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Università dell’Insubria, Via Valleggio 11, I-22100, Como, Italy

Abstract. We propose an SOS transition rule format for the genera-
tive model of probabilistic processes. Transition rules are partitioned in
several strata, giving rise to an ordering relation analogous to those in-
troduced by Ulidowski and Phillips for classic process algebras. Our rule
format guarantees that probabilistic bisimulation is a congruence w.r.t.
process algebra operations. Moreover, our rule format guarantees that
process algebra operations preserve semistochasticity of processes, i.e.
the property that the sum of the probability of the moves of any process
is either 0 or 1. Finally, we show that most of operations of the prob-
abilistic process algebras studied in the literature are captured by our
format, which, therefore, has practical applications.

1 Introduction

Probabilistic process algebras have been introduced in the literature (see, among
the others, [2, 3, 8, 9, 10, 11, 13]) to develop techniques dealing with both func-
tional and non-functional aspects of system behavior, such as performance and
reliability. Probabilistic transition systems (PTSs, for short), which extend clas-
sic labeled transition systems by some mechanism to represent the probabilistic
choice, have been employed as a basic semantic model of probabilistic processes.
In order to abstract away from irrelevant information on the way that processes
compute, several notions of behavioral equivalence and preorder have been con-
sidered. Probabilistic bisimulation relates two processes iff they have the same
probabilistic branching structure. In the process algebras of [2, 3, 8, 9, 10, 11, 13]),
probabilistic bisimulation is a congruence w.r.t. all operations, which is an im-
portant property to fit it into an axiomatic framework.

Usually, PTSs are defined by means of a structural operational semantics [14,
15] (SOS, for short) consisting of a set of transition rules of the form premises

conclusion ,
which, intuitively, determine how probabilistic moves of processes can be inferred
by probabilistic moves of other processes. A set of syntactical constraints on
the transition rules is called a transition rule format [16]. In the area of classic
(i.e., non-probabilistic) process algebras, rule formats have been widely employed
to fix results holding for classes of process algebras. For instance, several rule
formats proposed in the literature ensure that a given behavioral equivalence
is a congruence (for a survey see [1]). Other rules formats ensure that a given
property of security is preserved by process algebra operations [17, 18].
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An interesting issue is to develop rule formats for probabilistic process al-
gebras. To take a step in this direction, we propose a rule format for process
algebras respecting the generative model of probabilistic processes [11], which
requires that a single probability distribution is ascribed to all moves of any
process. Such a generative model differs w.r.t. the reactive model of probabilis-
tic processes, which requires that the kind of action of any process is chosen
nondeterministically, and that, for any action and any process, a probability
distribution is ascribed to the moves of that process labeled with that action.

Our format admits transition rules of the following form:

{xi
ai,pi−−−→ yi | i ∈ I} ∪ {xj

Aj ,p′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x )
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρ

−−−−−−−−−−−→ t

Hence, our format extends the classic de Simone format [16] with probability

(i.e., a probability value p appears in transition labels), premises xj

Aj ,p′
j−−−→ mean-

ing that the argument j of f performs actions in the set Aj with total probability

p′
j , and premises xh

Bh−−→ meaning that the argument h of f performs at least
one action in the set Bh. Then, to give a semantics to a given process algebra,
we require that the transition rules are partitioned in n strata R1, . . . ,Rn, for
some n ∈ IN. The interpretation is that the moves of a given process t can be
inferred from rules in Ri only if no move of t can be inferred from rules in Rj ,
for any j < i. Hence, the partitioning gives rise to an ordering relation between
transition rules analogous to those introduced for classic process algebras in [19].

We prove that process algebra operations captured by our format preserve
semistochasticity of processes, i.e. the property that the sum of the probability
of the moves of any process is either 0 or 1. This is a central issue in the theory
of probabilistic processes, since semistochasticity is required by most of authors,
such as [3, 5, 8], which concentrate on so called semistochastic languages [11].

Then, we prove that probabilistic bisimulation is a congruence w.r.t. all op-
erations captured by our format.

To show that our format has practical applications, we prove that it captures
most of operations of the probabilistic process algebras proposed in the literature.

Finally, we prove that our format can be enriched by double testing as in
GSOS format [7], and by look ahead as in tyft/tyxt format [12]. We discuss also
the possibility to admit predicates, as in formats path [4] and panth [20].

We discuss the related work [6], where a very preliminary rule format for the
reactive model of probabilistic processes is introduced.

2 Background

Let us begin with recalling the model of probabilistic transition systems.
For any set S, let M(S) denote the collection of multisets over S.

Definition 1. A probabilistic transition system (PTS, for short) is a triple
(S, Act, T ), where S is a set of states, Act is a set of actions, and T ∈ M(S ×
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Act × (0, 1] × S) is a multiset of transitions such that, for all states s ∈ S,∑{| p | ∃a ∈ Act, s′ ∈ S : (s, a, p, s′) ∈ T |} ∈ [0, 1].

