
Model Checking Infinite-State Markov Chains�

Anne Remke, Boudewijn R. Haverkort, and Lucia Cloth

University of Twente, Faculty for Electrical Engineering,
Mathematics and Computer Science
{anne, brh, lucia}@cs.utwente.nl

Abstract. In this paper algorithms for model checking CSL (continuous
stochastic logic) against infinite-state continuous-time Markov chains of
so-called quasi birth-death type are developed. In doing so we extend the
applicability of CSL model checking beyond the recently proposed case
for finite-state continuous-time Markov chains, to an important class
of infinite-state Markov chains. We present syntax and semantics for
CSL and develop efficient model checking algorithms for the steady-state
operator and the time-bounded next and until operator. For the former,
we rely on the so-called matrix-geometric solution of the steady-state
probabilities of the infinite-state Markov chain. For the time-bounded
until operator we develop a new algorithm for the transient analysis of
infinite-state Markov chains, thereby exploiting the quasi birth-death
structure. A case study shows the feasibility of our approach.

1 Introduction

Continuous-time Markov chains are a widely spread modeling formalism for per-
formance and dependability evaluation of computer and communication systems.
Recently, various researchers have adopted CTMCs as “stochastic extension” of
finite-state automata and have proposed new logics to express quantitative prop-
erties for them. Most notably is the work on CSL for CTMCs [2, 4] as stochastic
extension of CTL, and the work on CSRL for Markov reward models (CTMCs
enhanced with a state reward) [3]. Efficient computational algorithms have been
developed for checking these models against formally specified properties ex-
pressed in these logics, cf. [3, 4], as well as supporting tools, cf. PRISM [13] and
ETMC2 [11].

All of the above work, however, has focused on finite-state models. In this
paper we will extend model checking CSL towards infinite-state CTMCs. It is
then possible to assess infinite-state systems, or to approximate the behavior of
very large-but-finite systems. The analysis of general infinite-state CTMCs is,
however, beyond reach. Therefore, we restrict the class of infinite-state CTMCs

� The work presented in this paper has been performed in the context of the MC=MC
project (612.000.311), financed by the Netherlands Organization for Scientific Re-
search (NWO) and is based on the diploma thesis [18], supported by the German
Academic Exchange Service (DAAD).

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 237–252, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 A. Remke, B.R. Haverkort, and L. Cloth

to the class of so-called quasi birth-death models (QBDs) [16], for which, de-
spite their infinite state space, efficient algorithms exist to compute steady-state
probabilities. As we will see in the course of the paper, we also require the tran-
sient, i.e., time-dependent, analysis of the infinite-state QBDs; we develop new
algorithms for that purpose in this paper as well.

The paper is further organized as follows. We introduce labeled infinite-state
CTMCs, and QBDs in particular, in Section 2. We then describe syntax and
semantics of CSL in Section 3. Section 4 addresses in detail the model checking
algorithms for the CSL operators. The feasibility of the approach is illustrated
in Section 5 with a small case study, and the paper is concluded in Section 6.

2 Infinite-State CTMCs

For a fixed set of AP of atomic propositions a labeled infinite-state CTMC is
defined as follows:

Definition 1. A labeled infinite-state CTMC M is a tuple (S,Q, L) with
an infinite countable set of states S, a square generator matrix1 Q : S × S → R,
and labeling function L : S → 2AP .

The value Q(i, j) ≥ 0, for i �= j, equals the rate at which a transition from state
i to state j occurs in the CTMC, whereas Q(i, i) denotes the negative sum of
the off-diagonal entries in the same row of Q; its value represents the rate of
leaving state i (in the sense of an exponentially distributed residence time). The
labeling function L assigns to each state the set of valid atomic propositions in
that state.

A special case of infinite-state CTMCs are CTMCs with quasi birth-death
structure [16]. Informally speaking, the infinite state space of a QBD can be
viewed as a two-dimensional strip, which is finite in one dimension and infinite
in the other. Furthermore, the states in this strip can be grouped in so-called
levels, according to their value or identity in the infinite dimension. Thus, the
state space of a QBD consist of neighboring levels, which are all alike, except for
the first one (level 0). The first level is called boundary level and all the others
repeating levels. The first repeating level is sometimes called the border level as
it separates the boundary level from the repeating levels.

Transitions, represented by positive entries in the matrix Q, can only occur
between states of the same level or between states of neighboring levels. All
repeating levels have the same inter- and intra-level transition structure. The
state space of a QBD can be partitioned into an infinite number of finite sets
Sj , j = {0, 1, . . .}, each containing the states of one level, such that S =

⋃∞
j=0 Sj .

