]](s0)s0

s1

s2

proof

proof

proof

(a) (b)

Fig. 6. (a) Proof of [[EF (f ∨ r)]](s0); (b) Proof-like witness of [[EF (f ∨ r)]](s0)

For example, the construction of the proof of the validity of [[EF (f ∨ r)]](s0) of the
Button module, shown in Figure 6(a) (where some proof steps are skipped for clarity),
proceeds as follows. First, the EF operator is expanded according to its definition into
the EU operator, and the proof rule for EU is applied. This results in the subgoal
∃n · [[E[� Un (f ∨ r)]]](s0). The model-checker is then used to find the smallest bound
on n, which is just the number of iterations required for a model-checking algorithm to
converge, and in our example it is 2. Applying the EUi rule twice, we reduce the proof
to [[EXEX(f ∨ r)]](s0).

After one application of the EX rule, we want to prove that EX(f ∨ r) holds in
state s1, which reduces to ∃t ∈ S · R(s, t) ∧ [[EX(f ∨ r)]](s1). The model-checker is
then used to find a successor s2 of s1 in which f ∨ r holds, allowing us to eliminate the
existential quantifier (this step is skipped in Figure 6(a)). Finally, to prove [[f ∨ r]](s2),
the model-checker is called once again to determine which of the two ∨-rules to apply.

4.3 Visualization Engine

The visualization engine converts the proof into a witness or a counterexample, and
presents it to the user in a proof-like style of [12]. The proof-like presentation combines
the advantages of both proofs and traditional counterexamples by highlighting the be-
havior of the model that is used to justify the result of the model-checker. This is achieved
by extracting the set of model execution traces from the proof, and labeling each state of
the trace with the part of the proof that depends on it. For example, a proof-like witness
for the property [[EF (f ∨ r)]](s0) is shown in Figure 6(b). This property is witnessed
by a 3-state path s0, s1 and s2. The proof in state s0 tells us that a state in which f ∨ r
holds is reachable in exactly two steps, since the EF operator is explained by an EU
with the bound 2. In the last step of the proof in state s0, the dotted arrow connecting the
formula EXEX(f ∨ r) and the state s1, tells us that s1 is the witness for the outermost
EX operator. The proof attached to state s2 tells us that the formula f ∨ r holds in it
because r is true.

The parts of the proof attached to each state can be seen as summaries that explain
what is going to follow. For example, the proof attached to the state s0 in Figure 6(b) can
be summarized as “the next state is an intermediate one, and then we reach the desired

230 M. Chechik and A. Gurfinkel

state”. Other types of summaries indicate whether a given state is part of a loop, which
part of the property is being explained, etc.

The visual presentation of the result is controlled by the user through visualization
strategies. A typical strategy is to restrict the scope of the explanation in order to bring
forward its most useful parts. This is accomplished by specifying a starting and a stopping
condition for the visualization. For example, to restrict the witness of the property ϕ =
EGEF (x ∧ EXx) to the EF operator, we set the starting and the stopping conditions
to EF (x ∧ EXx) and x ∧ EXx, respectively. In the proof-like witness in Figure 6(b),
specifying that f ∨ r is the stopping condition removes the proof attached to the state
s2. If we let f ∨ r be the starting condition instead, s2 would be the only displayed part
of the witness.

A visualization strategy can also control how the state information is presented. For
example, we can request to show all variables in each state, refer to each state by a
unique name (as in Figure 6(b)), show only those variables that change between states,
or always display some specific variables. Furthermore, the strategy can control the
verbosity of the proof annotations, or completely replace the actual proof with a more
suitable explanation. For example, we can replace the proof attached to the state s0 with
its (English) summary.

The result can be examined in a traditional forward fashion – starting from the
initial state and proceeding in the direction of the trace execution to an error condition.
Alternatively, the user can start the exploration at the error condition and use the proof
annotations to move backwards along the trace. This corresponds to constructing the
proof of the property from the basic axioms of the system.