Def. 1 respects the generative (or full) model of probabilistic processes [11],
where a single probability distribution is ascribed to all moves of any process. On
the contrary, we recall that the reactive model admits that the kind of action is
chosen nondeterministically, i.e. the multiset T satisfies the following property:
for all states s ∈ S and actions a ∈ Act,

∑{| p | ∃s′ ∈ S : (s, a, p, s′) ∈ T |} ∈ [0, 1].

Definition 2. A state s ∈ S is semistochastic iff
∑{| p | ∃a ∈ Act, s′ ∈ S :

(s, a, p, s′) ∈ T |} ∈ {0, 1}. If this sum is 1 then s is stochastic. A PTS is semis-
tochastic iff all its states are semistochastic.

As in [3, 5, 8], we concentrate on semistochastic PTSs, which are the semantic
model of the so called semistochastic languages [11].

We write s
a,p−−→ s′ to denote that (s, a, p, s′) ∈ T , and we call s and s′ source

and target of the transition, respectively. For a set of actions A ⊆ Act, we write
s

A,p−−→ to denote that
∑{| q | ∃a ∈ A, s′ ∈ S : s

a,q−−→ s′ |} = p. If this multiset is

empty, then we write s
A,0−−→. Finally, we write s

A−→ to denote that there is at
least one transition (s, a, p, s′) in T with a ∈ A, for some p and s′.

Before defining probabilistic bisimulation, we need some definitions.
For an equivalence relation R over S, we write S/R to denote the set of

equivalence classes induced by R.

Definition 3. µ : S × Act × 2S → [0, 1] is the function given by: ∀s ∈ S,
∀a ∈ Act, ∀S ⊆ S

µ(s, a, S) =
∑

{| p | s a,p−−→ s′ and s′ ∈ S |}

Definition 4. An equivalence relation R ⊆ S×S is a probabilistic bisimulation
if (s1, s2) ∈ R implies: ∀S ∈ S/R, ∀a ∈ Act,

µ(s1, a, S) = µ(s2, a, S)

The union of all probabilistic bisimulation is, in turn, a probabilistic bisim-
ulation. We denote it by ≈, and we write s1 ≈ s2 for (s1, s2) ∈≈.

Let us recall now the notions of signature and term over a signature.
A signature is a set Σ of operation symbols together with an arity mapping

that assigns a natural ar(f) to every f ∈ Σ. If ar(f) is 0, f is called a constant.
For a set of variables Var, ranged over by x, y, . . . , the set of (open) terms

T(Σ, Var) over Σ and Var, ranged over by s, t, . . . , is the least set such that: 1)
each variable x ∈ Var is a term; 2) f(t1, . . . , tar(f)) is a term whenever f ∈ Σ and
t1, . . . , tar(f) are terms. Closed terms are terms that do not contain variables.

A substitution is a mapping σ : Var → T(Σ, Var). With σ(t) we denote the
term obtained by replacing all occurrences of variables x in term t by σ(x).

The abstract syntax of probabilistic process description languages is usually
given by a signature Σ, whose closed terms are called probabilistic processes. The
semantics is usually given by a PTS, where states are probabilistic processes.
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3 Definitions

In this section we introduce the notions of PB transition rule and PB transition
system specification (PB stays for probabilistic bisimulation).

Definition 5. For any operation f ∈ Σ and tuple −→x = x1, . . . , xar(f) of vari-
ables, a PB transition rule ρ is of the form

{xi
ai,pi−−−→ yi | i ∈ I} ∪ {xj

Aj ,p′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x )
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρ

−−−−−−−−−−−→ t

where:

1. I, J , H are subsets of {1, . . . , ar(f)} such that J ⊆ I;
2. ai ∈ Act for i ∈ I, Aj ⊆ Act for j ∈ J , Bh ⊆ Act for h ∈ H, a ∈ Act;
3. for all i ∈ I and j ∈ J such that i = j, it holds that ai �∈ Aj;
4. pi is a variable with range (0, 1] for i ∈ I, p′

j is a variable with range [0, 1)
for j ∈ J ;

5. t is a term over Σ and −→x ∪ {yi | i ∈ I};
6. wρ is the weight of ρ and satisfies 0 < wρ ≤ 1.

Transitions {xi
ai,pi−−−→ yi|i ∈ I} are the active premises; variables {xi|i ∈

I} are the active variables; transitions {xj

Aj ,p′
j−−−→ |j ∈ J} are the unneeded

premises; transitions {xh
Bh−−→ |h ∈ H} are the unquantified premises; transition

f(−→x )
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρ

−−−−−−−−−−−→ t is the conclusion; f(−→x ) is the source; t is the target of
ρ.