Figure 1(a) gives a graphical representation of a QBD, where level 0 is the
boundary level and the levels from level 1 onwards are repeating levels. The inter-
level transitions can be represented through matrices B0,1,B1,0,A0,A2, whereas

1 Note that M does not contain self loops. Residence times in a CTMC obey a mem-
oryless distribution, hence, self loops can be eliminated.

Model Checking Infinite-State Markov Chains 239

0 1 32

border level

boundary level

A0 A0 A0

B0,0

A2 A2

B1,1 A1 A1

B1,0 A2

B0,1

. . .

repeating levels

border level

boundary repeating levels

A0

A0

A0

A1

B0,0 B0,1

A1A2

A2

B1,1B1,0

(a) (b)
levels in a QBD block-tridiagonal structure

of the generator matrix Q

Fig. 1. Regular structure of QBDs

the intra-level transitions can be represented through the matrices B0,0,B1,1 and
A1 (cf. Figure 1(b)).

Although QBDs are introduced here at the state level, high-level formalisms,
e.g., based on stochastic Petri nets [17] or stochastic process algebras [7, 15], do
exist.

Definition 2. A labeled QBD Q of order (N0, N) (with N,N0 ∈ N
+) is

a labeled infinite-state CTMC, cf. Def. 1. The set of states is composed as
S = {0, . . . , N0 − 1} × {0} ∪ {0, . . . , N − 1} × N

+, where the first part repre-
sents the boundary level with N0 states, and the second part the infinite number
of repeating levels, each with N states. The block-tridiagonal generator matrix
Q consists of the following finite matrices describing the inter- and intra-level
transitions:

B0,0 ∈ R
N0×N0 : intra-level transition structure of the boundary level,

B0,1 ∈ R
N0×N : inter-level transitions from the boundary level to the border level,

B1,0 ∈ R
N×N0 : inter-level transitions from the border level to the boundary level,

B1,1 ∈ R
N×N : intra-level transition structure of the border level.

A0 ∈ R
N×N : inter-level transitions from one repeating level to the next higher

repeating level,
A1 ∈ R

N×N : intra-level transitions for the repeating levels2, and
A2 ∈ R

N×N : inter-level transitions from one repeating level to the next lower
repeating level.

In the following we limit ourselves to strongly connected CTMCs and to so-
called level-independent atomic propositions. That is, if an atomic proposition
ap ∈ AP is valid in a certain state of an arbitrary repeating level, it has to be

2 Note that B1,1 differs from A1 only in the diagonal entries.

240 A. Remke, B.R. Haverkort, and L. Cloth

valid in the corresponding states of all repeating levels. This limitation poses
a true restriction on the set of formulas we are able to check. In practice, this
means that a CSL formula must not refer to the level index in order to be
level-independent.

Definition 3. Let i ∈ {0, . . . , N − 1}. An atomic proposition ap ∈ AP is level-
independent if and only if for all l, k ≥ 1, L(i, k) = L(i, l).

An infinite path σ is a sequence s0
t0−→ s1

t1−→ s2
t2−→ . . . with, for i ∈ N, si ∈ S

and ti ∈ R>0 such that Q(si, si+1) > 0 for all i. A finite path σ is a sequence

s0
t0−→ s1

t1−→ . . . sl−1
tl−1−−−→ sl such that sl is absorbing3, and Q(si, si+1) > 0 for

all i < l. For an infinite path σ, σ[i] = si denotes for i ∈ N the (i + 1)st state
of path σ. The time spent in state si is denoted by δ(σ, i) = ti. Moreover, with
i the smallest index with t ≤ ∑i

j=0 tj , let σ@t = σ[i] be the state occupied at
time t. For finite paths σ with length l+1, σ[i] and δ(σ, i) are defined in the way
described above for i < l only and δ(σ, l) = ∞ and δ@t = sl for t >

∑l−1
j=0 tj .

PathQ(si) is the set of all finite and infinite paths of the QBD Q that start
in state si and PathQ includes all (finite and infinite) paths of the QBD Q. The
superscript Q will be omitted whenever it is clear to which QBD the paths refer.

As for finite CTMCs, a probability measure Pr on paths can be defined [4].
Starting from there, two different types of state probabilities can be distinguished
for QBDs.