The visualization engine that we presented in this section enables users familiar with
model-checking to define strategies for counterexample generation and exploration. It
also allows users who are comfortable with simple proofs to search through the coun-
terexample effectively using the proof view. Yet, it is very simplistic – it is virtually
a back-end visualizer. To be useful, our visualization engine must be extended with
additional visual cues, e.g., as suggested in [9, 8] (see Section 7).

5 Adding User-Specified Strategies

The ability of a user to understand why desired properties hold or fail in the model can
be greatly enhanced if the user can control the kind of evidence that gets generated as
part of the explanation. This approach also makes proof generation much more scalable:
only the fragment of the proof that the user wants to see gets generated and displayed.

Consider the example in Figure 6. The presented witness goes through the state s2 of
the Kripke structure in Figure 1(a), whereas the user may have preferred it to go through
s3 instead. This is a model-based decision that comes from the fact that several states
may satisfy [[EXϕ]](s1), for some property ϕ. The user can choose which of these (or
whether all of these) are used in the proof.

The second decision type comes from explicit choices in properties, via a disjunction
operator, e.g., [[EFp∨EGr]](s3). If both disjuncts are true, as in the model in Figure 1(a),
the proof of which disjunct should be shown? Controlling this is especially useful during
the specification debugging phase of the verification.

A Framework for Counterexample Generation and Exploration 231

(d)

1: class PickDisjunct extends Strategy
2: Rule pickRule (Set rules, Node l)
3: pick Q in rules s.t.
4: size(tryApply(Q,l)) is minimal

(c)

1: class BasicStrategy extends Strategy
2: Node pickLeaf (Set leaves)
3: return randomElmnt(leaves)
4: Rule pickRule (Set rules, Node l)
5: return randomElmnt(rules)

(b)

1: class Strategy
2: void init ()
3: Node pickLeaf (Set leaves)
4: Rule pickRule (Set rules, Node l)
5: void ruleApplied (Rule r,Node n,Node r)

(a)

1: void buildProof (Strategy st)
2: st.init ()
3: repeat until leaves �= ∅
4: l = st.pickLeaf (leaves)
5: r = st.pickRule (getRules (l), l)
6: result = apply (r, l)
7: st.ruleApplied (r, l, result)
8: end repeat

(e)

1: class PickExplored extends Strategy
2: void init ()
3: N = s0

4: addRule(
[[EXϕ ∧ N]](s)

Q
[[EXϕ]](s)

)

5: Rule pickRule (Set rules, Node l)
6: if Q ∈ rules then
7: return Q
8: end if
9: void ruleApplied(Rule r, Node n, Node r)
10: s =getState(r)
11: N = N ∪ {s}
12: update rule Q

(f)

1: class Sequence extends Strategy
2: void init ()

3: addRule(
[[EXϕ ∧ c1]](s)

Q1
[[EXϕ]](s)

)

4: addRule(
[[EXϕ ∧ c2]](s)

Q2
[[EXϕ]](s)

)

5: c1 state = true
6: Rule pickRule (Set rules, Node l)
7: if c1 state = true then
8: if Q1 ∈ rules then
9: c1 state = false
10: return Q1

11: end if
12: else
13: if Q2 ∈ rules then
14: c1 state = true
15: return Q2

16: end if
17: end if

Fig. 7. Proof strategies

Typically, a proof proceeds by decomposing the top-level goal into simpler subgoals.
For example, to prove [[p∧r]](s2), we need to prove [[p]](s2) and [[r]](s2) separately. Yet,
if the aim of generating the proof is debugging, we can often find the source of the error
without expanding all of the subgoals. The choice of the order in which subgoals are to
be expanded is the third type of decision that the user may want to make when generating
proofs. We give the pseudocode of the proof generation in the method buildProof(),
shown in Figure 7(a). The basic proof strategy, described in Section 4 and shown in
Figure 7(c), makes all choices at random. Users can affect the proof generation by
creating other strategies.