Given terms
−→
t , values {qi | i ∈ I} in (0, 1], and values {q′

j | j ∈ J} in [0, 1),
Def. 5 says that term f(

−→
t ) has the move f(

−→
t )

a,q−−→ t[
−→
t /−→x ][−→s /−→y ], with q =∏

i∈I qi∏
j∈J (1−q′

j)
· wρ, provided that ti has the move ti

ai,qi−−−→ si, for all i ∈ I, the sum
of the probability of the moves of tj with label in Aj is q′

j , for all j ∈ J , and th
has at least one move with label in Bh, for all h ∈ H.

Notice that the conclusion is triggered by both active and unquantified
premises, and does not require unneeded premises, meaning that p′

j could be
0 for some j ∈ J . Unneeded premises are used to compute the probability of the
conclusion. More precisely, they permit normalization of probability, which, as
we will see in next sections, is needed in several operations of process algebras,
such as restriction and priority. The probability of the conclusion depends on the
weight of ρ and on

∏
i∈I pi∏

j∈J (1−p′
j)

, which is the conditional probability that all xi

perform ai under the assumption that all xj are not allowed to perform actions
in Aj . Unquantified premises do not contribute in computing the probability of
the conclusion. They are “necessary conditions” for the application of ρ.

Definition 6. A PB transition system specification (PB TSS, for short) is
formed by a set R of PB transition rules such that:
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1. R is partitioned into n strata R1, . . . ,Rn, for some n ∈ IN;
2. for each stratum Ru, operation f and tuple of variables −→x = x1, . . . , xar(f)

s.t. Ru has at least one PB transition rule with source f(−→x ), it holds that:
(a) All PB transition rules with source f(−→x ) in stratum Ru have the same

set of unquantified premises {xh
Bh−−→ | h ∈ H};

(b) All PB transition rules with source f(−→x ) in stratum Ru have the same

set of unneeded premises {xj

Aj ,p′
j−−−→ | j ∈ J};

(c) All PB transition rules with source f(−→x ) in stratum Ru have the same
set of active variables {xi | i ∈ I};

(d) Given actions {a′
i | i ∈ I} such that a′

i �∈ Aj for all indexes i and j

with i = j and xj

Aj ,p′
j−−−→ an unneeded premise, then there is at least

one PB transition rule with source f(−→x ) in Ru with active premises

{xi
a′

i,pi−−−→ yi | i ∈ I};
(e) Given the PB transition rules ρ1, . . . , ρm in Ru with source f(−→x ) having

the same active premises, their weights satisfy wρ1 + · · · + wρm = 1.

The meaning of clause 1 is that the rules in stratum Ru can be applied only
if no rule in strata R1, . . . ,Ru−1 can be applied (see Def. 7 below).

Let us take any f ∈ Σ. Clause 2a implies that unquantified premises trigger
either all rules with source f(−→x ) in Ru, or none of them. In the first case, we can
prove that clauses 2b–2e ensure that, given semistochastic processes

−→
t , then the

sum of the probability of the moves of f(
−→
t ) that are derivable by the rules in

Ru is either 0 or 1. Let us distinguish two cases. In the first case, some ti with
i ∈ I is not stochastic. Since it is semistochastic, ti has no move. Hence, since
clause 2c implies that a move of ti is needed to infer a move of f(

−→
t ), no move

of f(
−→
t ) can be derived from the rules in stratum Ru, and, therefore, the sum

of the probability of the moves of f(
−→
t ) derivable from Ru is 0. In the second

case, all ti with i ∈ I are stochastic. Let us assume that, for all j ∈ J , q′
j is

the probability such that tj
Aj ,q′

j−−−→. Value
∏

j∈J(1 − q′
j) is the probability that

each tj does not perform any action in Aj . All combinations of arbitrary moves
{ti

ai,qi−−−→ t′i | i ∈ I}, with ai ∈ Act for each i ∈ I, fall into two categories:

– Some ai is in Aj for the index j = i. Clause 3 of Def. 5 ensures that no move
of f(

−→
t ) is inferred by rules in Ru from moves {ti

ai,qi−−−→ t′i | i ∈ I}.
– No ai is such that ai ∈ Aj for any index j = i. Since ti is semistochas-

tic, this implies q′
j �= 1 for all j ∈ J . By clause 2d of Def. 6 there exist

rules ρ1, . . . , ρm with source f(−→x ) in Ru, for some m ∈ IN, with active
premises {xi

ai,pi−−−→ yi | i ∈ I}. Hence, f(
−→
t ) has m moves with probabilities

wρ1 ·
∏

i∈I qi∏
j∈J (1−q′

j)
, . . . , wρm ·

∏
i∈I qi∏

j∈J (1−q′
j)

. Notice that these probabilities are well
defined, since q′

j �= 1 for all j ∈ J . Now, since wρ1 + · · · + wρm = 1 by clause

2e of Def. 6, the sum of these probabilities is
∏

i∈I qi∏
j∈J (1−q′

j)
.
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Since we have assumed that all
−→
t are stochastic, and that for all j ∈ J , q′

j is the

probability of tj
Aj ,q′

j−−−→, the overall probabilities of the combinations of moves
{ti

ai,qi−−−→ t′i | i ∈ I} falling in the second category is
∏

j∈J(1−q′
j). Hence, if q′

j = 1
for some j ∈ J , f(

−→
t ) has no move and the sum of the probability of the moves

of f(
−→
t ) derivable from Ru is 0. Otherwise, if q′

j �= 1 for all j ∈ J , the sum of

the probability of the moves of f(
−→
t ) derivable from Ru is

∏
j∈J (1−q′

j)∏
j∈J (1−q′

j)
= 1.