The transient state probability is a time-dependent measure that consid-
ers the QBD at an exact time instant t. The probability to be in state s′ at time
instant t, given the initial state s is denoted as πQ(s, s′, t) = Pr(σ ∈ Path(s) |
σ@t = s′). The transient probabilities are characterized by a linear system of
differential equations of infinite size. Let π(t) be the vector of transient state
probabilities at time t for all possible states (we omit the superscript Q as well
as the starting state s for brevity here), we have π′(t) = π(t) · Q, given starting
state s. Using a standard differential equation solver is difficult since we deal
with an infinite number of differential equations. An approach using Laplace
transforms and exploiting the tri-diagonal structure of the matrix Q has been
presented in [20], however, this approach does not lead to practically feasible al-
gorithms. Instead, it is better to resort to a technique known as uniformization,
cf. [8, 9]. This will be elaborated upon in Section 4.

The steady-state probabilities to be in state s′, given initial state s, are
then defined as πQ(s, s′) = limt→∞ πQ(s, s′, t), and indicate the probabilities
to be in some state s′ “in the long run”. If steady-state is reached, the above
mentioned derivatives will approach zero. Furthermore, if the QBD is ergodic, the
initial state does not influence the steady-state probabilities (we therefore often
write π(s′) instead of π(s, s′) for brevity). Thus, the steady-state probability
vector π then follows from the infinite system of linear equations π · Q = 0,
and

∑
s πs = 1 (normalization). This system of equations can be solved using

so-called matrix-geometric methods which exploit the repetitive structure in the

3 A state s is called absorbing if for all s′ the rate Q(s, s′) = 0.

Model Checking Infinite-State Markov Chains 241

matrix Q [9, 16]. The idea is that the steady-state probabilities are found in a
level-wise fashion, starting from the boundary and the border level. In order
to do so, one first has to find the smallest square matrix R that satisfies the
matrix-quadratic equation A0R2 +A1R+A2 = 0. Efficient algorithms to do so
exist, cf. [14]. Then, a system of linear equations can be set up that involves only
the steady-state probabilities of the boundary and the border level, as well as
a normalization equation with respect to these two levels. This system of linear
equations can be solved with known iterative techniques like the Gauss-Seidel
iterative method. Let v0 and v1 denote the steady-state probabilities of the first
two levels, then, the matrix-geometric result [16] states that for i = 1, 2, · · · , we
have vi+1 = vi · R.

A final remark should be made about stability. Since a QBD has an infinite
state space, the transition rates can be such that all probability mass in steady
state resides in levels that are “infinitely far away” from level 0. This, often
undesirable situation, can be detected solely on the basis of the matrices A0,A1
and A2, hence, before any (expensive) computations on R start. Notice that in
such cases, computing steady-state probabilities does not make sense; transient
probabilities can still be computed.

3 The Logic CSL

We apply the logic CSL [4] on QBDs. Syntax and semantics are the same for
the only difference that we now interpret the formulas over QBDs.

Syntax. Let p ∈ [0, 1] be a real number, �� ∈ {≤, <, >,≥} a comparison oper-
ator, I ⊆ R≥0 a nonempty interval and AP a set of atomic propositions with
ap ∈ AP .

Definition 4. CSL state formulas Φ are defined by

Φ ::= tt | ap | ¬Φ | Φ ∧ Φ | S��p(Φ) | P��p(φ),

where φ is a path formula constructed by

φ ::= X IΦ | Φ UIΦ.

The steady-state operator S��p(Φ) denotes that the steady-state probability for
a Φ-state meets the bound p. P��p(φ) asserts that the probability measure of
the paths satisfying φ meets the bound p. The next operator X IΦ states that a
transition to a Φ-state is made at some time instant t ∈ I. The until operator
Φ UIΨ asserts that Ψ is satisfied at some time instant in the interval I and that
at all preceding time instants Φ holds.

Semantics. For a CSL state formula Φ on a QBD Q, the satisfaction set con-
tains all states of Q that fulfill Φ. The satisfaction set can be considered as the
infinite union of finite level satisfaction sets: Sat(Φ) = Sat0(Φ) ∪ ⋃∞

j=1 Satj(Φ).
Satj(Φ) contains only those Φ-states that are situated in level j.Satisfaction is
stated in terms of a satisfaction relation |=, which is defined as follows.

242 A. Remke, B.R. Haverkort, and L. Cloth

Definition 5. The relation |= for states and CSL state formulas is defined as:

s |= tt for all s ∈ S, s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ,
s |= ap iff ap ∈ L(s) s |= S��p(Φ) iff πQ(s, Sat(Φ)) �� p,
s |= ¬Φ iff s �|= Φ s |= P��p(φ) iff ProbQ(s, φ) �� p.

where πQ(s, Sat(Φ)) =
∑

s′∈Sat(Φ) πQ(s, s′), and ProbQ(s, φ) describes the prob-
ability measure of all paths σ ∈ Path(s) that satisfy φ when the system is starting
in state s, that is, ProbQ(s, φ) = Pr{σ ∈ PathQ(s) | σ |= φ}.