The simplest form of a strategy is to stop and ask the user to choose every time a
decision needs to be made. Users can be aided in making decisions by proof summaries

[[p]](s)
Q1

[[p ∨ EFq]](s)

[[EFq]](s)
Q2

[[p ∨ EFq]](s)

[[EXϕ ∧ c]](s)
EXc

[[EXϕ]](s)

B ⇒ p
atomic-rule

[[p]](B)

∃B1, B2 · [[ϕ]](B1) ∧ [[ψ]](B2) ∧ (B ⇒ (B1 ∨ B2))
∨-rule

[[ϕ ∨ ψ]](B)

∃B1 · R(B, B1) ∧ [[ϕ]](B1)
EX

[[EXϕ]](B)

Fig. 8. Additional proof rules

232 M. Chechik and A. Gurfinkel

or other user preferences. In this section, we discuss various types of strategies and their
support in our framework.

5.1 Specifying Strategies

A user-specified strategy is created by implementing the Strategy interface shown in
Figure 7(b). In particular, the strategy can modify the default proof system before the
proof generation begins using init(), determine which subgoal is to be expanded using
pickLeaf(), and determine which rule out of the applicable ones is to be applied using
pickRule(). Finally, after the application of any proof rule, the strategy can execute its
own ruleApplied method. In addition, strategies have full access to the proof system:
they can examine the current proof, add or remove proof rules, and examine the result
of any rule application. Thus, they can affect the behaviour of the prover based on the
current subgoal, proof rules that have already been applied, other historical information,
subgoals yet to be proven, etc.

We now demonstrate how a few useful strategies can be specified in our framework.

Choosing the Smallest Subgoal. The goal of this strategy is to always pick a rule that
results in a subgoal with the least number of temporal operators. For example, suppose our
current subgoal is [[p∨EFq]](s), and there are two applicable proof rules for disjunction
(see rules Q1 Figure 8(a),(b)). Clearly, applying rule Q1 results in a shorter proof, and
therefore a shorter witness. An implementation of this strategy is shown in Figure 7(d),
and is accomplished by overriding pickRule() to pick the rule that results in the new
subgoal with the minimal number of temporal operators. The method tryApply() allows
the strategy to determine the new subgoal without modifying the proof tree. Note that this
is a greedy strategy – choosing the subgoal with the shortest length does not guarantee
the shortest witness or counterexample.

Preferring Explored Part of the Model. This strategy attempts to guide the witness
towards the part of the model that already appears in the proof. In general, a strategy
can control which states of the model are used as part of a witness by introducing
additional proof rules for the EX operator. For example, to ensure that all states of the
witness satisfy a propositional constraint c, the strategy must add the proof rule EXc

(see Figure 8) during its initialization, and then ensure that this rule is always applied
whenever possible.

The strategy PickExplored, shown in Figure 7(e), maintains a list of all states
visited by the proof in the list N , adds a new EX proof rule Q that prefers elements of
N , and modifies pickRules() so that Q is always picked when it is applicable. Finally,

generated by the model-checker. For example, when choosing the part of the formula
[[EFp ∨ EGr]](s3) to expand, the user may want to note that [[EFp]](s3) converged in
one iteration and [[EGr]](s3) converged in two, and thus pick [[EFp]](s3). Strategies can
also be automated, with decisions based on summaries, observed history of the execution,

the strategy updates the list of visited states via the ruleApplied() method. This is an
example of a strategy that uses the proof history in order to augment its behavior.

A Framework for Counterexample Generation and Exploration 233

Sequential Constraint. The goal of this strategy is to ensure that states that satisfy some
condition c1 alternate with states that satisfy another condition c2 on every path of the
witness. As with the PickExplored strategy, it begins by adding new proof rules for
the EX operator. Its pickRule method uses an additional boolean variable c1 state to
remember which of the two new rules was applied last, and augment its behavior based
on that. In general, one can automatically generate such a strategy from a state machine
that encodes a desired sequencing of constraints, e.g., one advocated in [2].