We can now formalize how PTSs are generated by PB TSSs.

Definition 7. Assume a PB TSS with strata R1, . . . ,Rn.

1. A transition t
a,q−−→ s is provable from stratum Ru iff there is a closed substi-

tution instance {ti
ai,qi−−−→ si | i ∈ I} ∪ {tj

Aj ,q′
j−−−→ | j ∈ J} ∪ {th

Bh−−→ |h ∈ H}
t

a,q−−→ s
of a PB transition rule in Ru such that:
(a) for all i ∈ I, ti

ai,qi−−−→ si is a transition provable from the TSS;
(b) for all j ∈ J , q′

j =
∑{|q|∃a ∈ Aj , s

′ : tj
a,q−−→ s′is provable from the TSS|};

(c) for all h ∈ H, at least one transition th
a,qh−−−→ uh with a ∈ Bh is provable

from the TSS, for some qh and uh;
2. A transition t

a,q−−→ s is provable from the TSS if it is provable from some stra-
tum Ru and no transition with source t is provable from strata R1, . . . ,Ru−1.

Moves of terms are proved inductively w.r.t. their structure. In fact, first of
all we can prove moves of constants from strata R1, . . . ,Rn and, then, we can
prove moves of constants from the TSS. This is possible since PB transition rules
having a constant as source have no premise. Then, after moves of terms

−→
t have

been proved from the TSS, we can prove moves of f(
−→
t ) from R1, . . . ,Rn and,

then, we can prove moves of f(
−→
t ) from the TSS.

Let us recall that, according to the classical definition (see, e.g., [12]), a (non-
probabilistic) transition t

a−→ t′ is provable from a given TSS iff there exists a well-
founded, upwardly branching tree whose nodes are labeled by closed transitions,
whose leaves have empty label, whose root is labeled by t

a−→ t′, and, whenever
K is the (possibly empty) set of labels of the nodes directly above a node labeled
by β, then K/β is a closed substitution instance of a transition rule in the TSS.

We need a more complicated definition since our rules have the unneeded
premises and the unquantified premises that are not “pure” transitions. Hence,
we cannot construct the branching tree that is considered in the classical defini-
tion. Moreover, as in [19], we have to take into account that there is an ordering
relation between the transition rules, given by the partitioning in n strata.

Definition 8. The PTS induced by a PB TSS is the PTS having as transitions
the transitions that are provable from the TSS.
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4 Examples

In this section we show that most of operations offered by the probabilistic
process algebras proposed in the literature can be expressed by our PB TSSs.

Example 1 (Constants). Stratum R1 contains the following rule, for all a ∈ Act:

a
a,1−−→ 0

Term a performs action a, and, then, it behaves as the idle process 0.

Let us show now that we can express the probabilistic sum of [2, 3, 8, 9, 11].

Example 2 (Probabilistic sum). Let 0 < p < 1. Stratum R1 contains the follow-
ing rules, for all a1, a2 ∈ Act, where p and 1 − p are their weights:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 +p x2
a1,p1·p2·p−−−−−−→ y1

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 +p x2
a2,p1·p2·(1−p)−−−−−−−−−→ y2

Stratum R2 contains the following rule, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 +p x2
a1,p1−−−→ y1

Stratum R3 contains the following rule, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 +p x2
a2,p2−−−→ y2

Let us take term t1 +p t2. Index p means that, when both t1 and t2 can move, t1
moves with probability p, and t2 moves with probability 1−p. Rules in R1 (with
weights p and 1 − p) are applied when both t1 and t2 are stochastic; rules in R2
(with weight 1) are applied when only t1 is stochastic; rules in R3 (with weight
1) are applied when only t2 is stochastic. In the first case, since t2 (resp. t1)
is stochastic and the sum of the probability of its moves is 1, from t1

a1,p1−−−→ t′1
(resp. t2

a2,p2−−−→ t′2) we infer moves of t1 +p t2 labeled a1 (resp. a2) with total
probability p1 · p (resp. p2 · (1 − p)). In the other two cases, from t1

a1,p1−−−→ t′1
(resp. t2

a2,p2−−−→ t′2), we infer t1 +p t2
a1,p1−−−→ t′1 (resp. t1 +p t2

a2,p2−−−→ t′2).

Let us consider now the interleaving operation of [3].