Definition 6. The relation |= for paths and CSL∞ path formulas is defined as:

σ |= X IΦ iff σ[1] is defined and σ[1] |= Φ and δ(σ, 0) ∈ I,

σ |= Φ UIΨ iff ∃t ∈ I (σ@t |= Ψ ∧ (∀t′ ∈ [0, t)(σ@t′ |= Φ))).

4 Model Checking Algorithms

In order to develop a model checking algorithm for QBDs, we need to focus
on the connection between the validity of state formulas and the special birth-
death structure of QBDs. At first glance, one could think that in corresponding
states of all repeating levels the same CSL formulas hold. Model checking a
QBD would then be reducible to model checking the boundary level and one
repeating level representative for all others. Unfortunately this is not the case,
as can be explained considering the time-bounded next and until operator. In
order to check CSL properties that contain these path formulas, we need to
examine all possible paths in a level-wise fashion. Considering time-bounded
next, note that in the border level other next-formulas might be satisfied than
in the other repeating levels, because the boundary level is still reachable from
the border level but not from any other repeating level. Thus, if we want to check
for example the formula φ = X I red and the property red is only valid in the
boundary level, this property φ can be fulfilled by a path starting in the border
level, but not when starting in any other repeating level. A similar reasoning
holds for the until operator, where not only the border level is concerned but
even more repeating levels, because with the until operator not just one step
is considered, but potentially infinitely many. Thus, for path-formulas no two
repeating levels can a priori be considered the same.

4.1 Level Independence of CSL Formulas

Even though CSL formulas are not level independent in general, their validity
does not change arbitrarily between levels. Remember that we assume level in-
dependence of atomic propositions for the QBDs we consider. For CSL formulas,
we generalize the idea of level independence: we only require that the validity in
a state is level independent for repeating levels with an index of at least k. Thus,
we allow the validity of a CSL formula to change between corresponding states
of repeating levels, but only up to repeating level k − 1. From level k onwards,
the validity must remain unchanged.

Model Checking Infinite-State Markov Chains 243

Definition 7. Let Q be a QBD of order (N0, N). A CSL state formula Φ is
level independent as of level k ≥ 1 (in QBD Q) if and only if for levels above
and including k, the validity of Φ in a state does not depend on the level, that is,

for all i ∈ {0, . . . , N − 1} and for all l ≥ k : (i, l) |= Φ ⇐⇒ (i, k) |= Φ.

The following proposition states, under the assumption of level independent
atomic propositions, that such a k exists for any CSL state formula.

Proposition 1 Let Q be a QBD with level independent atomic properties and
let Φ be a CSL state formula. Then there exists a k ∈ N, such that Φ is level
independent as of level k in Q.

We will justify this proposition inductively in the sections that discuss the model
checking of the different types of CSL state formulas.

For model checking a property Φ, we will compute the set Sat(Φ) with a
recursive descent procedure over the parse tree of Φ. To do so, the CSL formula
Φ is split into its sub-formulas and for every sub-formula the model checker is
invoked recursively. For a state formula Φ that is level independent as of level
k, cf. Definition 7, only the first k level satisfaction sets have to be computed.
Satk(Φ) then acts as a representative for all following levels. In what follows
we discuss the required computations for one such invocation, for each of the
operators in the logic CSL.

4.2 Atomic Propositions and Logical Operators

Computing the satisfaction set for an atomic proposition ap proceeds as follows.
Sat0(ap) consists of those states of the boundary level where ap is contained in
the labeling. We test all states in the border level in order to obtain Sat1(ap),
and, hence, Satj(ap) for j ≥ 1 (as per Definition 3).

Let Φ be a CSL state formula that is level independent as of level k. Its
negation ¬Φ is clearly also level independent as of level k. The level satisfaction
sets of ¬Φ are computed by complementing the corresponding satisfaction set
of Φ:

Satj(¬Φ) = Sj\Satj(Φ), for all j ≥ 0.

Let Φ and Ψ be two CSL state formulas, level independent as of level kΦ and kΨ ,
respectively. The conjunction Φ∧Ψ is level independent as of level max(kΦ, kΨ).
The level satisfaction sets are computed by intersecting the corresponding sat-
isfaction sets of Φ and Ψ :

Satj(Φ ∧ Ψ) = Satj(Φ) ∩ Satj(Ψ), for all j ≥ 0.