5.2 Discussion

The users of the framework do not have to interact with the proof engine explicitly.
Instead, the interaction is based on the concepts that are already familiar to the engineers.

Some strategies are packaged for manual interaction. For example, the default imple-
mentation of the method pickLeaf allows the user to choose which part of the witness to
extend by clicking on it. Some strategies are completely generic and serve as heuristics
that are applicable to any model. For example, to ensure the shortest witness, we can
combine strategies to pick the simplest subformula to explain, trying the current state
first when choosing the next state, guiding the witness through already visited states, etc.
Some other strategies, e.g., the one that ensures that every path of the witness satisfies
a given constraint, are parameterized. In this case, the user specifies the constraint, and
the interaction with the proof engine is automated. For example, the user can provide the
desired constraints in the form of a finite-state automaton, which is sufficient to generate
code for the appropriate Sequence strategy that deduces which proof rules to add and
when to apply them.

Typically, model-checkers implement some greedy strategy to generate a witness or
a counterexample. However, users can specify efficient strategies that use backtracking.
The complexity of these is controlled by restricting the number of applications of back-
tracking. For example, a strategy for generating a shortest witness for [[EXEFp]](s)
can be specified to pick the successor of s from which EF has the shortest bound.

Strategies are also essential for producing partial witnesses when full witnesses are
too large to be practical. For example, consider a witness to a property AFp which in the
worst case can be of the size of the entire model. The strategy might be to expand only
those paths for which the path to the state where p holds is at most x steps long. Since
the size of the underlying proof is proportional to the number of steps in the witness,
strategies ensure that usable proofs can be generated even for very large models.

6 Abstract Counterexamples

It is often convenient to see all counterexamples or witnesses to a given property at
once [7]. For example, consider the property [[EFr]](s0) evaluated on the Button module
from Figure 1(a). There are two witnesses of length 3 that justify this property: leading
to states s2 and s3, respectively, as shown in Figure 1(b). The information provided by
these witnesses can be summarized using an abstract witness resulting from merging

234 M. Chechik and A. Gurfinkel

R(s0, s1)

R(s1, {s2, s3})

r ∧ ¬f ⇒ r

[[r]]({s2, s3})

[[EXr]](s1)

[[EXEXr]](s0)

[[EFr]](s0)

Fig. 9. Proof of [[EFr]](s0) for the model in Figure 1(a)

the states at the same depth. In Figure 1(b), these states are identified via dashed boxes.
Each state in this abstract witness corresponds to one or more states of the model, and
can be expressed by a propositional formula. In our example, we obtain that the first
state of the witness must satisfy ¬p ∧ ¬r ∧ ¬f , whereas the second and the third state
should satisfy p ∧ ¬r ∧ ¬f and r ∧ ¬f , respectively. There is a disagreement on the
value of p between states s2 and s3, and thus p is not part of the formula describing the
third state.

Propositional formulas provide a very compact presentation of all of the witnesses
at once, which in turn helps focus the attention of the user to the more relevant parts of
the explanation. For example, by examining the constraint of the third state, we see that
the value of p is irrelevant. In [7], it was shown that such a presentation can dramatically
reduce the time required by the engineers to locate the real cause of an error.

In the rest of this section, we show that our framework can be used to generate
abstract witnesses for reachability properties, or equivalently, abstract counterexamples
for safety properties. Any reachability property can be expressed using a combination
of EX , and EU operators and propositional connectives [4]. To construct a proof that
captures all witnesses at once, we need to extend the corresponding proof-rules from
single states to sets of states.