Example 3 (Interleaving). Let 0 < p < 1. Stratum R1 contains the following
rules, for all a1, a2 ∈ Act, where p and 1 − p are their weights:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖p x2
a1,p1·p2·p−−−−−−→ y1 ‖p x2

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖p x2
a2,p1·p2·(1−p)−−−−−−−−−→ x1 ‖p y2
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Stratum R2 contains the following rules, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 ‖p x2
a1,p1−−−→ y1 ‖p x2

Stratum R3 contains the following rules, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 ‖p x2
a2,p2−−−→ x1 ‖p y2

As in Ex. 2, given a term t1 ‖p t2, index p means that, when both t1 and t2 can
move, t1 moves with probability p, and t2 moves with probability 1 − p.

Let us consider now the synchronous product of PCCS [10, 11].

Example 4 (Synchronous product). Stratum R1 contains the following rules, for
all a1, a2 ∈ Act:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖ x2
a1×a2,p1·p2−−−−−−−−→ y1 ‖ y2

Here, at each computation step, term t1 ‖ t2 can move only by combining an
action of t1 and an action of t2. Actions are composed by means of operator ×.

Let us consider now the probabilistic version of CCS parallel composition [3].

Example 5 (Interleaving plus synchronization). Let 0 < p, q < 1. Stratum R1
contains the following rules, for all a1, a2 ∈ Act such that a2 �= a1:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖p
q x2

a1,p1·p2·p−−−−−−→ y1 ‖p
q x2

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖p
q x2

a2,p1·p2·(1−p)−−−−−−−−−→ x1 ‖p
q y2

x1
a1,p1−−−→ y1 x2

a1,p2−−−→ y2

x1 ‖p
q x2

a1,p1·p2·p·(1−q)−−−−−−−−−−→ y1 ‖p
q x2

x1
a1,p1−−−→ y1 x2

a1,p2−−−→ y2

x1 ‖p
q x2

a1,p1·p2·(1−p)·(1−q)−−−−−−−−−−−−−→ x1 ‖p
q y2

x1
a1,p1−−−→ y1 x2

a1,p2−−−→ y2

x1 ‖p
q x2

τ,p1·p2·q−−−−−→ y1 ‖p
q y2

Stratum R2 contains the following rules, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 ‖p
q x2

a1,p1−−−→ y1 ‖p
q x2

Stratum R3 contains the following rules, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 ‖p
q x2

a2,p2−−−→ x1 ‖p
q y2
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Let us take t1 ‖p
q t2. When t1 and t2 intend to perform actions a1 and a2 with

a2 �= a1, t1 moves with probability p and t2 moves with probability 1 − p, as
in the case of interleaving operator of Ex. 3. When t1 and t2 intend to perform
actions a1 and a1, either they synchronize with probability q, thus producing
action τ , or they do not synchronize with probability 1 − q. In this second case,
t1 moves with probability p ·(1−q), and t2 moves with probability (1−p) ·(1−q).

Let us consider now the operation of sequential composition of terms of [3].

Example 6 (Sequencing). Stratum R1 contains the following rules, for a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 · x2
a1,p1−−−→ y1 · x2

Stratum R2 contains the following transition rules, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 · x2
a2,p2−−−→ y2

Let us take t1 · t2. If t1 moves, then rules in R1 can be applied and t1 · t2 moves
as t1, else, if t2 moves, rules in R2 can be applied and t1 · t2 moves as t2.

Let us consider now the restriction operation of [2, 8, 9, 11]. This is the first
example in which we employ unneeded premises.

Example 7 (Restriction). Let A ⊆ Act. Stratum R1 contains the following rules,
for all a1 ∈ Act \ A:

x1
a1,p1−−−→ y1 x1

A,p−−→
x1\A

a1,
p1

1−p−−−−→ y1\A

Term t1\A behaves as t1, but it cannot perform actions in A. Let us assume that

the sum of the probability of the moves of t1 with label in A is q, i.e. t1
A,q−−→. If

q = 1, then no move of t1\A can be inferred by the rules in R1. Hence, t1\A

has no move and it is semistochastic. If t1 has a move t1
a1,q1−−−→ t′1, with a1 �∈ A,

then t1\A has the same move, but with probability q1
1−q , which is the conditional

probability that t1 has the move t1
a1,q1−−−→ t′1 under the assumption that t1 is not

allowed to perform actions in A. Hence, the sum of the probability of the moves
of t1\A is 1−q

1−q = 1, and t1\A is stochastic.
Let us consider now the operator of priority. This is the first example in which

we employ unquantified premises.