4.3 Steady-State Operator

A state s satisfies S��p(Φ) if the accumulated steady state probability of all Φ-
states reachable from s meets the bound p. Since we assume a strongly connected
QBD, the steady-state probabilities are independent of the starting state. It fol-
lows that either all states satisfy a steady-state formula or none of the states

244 A. Remke, B.R. Haverkort, and L. Cloth

does, which implies that a steady-state formula is always level independent as of
level 1. We first determine the satisfaction set Sat(Φ) and then compute the ac-
cumulated steady-state probability. If the accumulated steady-state probability
meets the bound p, we have Sat(S��p(Φ)) = S, otherwise, Sat(S��p(Φ)) = ∅. Ex-
ploiting the special structure of QBDs, the accumulated probability is given by

π(Sat(Φ)) =
∑

s∈Sat(Φ)

π(s) =
∞∑

j=0

∑
s∈Satj(Φ)

vj(s),

where the vectors vj = (· · · , vj(s), · · ·) can be computed one after the other,
using the matrix-geometric method, as discussed in Section 2.

In order to deal with the infinite sum we iterate through the repeating levels
and accumulate the steady-state probabilities in a level-wise fashion. Denote
with π̃l(Sat(Φ)) the accumulated steady-state probabilities of all Φ-states up to
level l, that is,

π̃l(Sat(Φ)) =
l∑

j=0

∑
s∈Satj(Φ)

vj(s).

Starting with l = 0, we iterate through the levels and compute π̃l(Sat(Φ)) and
π̃l(Sat(¬Φ)), respectively. The computation of the steady-state probabilities of
¬Φ-states introduces no additional cost, since they are computed anyway. In
every step we have to check whether we can already decide on the validity of the
steady-state formula S��p(Φ). The following implications hold:

(a) π̃j(Sat(Φ)) > p ⇒ π(Sat(Φ)) > p,
(b) π̃j(Sat(¬Φ)) > 1 − p ⇒ π(Sat(Φ)) < p.

As soon as one of the left hand side inequalities becomes true, the iteration
stops. For the interpretation we distinguish the cases S<p(Φ) and S>p(Φ). For
S≥p(Φ) or S≤p(Φ) the equations need to be modified accordingly. For S<p(Φ) the
interpretation is as follows. If inequality (a) holds, the condition π(Sat(Φ)) < p
is clearly not accomplished and Sat(S<p(Φ)) = ∅. If inequality (b) holds, the
condition π(Sat(Φ)) < p is accomplished and Sat(S<p(Φ)) = S. For S>p(Φ)
the same conditions need to be checked in every iteration step j, but they need
to be interpreted differently. If inequality (a) holds, the probability bound is
met and Sat(S>p(Φ)) = S. If inequality (b) holds, the bound is not met and
Sat(S>p(Φ)) = ∅.

The satisfaction set of Φ might be finite. For a CSL formula Φ that is level
independent as of level k, this is the case when no state in level k satisfies Φ.
The iteration then ends at level k − 1 and π(Sat(Φ)) = π̃k−1(Sat(Φ)). In case
Sat(Φ) is infinite, the iterations stop as soon as one of the inequalities is satisfied.
Unfortunately, if the probability p is exactly equal to the steady-state probability
π(Sat(Φ)), the approximations π̃l(Sat(Φ)) and π̃l(Sat(¬Φ)) will never fulfill one
of the inequalities. In an implementation of this algorithm some care must be
taken to detect this case in order to avoid a non-stopping iteration.

Instead of the just-sketched iterative process, we can also develop a closed-
form matrix expression for the probability π(Sat(Φ)) by exploiting properties of

Model Checking Infinite-State Markov Chains 245

the matrix-geometric solution, i.e., by using the fact that
∑

i R
i = (I − R)−1.

In doing so, the infinite summation disappears, however, it comes at the cost
of a required matrix inversion. In practice, this is therefore not always a more
efficient approach, but it avoids the stopping problem.

4.4 Time-Bounded Next Operator

Recall that a state s satisfies P��p(X IΦ) if the one-step probability to reach a
state that fulfills Φ within a time in I = [a, b], outgoing from s meets the bound
p, that is,

s |= P��p(X IΦ) ⇔ Pr{σ ∈ Path(s) | σ |= X IΦ} �� p

⇔

⎛
⎜⎝(

eQ(s,s)·a − eQ(s,s)·b
)

·
∑

s′∈Sat(Φ)
s′ �=s

Q(s, s′)
−Q(s, s)

⎞
⎟⎠ �� p,

(1)

where eQ(s,s)·a − eQ(s,s)·b is the probability of residing at s for a time in I,
and Q(s,s′)