For notational convenience, we write [[ϕ]](B) to stand for ∀s ∈ B ·[[ϕ]](s), where ϕ is
a temporal logic formula, and B is a set of states. Furthermore, we extend the transition
relation R to sets of states and write R(B,C) to stand for ∀b ∈ B · ∃c ∈ C · R(b, c). To
prove that a propositional formula p holds in all states of a set B (written as [[p]](B)),
we need to show that B is a subset of the set of states defined by the formula p. That is,
p is compatible with the propositional constraints imposed by B. Formally, we obtain
the atomic-rule, shown in Figure 8. For example, the fact that r holds in the set of states
{s2, s3} of the Button module follows from the relation (r ∧ ¬f) ⇒ r. To prove that
ϕ ∨ ψ holds in a set of states B, we need to show that there exists a partitioning of B
into sets B1 and B2, such that ϕ holds in all elements of B1, and ψ holds in all elements
of B2. The above is captured by the ∨-rule, shown in Figure 8. Note that user-specified
strategies can influence the choice of this partitioning. For example, if a property ϕ is
more complicated than ψ, the user may prefer B1 to be empty, if possible.

To prove that EXϕ holds in a set of states B, we need to identify the successor states
of each state in B and prove that ϕ holds in them (see the EX rule in Figure 8). In
practice, the set B1 can be easily computed from the intermediate results of a symbolic
model-checker. For example, it can be instantiated to the set of all states that satisfy ϕ,

A Framework for Counterexample Generation and Exploration 235

and that are successors of states in B. Once again, the user can control the exact choice
of B1 using a proof-strategy, where picking the largest such set leads to an abstract
witness capturing all possible witnesses.

Recall from Section 4.1 that proof-rules for the EU operator are derived by reducing
it to a formula containing a disjunction, a conjunction, and an EX operator. Thus, it can
be trivially extended to sets of states using the rules defined in this section.

A sample proof produced via the above proof rules for the property [[EFr]](s0)
evaluated in the Button module, is shown in Figure 9. This proof captures all 3-step
witnesses for this property.

7 Conclusion

In this paper, we presented a general framework for generating and exploring witnesses
and counterexamples of temporal logic properties. The framework is based on building
evidence in the form of a proof and controlling which portions of the proof are expanded
and shown to the user either interactively or via user-specified strategies. Proofs also
facilitate easy generation of conventional witnesses, which in our case are augmented
with summaries describing which part of the property is being explained, whether a
given state is part of a loop, how many steps separate a given state from the one in
which a subproperty becomes true, etc. We have also created KEGVis – a prototype
implementation of the framework.

We are currently looking at ways to connect exploration strategies with temporal
logic property patterns [10]. Further, our preliminary experience with KEGVis indicates
that users often make similar choices during their interactive exploration of witnesses.
An automated strategy assistant that attempts to learn user preferences from previous
interactions with the system and suggest an appropriate strategy would greatly enhance
the potential usability of our framework. Finally, we are interested in how strategies can
be used for understanding the impact of changing a model.

We view our current implementation as a back-end for a successful evidence explo-
ration tool and, in its current form, it is by no means ready to be applied in an industrial
setting. To enable such an application, the tool must become much more user-friendly.
Most engineers find proofs too difficult, and, although proof-like witnesses bridge the
gap between proofs and models, the concept of a proof is currently central to node
summaries and some parts of the manual exploration.

For the sake of generality, our work has been on the level of the lowest common
denominator of the interaction between the user and the model-checker. Namely, we
assumed that the model of the system is given by a Kripke structure, and properties of
interest are specified directly in temporal logic. This makes it possible to easily combine
our approach with many of the existing model-checking tools. However, this also makes
the actual technique appear more complex than it really is.