Example 8 (Priority of a over b). Let a, b ∈ Act. Stratum R1 contains the fol-
lowing rules, for all a1 ∈ Act \ {b}:

x1
a1,p1−−−→ y1 x1

{b},p−−−→ x1
{a}−−→

ϑa
b (x1)

a1,
p1

1−p−−−−→ ϑa
b (y1)
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Stratum R2 contains the following rules, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

ϑa
b (x1)

a1,p1−−−→ ϑa
b (y1)

Term ϑa
b (t1) behaves as t1, but it can perform action b only if it cannot perform

a. Rules in R1 are applied only if t1 can perform a. In this case, if the sum of the

probability of the moves of t1 labeled b is q (i.e. t1
{b},q−−−→), then, from any move

t1
a1,q1−−−→ t′1 with a1 �= b, we infer a move of ϑa

b (t1) with label a1 and probability
q1

1−q , which is the conditional probability that t1 has the move t1
a1,q1−−−→ t′1 under

the assumption that t1 is not allowed to perform b. So, the sum of the probability
of the moves of ϑa

b (t1) is 1−q
1−q = 1, and ϑa

b (t1) is stochastic. Rules in R2 can be
applied only if t1 cannot perform a. In this case, ϑa

b (t1) behaves as t1.

5 Results

Theorem 1. The PTS induced by any PB TSS is semistochastic.

Proof. We have to prove that, given an arbitrary term t, the sum of the proba-
bility of the moves of t is either 0 or 1. This property follows by two facts: 1) The
moves of t can be derived only by the rules that are in one stratum Ru; 2) the
sum of the probability of the moves of t derivable by the rules in any stratum
Ru is either 0 or 1, as we have proved in the previous section. ��

Theorem 2. The probabilistic bisimulation induced by any PB TSS is a con-
gruence.

Proof. Let R be the least equivalence relation over PTS states such that:

1. s R t whenever s ≈ t;
2. f(−→s ) R f(

−→
t ) whenever s1 R t1, . . . , sar(f) R tar(f).

Lemma 1. Given a term u over variables −→x = x1, . . . , xn and tuples of terms−→s = s1, . . . , sn and
−→
t = t1, . . . , tn, if si R ti holds for all 1 ≤ i ≤ n, then

u[
−→
t /−→x ] R u[−→s /−→x ].

To prove the thesis, it suffices to prove that, for arbitrary terms s and t, s R t
implies s ≈ t. In fact, by the two clauses of the definition of R, this property
implies that R and ≈ coincide and that ≈ is a congruence.

Let us reason by induction over the definition of R. The base case where
s R t is due to s ≈ t is immediate. Let us concentrate on the inductive step,
where s ≡ f(−→s ), t ≡ f(

−→
t ), and s R t is due to s1 R t1, . . . , sar(f) R tar(f). We

can assume, by the inductive hypothesis, that s1 ≈ t1, . . . , sar(f) ≈ tar(f).
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We have to prove that, for any value 0 < q ≤ 1, action a ∈ Act and equiv-
alence class S ∈ S/R, µ(f(−→s ), a, S) = q iff µ(f(

−→
t ), a, S) = q. We prove that

µ(f(−→s ), a, S) = q implies µ(f(
−→
t ), a, S) = q; the converse is analogous.

Since µ(f(−→s ), a, S) = q, it holds that in some stratum Ru of the TSS, and
for some k ∈ IN, there exist PB transition rules ρ1, . . . , ρk such that:

1. for all 1 ≤ l ≤ k, from rule ρl we infer ml transitions f(−→s )
a,ql,1−−−→ ul,1, . . . ,

f(−→s )
a,ql,ml−−−−→ ul,ml

, for some ml ∈ IN;
2.

∑
1≤l≤k

∑
1≤i≤ml

ql,i = q;
3. for all 1 ≤ l ≤ k, ul,1, . . . , ul,ml

∈ S,

and, moreover, no move of f(−→s ) is derived from rules in R1, . . . ,Ru−1.
Let us consider any 1 ≤ l ≤ k. Transition rule ρl has the form

{xi
ai,pi−−−→ yi | i ∈ I} ∪ {xj

Aj ,p′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x )
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρl

−−−−−−−−−−−→ t

Since f(−→s )
a,ql,1−−−→ ul,1, . . . , f(−→s )

a,ql,ml−−−−→ ul,ml
are derived from ρl, it holds that:

1. for all i ∈ I, there are states Si s.t. µ(si, ai, Si) = qi, for some 0 < qi ≤ 1;

2. for all j ∈ J , sj

Aj ,q′
j−−−→, for some 0 ≤ q′

j < 1;

3. for all h ∈ H, sh
Bh−−→;

4. ql,1 + · · · + ql,ml
= wρl

·
∏

i∈I qi∏
j∈J (1−q′

j)
.

By the inductive hypothesis, it follows that:

1. for all i ∈ I, there is a set of states S′
i such that µ(ti, ai, S

′
i) = qi and, for all

s′ ∈ S′
i ,there is some state s ∈ Si such that s R s′;

2. for all j ∈ J , tj
Aj ,q′

j−−−→;

3. for all h ∈ H, th
Bh−−→.