−Q(s,s) specifies the probability to step from state s to state s′. Note that
the above inequality contains a (possibly infinite) summation over all Φ-states.
However, we only need to sum over the states of Sat(Φ) that are reachable from
s in one step. That is, for s = (i, j), we only have to consider the Φ-states from
levels j−1, j, and j+1. For all states of all other levels the one-step probabilities
are zero anyway. The infinite set Sat(Φ) ruling the summation in (1) can thus
be replaced by the finite set SatX ,(i,j)(Φ) containing only the states from level
j − 1, j, j + 1 that fulfill Φ, that is,

SatX ,(i,j)(Φ) =

{
Sat0(Φ) ∪ Sat1(Φ), j = 0,

Satj−1(Φ) ∪ Satj(Φ) ∪ Satj+1(Φ), otherwise.

Now, let the inner formula Φ of the next-formula be level independent as of
level k. Hence, the validity of the state formula P��p(X IΦ) might be different in
corresponding states for all levels up to k − 1. Therefore, unfortunately, level k
can still have different states satisfying P��p(X IΦ) since level k − 1 is reachable
in one step. But, as of level k+1, only levels can be reached where the validity of
state formula Φ is equal for corresponding states. Hence, if Φ is level independent
as of level k, P��p(X IΦ) is level independent as of level k+1. For the construction
of the satisfaction set of such a formula, we therefore have to compute explicitely
the satisfying states up to level k + 1. Subsequently, Satk+1(P��p(X IΦ)) can be
seen as a representative for all following repeating levels.

4.5 Time-Bounded Until Operator

For model checking P��p(Φ UIΨ) we adopt the general approach for finite CTMCs
[4]. The idea is to use a transformed QBD where several states are made absorb-
ing. We focus on the case where I = [0, t]. The CSL path formula ϕ = Φ U [0,t]Ψ
is valid if a Ψ -state is reached on a path, before time t via only Φ-states. As

246 A. Remke, B.R. Haverkort, and L. Cloth

10level

representative

d . . . d . . . ddd

k + 1k k + � n
d

� k + 2 · � n
d

�

. . .

Fig. 2. Finite fraction of the QBD needed for the transient solution

soon as a Ψ -state is reached, the future behavior of the QBD is irrelevant for
the validity of ϕ. Thus all Ψ -states can be made absorbing without affecting the
satisfaction set of formula ϕ. On the other hand, as soon as a (¬Φ ∧ ¬Ψ) state
is reached, ϕ will be invalid, regardless of the future evolution of the system.
As a result we may switch from checking the Markov chain Q to the Markov
chain Q[Ψ][¬Φ ∧ ¬Ψ] = Q[¬Φ ∨ Ψ], where the states satisfying the formula in
[·] are made absorbing. Model checking a formula involving the until operator
then reduces to calculating the transient probabilities πQ[¬Φ∨Ψ](s, s′, t) for all
Ψ -states s′. Exploiting the special structure of QBDs yields

s |= P��p(Φ U [0,t]Ψ) ⇔ ProbQ(s, Φ U [0,t]Ψ) �� p

⇔
⎛
⎝ ∞∑

i=0

∑
s′∈Sati(Ψ)

πQ[¬Φ∨Ψ](s, s′, t)

⎞
⎠ �� p.

Making the QBD Finite. Uniformization [8] is an often used method to
compute transient probabilities in finite CTMCs. The continuous-time model
is transformed into a discrete-time model together with a Poisson process with
rate λ. The uniformization constant λ must be at least equal to the maximum
absolute value of the diagonal entries of the generator Q. Since for a QBD the
matrix Q has only finitely many different diagonal entries (originating from the
matrices B0,0,B1,1, and A1), λ can be determined even though Q has an infinite
number of entries. For an allowed numerical error εt, uniformization requires a
finite number n of steps (state changes) to be taken into account in order to com-
pute the transient probabilities. Note that n can be computed a priori, given εt,
λ and t.

Let d ≥ 1 be the so-called level diameter, that is, the minimum number of
state transitions that is needed to cross a complete repeating level. If n steps are
to be taken into account, only �n

d � levels can be reached from a state in level l
in either direction.

Thus, for model checking the formula P��p(Φ U [0,t]Ψ), first all ¬Φ ∨ Ψ -states
have to be made absorbing. If ¬Φ ∨ Ψ is level-independent as of level k, then,
using uniformization with n steps, we obtain the same transient probabilities for
corresponding states as of level k + �n

d �, since only equivalent repeating levels
are seen when stepping through the QBD.