For example, in software model-checking, the user interacts with a model-checker by
providing a source code of the program, and the model-checker automatically extracts
a Kripke structure from it. Clearly, in this case, it is not helpful to explain the result
of the model-checking run using states of this Kripke structure. Instead, such states
should be converted back to what they are meant to represent, namely, line numbers of

236 M. Chechik and A. Gurfinkel

the program and values of relevant variables. Furthermore, sequences of states can be
conveniently presented via interactive debug sessions. The proof part of the explanation
is still useful in such cases: it can be used to annotate the debug trace, e.g., to explain why
a particular branch of the program is taken next, or that the model-checker discovered
a non-terminating loop in the program. Presentation of many of such proof aspects can
also be tailored to a particular domain. For example, “an error in 3 steps” can become a
graphical icon in the annotation of the trace.

Overall, we feel that the presented framework is flexible enough to enable creation
of truly user-friendly tools that can facilitate effective model exploration and debugging
using model-checking technology.

References

1. T. Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for Model Check-
ing C Programs”. STTT, 5(1):49–58, November 2003.

2. S. Barner, S. Ben-David, A. Gringauze, B. Sterin, and Y. Wolfsthal. “An Algorithmic Ap-
proach to Design Exploration”. In Proceedings of FME’02, volume 2391 of LNCS, pages
146–162. Springer-Verlag, July 2002.

3. M. Chechik, B. Devereux, and A. Gurfinkel. “χChek: A Multi-Valued Model-Checker”. In
Proceedings of CAV’02, volume 2404 of LNCS, pages 505–509, July 2002.

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5. E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. “Efficient Generation of Coun-

terexamples and Witnesses in Symbolic Model Checking”. In Proceedings of DAC 95, pages
427–432, 1995.

6. E.M. Clarke, Y. Lu, S. Jha, and H. Veith. Tree-Like Counterexamples in Model Checking. In
Proceedings of LICS’02, pages 19–29, July 2002.

7. F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi. “Efficient Debugging in a Formal
Verification Environment”. In Proceedings of CHARME’01, volume 2144 of LNCS, pages
275–292. Springer-Verlag, September 2001.

8. Y. Dong, C.R. Ramakrishnan, and S. A. Smolka. “Evidence Explorer: A Tool for Exploring
Model-Checking Proofs”. In Proceedings of CAV’03, volume 2725 of LNCS, pages 215–218,
2003.

9. Y. Dong, C.R. Ramakrishnan, and S. A. Smolka. “Model Checking and Evidence Explo-
ration”. In Proceedings of ECBS’03, pages 214–223, April 2003.

10. M. Dwyer, G. Avrunin, and J. Corbett. “Patterns in Property Specifications for Finite-State
Verification”. In Proceedings of ICSE’99, May 1999.

11. A. Groce and W. Visser. “What Went Wrong: Explaining Counterexamples”. In Proceedings
of SPIN Workshop on Model Checking of Software, pages 121–135, 2003.

12. A. Gurfinkel and M. Chechik. “Proof-like Counterexamples”. In Proceedings of TACAS’03,
LNCS, April 2003.

13. K. Namjoshi. Certifying Model Checkers. In Proceedings of CAV’01, volume 2102 of LNCS.
Springer-Verlag, 2001.

14. D. Peled, A. Pnueli, and L. Zuck. From falsification to verification. In FST&TCS, volume
2245 of LNCS. Springer-Verlag, 2001.

15. M.C. Plath and M.D. Ryan. “SFI: A Feature Integration Tool”. In R. Berghammer and
Y. Lakhnech, editors, Tool Support for System Specification, Development and Verification,
Advances in Computer Science, pages 201–216. Springer, 1999.

16. L. Tan and R. Cleaveland. Evidence-Based Model Checking. In Proceedings of CAV’02,
volume 2404 of LNCS, pages 455–470. Springer-Verlag, July 2002.

	Introduction
	CTL Model-Checking
	User View of The Framework
	Elevator Controller System
	Witnesses and Counterexamples
	Exploring the Elevator Controller Model

	Framework
	Proof Rules
	Generating Proofs
	Visualization Engine

	Adding User-Specified Strategies
	Specifying Strategies
	Discussion

	Abstract Counterexamples
	Conclusion