Hence, by applying ρl, we infer nl moves f(
−→
t )

a,q′
l,1−−−→ v1, . . . f(

−→
t )

a,q′
l,nl−−−−→ vnl

,
for some nl ∈ IN, where:

1. v1, . . . , vnl
∈ S, by Lemma 1 and the fact that for all s′ ∈ S′

i there is some
state s ∈ Si such that s R s′;

2. q′
l,1 + · · · + q′

l,nl
= ql,1 + · · · + ql,ml

.

Since these arguments hold for all 1 ≤ l ≤ k, it follows that by ρ1, . . . , ρk we
derive µ(f(

−→
t ), a, S) = q, which implies the thesis. It remains to prove that we

can apply ρ1, . . . , ρk, i.e. no move of f(
−→
t ) can be derived by any rule in any

stratum Rv with v < u. This follows by the fact that no move of f(−→s ) can be
derived by any rule in these strata, and that si ≈ ti for 1 ≤ i ≤ ar(f). ��
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6 Extensions

The PB transition rules of Def. 5 extend the rules matching the de Simone
format [16] with probability, unneeded premises and unquantified premises. Here
we show how we can add to our rules some features offered by other formats
proposed in the literature of non probabilistic process algebras.

The GSOS format [7] admits negative premises of the form xi � ai−→ in rules
with source f(−→x ), meaning that the ith argument of f does not perform any
action labeled ai. In [19] a result is proved which assesses that negative premises
can be simulated by suitable ordering relations between rules. Since the parti-
tioning in strata of Def. 6 introduces ordering relations between PB transition
rules that are less general than those used in [19], it would be interesting to
extend Def. 6 to capture all the ordering relations of [19].

The GSOS format admits also double testing. Namely, rules with source f(−→x )
can have two (or more) premises xi

ai1−−→ yi1 and xi

ai2−−→ yi2 with the same variable
xi in the left side. Let us show how we can add double testing to our rules.

Definition 9. A PB transition rule with double testing ρ is of the form

{xi

ail
,pil−−−−→ yil

| i ∈ I, l ∈ Ii} ∪ {xj

Aj ,p′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x )
a,

∏
i∈I

∑
l∈Ii

pil∏
j∈J (1−p′

j
)

·wρ

−−−−−−−−−−−−−→ t

where:

1. clauses 1-6 of Def. 5 are respected;
2. for all i ∈ I, it holds that ail

�= ail′ for all l, l′ ∈ Ii such that l �= l′;
3. for all i ∈ I and l ∈ Ii, if |Ii| > 1 then there is an h = i such that ail

∈ Bh.

Definition 10. A PB TSS with double testing is defined as in Def. 6, except
that clause 2d is replaced by the following clause:

– Given actions {a′
i | i ∈ I} such that a′

i �∈ Aj for all indexes i and j with i = j

and xj

Aj ,p′
j−−−→ an unneeded premise, then there at least one PB transition rule

with source f(−→x ) in Ru containing the active premises {xi
a′

i,pi−−−→ yi | i ∈ I}.

To explain clause 2 in Def. 9, let us take the following rule, which violates it:

x1
a,p1−−→ y1 x1

a,p2−−→ y2

f(x1)
b,p1+p2−−−−−→ 0

Let t be the PCCS term a·0, which has the move t
a,1−−→ 0. It holds that f(t)

b,2−−→ 0,
and, therefore, f(t) is not semistochastic. The problem is that the probability
of the same move of t is summed twice when computing the probability of the
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move of f(t). Clause 2 in Def. 9 prevents this problem, since different moves of
the same argument of f can appear as premises only if they have different labels.

To explain clause 3 in Def. 9, let us take the following rules, and note that
the first one violates it:

x1
a,p1−−→ y1 x1

b,p2−−→ y2

f(x1)
d,p1+p2−−−−−→ 0

x1
c,p1−−→ y1

f(x1)
e,p1−−→ 0

Let t be the PCCS term a · 0 +
1
2 c · 0, which has the moves t

a, 1
2−−→ 0 and t

c, 1
2−−→

0. It holds that f(t)
e, 1

2−−→ 0 is the only move of f(t), which, therefore, is not
semistochastic. The problem is that the probability of the move of t labeled a
does not contribute in computing the probability of any move of f(t), since t has
no move labeled b and the premise x1

a,p1−−→ y1 appears only in the rule where
there is also the premise x1

b,p2−−→ y2. Clause 3 in Def. 9 prevents this problem,
since premises x1

a,p1−−→ y1 and x1
b,p2−−→ y2 are admitted only in rules that are in

strata where all rules have an unquantified premise x1
B−→ with a, b ∈ B.

Finally, notice that the new clause of Def. 10 requires that at least one rule

in Ru contains the premises {xi
a′

i,pi−−−→ yi | i ∈ I}, whereas the corresponding
clause in Def. 6 requires that at least one rule in Ru has exactly the premises

{xi
a′

i,pi−−−→ yi | i ∈ I}. The new clause allows double testing.