Model Checking Infinite-State Markov Chains 247

In order to compute the transient probabilities for all states of the QBD, it
suffices to compute them for the first k + �n

d � levels only. Hence, only a finite
part of the infinite QBD is needed. Outgoing from level k + �n

d � there must
still be the possibility to undertake �n

d � steps “to the right”. The total number
of levels we have to consider therefore is k + 2 · �n

d � (cf. Figure 2). Thus, we
reduced the task of computing transient probabilities for an infinite QBD to the
computation of transient probabilities in a finite CTMC.

Interpretation of the Transient Probabilities. For all states in the first
k + �n

d � levels, we add the computed transient probabilities to reach any Ψ -state
and check whether the accumulated probability meets the bound p. When using
uniformization, the computed accumulated probability

π̃Q[¬Φ∨Ψ](s, Sat(Ψ), t) =
∑

s′∈Sat(Ψ)

π̃Q[¬Φ∨Ψ](s, s′, t)

is always an underestimation of the actual probability. Fortunately, we are able
to indicate a maximum error εm (depending on εt) such that

πQ[¬Φ∨Ψ](s,Sat(Ψ), t) ≤ π̃Q[¬Φ∨Ψ](s,Sat(Ψ), t) + εm.

The value of εm decreases as n increases. Applying the above inequality, we
obtain the following implications:

(a) π̃Q[¬Φ∨Ψ](s,Sat(Ψ), t) > p ⇒ πQ[¬Φ∨Ψ](s,Sat(Ψ), t) > p
(b) π̃Q[¬Φ∨Ψ](s,Sat(Ψ), t) < p − εm ⇒ πQ[¬Φ∨Ψ](s,Sat(Ψ), t) < p

If one of these inequalities (a) or (b) holds, we can decide whether the bound
< p or > p is met. For the bounds ≤ p and ≥ p, similar implications can be
derived. If π̃Q[¬Φ∨Ψ](s,Sat(Ψ), t) ∈ [p, p − εm], then we cannot decide whether
πQ[¬Φ∨Ψ](s,Sat(Ψ), t) meets the bound p. The number of steps n considered
when computing the transient probabilities via uniformization has been too small
in that case. Decreasing εt, hence, increasing n, might resolve this problem.

As already mentioned, for all levels ≥ k + �n
d �, the transient probabilities

computed with n steps will be the same. If we can decide whether the bound p is
met (case (a) or (b) above), we can be sure that P��p(Φ U [0,t]Ψ) is level indepen-
dent as of level k + �n

d �. It might actually be the case that level independence
starts at a smaller level.

If n is large enough we check for all states in levels up to k + �n
d � whether

the accumulated transient probability of reaching a Ψ -state meets the bound p.
These states form the subsequent level satisfaction sets Satj(P��p(Φ U [0,t]Ψ)).
The satisfaction set for level k + �n

d � is representative for all following levels.
The more general case where I = [t1, t2] for 0 < t1 < t2 can be treated by

following the procedure given in [4]. It requires the computation of transient
probabilities in two “versions” of the QBD, where different states are made
absorbing. The number of levels to be considered must be adapted accordingly.
Details of this procedure are omitted for brevity here, but can be found in [18].

248 A. Remke, B.R. Haverkort, and L. Cloth

cyclic server

µ2 = 0.2

µ1 = 2

λ2 = 0.1

λ1 = 1

· · · K · · ·

user jobs

system jobs

E

1L

Fig. 3. Dual-Job-Class Cyclic-Server System

The case where I = [0,∞] can be addressed similarly as in the finite-state
case, cf. [4–Corollary 1], except for the fact that it leads to a system of linear
equations of infinite size. Given the special (QBD) structure of this system of
linear equations, it appears that also in this case a matrix-geometric solution
approach might be applicable, but this remains to be investigated.

Complexity. For model checking the until operator we need to consider k + 2n
d

levels with N states, respectively N0 states for the boundary level. ν denotes
the average number of transitions originating from a single state of the QBD.
To compute the transient probabilities we require the sum of O(λt) matrices,
each of which is the result of a matrix-matrix multiplication. This results in
an overall computational complexity of O(λt · ν(N0 + kN + nN)2). Regarding
storage complexity, we require O(3(N0 + kN + nN)) storage for the probability
matrices and O(ν(N2

0 + NN0 + N2)) for the transition matrix of the underlying
DTMC.