Theorem 3. The PTS induced by any PB TSS with double testing is semis-
tochastic. The probabilistic bisimulation induced by any PB TSS with double
testing is a congruence.

The tyxt/tyft format [12] admits look ahead. Namely, transition rules with
source f(−→x ) can have premises xi

ai−→ yi and yi
bi−→ zi, with the same variable yi

appearing in the right side of the first premise and in the left side of the second
premise. Let us show how we can add look ahead to our PB TSSs.

Definition 11. A PB transition rule with look ahead ρ is of the form

{xi
ai,pi−−−→ yi|i ∈ I} ∪ {yi

bi,ri−−−→ zi|i ∈ I ′} ∪ {xj

Aj ,p′
j−−−→ |j ∈ J} ∪ {xh

Bh−−→|h ∈ H}

f(−→x )
a,

∏

i∈I\I′ pi·∏
i∈I′ pi·ri

∏
j∈J (1−p′

j
)

·wρ

−−−−−−−−−−−−−−−−−→ t

where:

1. clauses 1-6 of Def. 5 are respected;
2. I ′ ⊆ I.

Also variables yi with i ∈ I ′ are called active variables.

Definition 12. A PB TSS with look ahead is defined as in Def. 6, except that
clauses 2c and 2d are replaced by the following clauses:
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1. All PB transition rules with source f(−→x ) in stratum Ru have the same set
of active variables {xi | i ∈ I} ∪ {yi | i ∈ I ′};

2. Given actions {a′
i | i ∈ I} such that a′

i �∈ Aj for all indexes i and j with i = j

and xj

Aj ,p′
j−−−→ an unneeded premise, and actions b′

i for all indexes i ∈ I ′,
then there is at least one PB transition rule with source f(−→x ) in Ru with

active premises {xi
a′

i,pi−−−→ yi | i ∈ I} ∪ {yi
b′

i,ri−−−→ zi | i ∈ I ′}.

The new clauses in Deff. 11–12 extend clauses in Deff. 5–6 to take into account
that two consecutive moves of xi are considered for all i ∈ I ′.

Theorem 4. The PTS induced by any PB TSS with look ahead is semistochas-
tic. The probabilistic bisimulation induced by any PB TSS with look ahead is a
congruence.

Definitions of PB transition rule and PB TSS admitting both double testing
and look ahead could be given immediately. By combining results of Thm. 3
and Thm. 4 we infer that the PB TSSs so obtained would induce semistochastic
PTSs and probabilistic bisimulations being congruences.

Both path format [4] and panth format [20] admit predicates, i.e. transitions
of the form t P , meaning that term t satisfies some property expressed by P .
Since predicates have nothing to do with probability, they can be added to PB
transitions rules and PB TSSs, without affecting results in Thm. 1 and Thm. 2.

7 Related and Future Work

In this paper we have proposed a rule format for probabilistic process algebras.
We believe that our format has four main merits: 1) probabilistic bisimulation is
a congruence w.r.t. process algebra operations respecting the format; 2) semis-
tochasticity is preserved by process algebra operations respecting the format;
3) the main operations offered by the probabilistic process algebras studied in
the literature are captured by the format, which, therefore, has practical appli-
cations; 4) features offered by known rule formats proposed for classic process
algebras, such as look ahead and double testing, are offered by the format.

Now, let us recall that in [6] a rule format for probabilistic process algebras
has been already proposed. The first difference between our paper and [6] is that
we consider the generative model of probabilistic processes, whereas [6] considers
the reactive model. Then, our definition of TSS requires some conditions (i.e.
clauses 2c–2e in Def. 6) that guarantee semistochasticity. In [6] no syntactic con-
straint on transition rules guarantees semistochasticity of reactive processes, i.e.
the property that the sum of the probability of the moves of any process for the
same label is either 0 or 1. Hence, in [6] semistochasticity is not ensured by the
format. In [6] neither unquantified premises nor unneeded premises nor strati-
fication are considered. We need these features to express operations requiring
redistribution of probability, such as restriction (see Ex. 7) and priority (see Ex.
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8). In the reactive model restriction and priority do not require redistribution of
probability, and, therefore, they can be expressed with the format in [6]. Prob-
lems in [6] arise in other operations requiring redistribution of probability, such
as the relabeling operation t[f ], where f : Act −→ Act is a relabeling functions.

Our results can be extended in several directions. We aim to develop a rule
format for the reactive model of probabilistic processes that guarantees results
analogous to those obtained in the present paper, i.e. bisimulation being a con-
gruence, operations preserving semistochasticity, expressiveness. Moreover, we
aim to develop rule formats for other behavioral equivalences, such as proba-
bilistic weak bisimulation [5], and probabilistic testing equivalence [21]. Finally,
we aim to develop rule formats guaranteeing that security properties for proba-
bilistic processes, such as those defined in [2], are respected by process algebra
operations, on the same line followed in [17, 18] for classic process algebras.
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