5 Case Study: A Dual-Job-Class Cyclic-Server System

System Description. We analyze a system with two sorts of jobs, as depicted
in Figure 4. User jobs, having high priority, are served according to an exhaustive
scheduling strategy. System jobs, having low priority, are served with a 1-limited
scheduling strategy. In the beginning, the server always starts serving user jobs
and a system job can only be served after at least one user job has been served.
As long as there are user jobs in the queue, the server first serves these jobs.
System jobs can only be served, if all user jobs have been served and at least one
system job is waiting for service. If the server changes to system jobs, only one
job is served and afterwards the server polls the user jobs queue again. We can
have an infinite number of user jobs and at most K system jobs in the system.
We have modeled this system as iSPN [17]; from this iSPN the underlying QBD
is automatically generated. The order of this QBD depends on the actual value
of K; each level of the underlying QBDs consists of 2K + 1 states that model
the number of system jobs in the queue and the presence of the server at the
system-job queue. The QBD for K = 1 is given in Figure 4.

Its states can be interpreted as follows: j indicates the number of user jobs
currently in the system, i = 0 means that a system job is being served, i = 1
means that no system job is waiting, and i = 2 means that a system job just
arrived but is not being served yet.

Model Checking Infinite-State Markov Chains 249

(0,0)

(1,0)

(2,0) (2,1)

(1,1)

(0,1)

boundary level border level repeating level

0.2 0.2 0.2 0.2

0.1 0.1 0.1 0.1

1

2

1 1

111

1 1 1

2 2

22

2

(0,2)

(1,2)

(2,2)

(0,3)

(1,3)

(2,3)

. . .

. . .

. . .

Fig. 4. QBD of the Dual-Job-Class Cyclic-Server System

Steady-State Property. We want to know whether the steady-state proba-
bility of having a full system-job queue is greater than 0.1. As CSL formula,
this property can be stated as S>0.1(QSysfull), where QSysfull is the atomic
proposition that is valid in all states where the system-job queue is full.

For any K, every level contains exactly two states satisfying atomic propo-
sition QSysfull, being the state with K system jobs present (queued), and with
the server active with either a system job or a user job. In case of K = 1, we see
in Figure 4 that these are the states (0, ·) and (2, ·). Hence, Sat(QSysfull) has
infinite size. For K < 11, Sat(S>0.1(QSysfull)) = S, thus, the formula holds in
all states. For K ≥ 11, Sat(S>0.1(QSysfull)) = ∅.

Figure 5 shows the number of iterations (as discussed in Section 4.3), needed
to verify the property, depending on the system parameter K. If the actual
steady-state probability of QSysfull-states comes close to the given bound 0.1,
more iterations are needed. This explains the peak at K = 11. Figure 5 also
gives the computation time for different K. Note that the smaller number of
iterations for K > 11 does not lead to a smaller computation time, since more
time is needed per iteration (as the matrices become larger).

Time-Bounded Until Property. As system jobs have a low priority compared
to the user jobs, we would like to know for which states of the QBD the probabil-
ity of the system-job queue to become empty in a certain time interval is greater
than 0.1. Stated in CSL, we analyze Φ = P>0.1(¬QSysEmpty U [0,t]QSysEmpty).

For K = 1 the formula Φ can be interpreted as follows: Is the probability
greater than 0.1 that a waiting system job is served in a certain time interval?
For a time interval I = [0, 2], a given error ε = 10−7, uniformization considers 23
steps. As Φ is level-independent as of level 1 and we have a level-diameter of 1,
level 24 can serve as a representative for the higher repeating levels. Analyzing
the resulting satisfaction set Sat(P>0.1(¬QSysEmpty U [0,2]QSysEmpty)) shows the
following.

All states with first index i = 1 are trivially included in the satisfaction set,
because QSysEmpty is already valid in these states. States with first index i = 0
are included as they model a situation in the system where the server is serving

250 A. Remke, B.R. Haverkort, and L. Cloth

 0

 5

 10

 15

 20

 25

 30

 35

 40

 128 64 32 16 8 4

 100

 10

 1

 0.1

ite

ra
tio

ns

se
c

K

iterations
computation time

Fig. 5. Number of iterations and computation time required for checking
S>0.1(QSysfull), as a function of the maximum number of system jobs K

 1⋅104

 5⋅103

 2⋅103

 1⋅103

 128 64 32 16 8 4

se
c

K

[0,1]
[0,2]
[0,3]
[0,5]

Fig. 6. Computation time required for checking P>0.1(¬QSysEmpty U [0,t]QSysEmpty), as
a function of the maximum number of system jobs K

a system job. Hence, for those states the probability for the system job to be
served in time interval [0, 2] is greater than 0.1. If the system job just arrived in
the queue (i = 2), model checking shows that the probability for this job to be
served in time is only greater than 0.1 if less than three user jobs are waiting for
service.

For the computation of the satisfaction sets, we have to deal with state spaces
of the size (2K+1)·(2n+2). The left-hand term accounts for the size of one level
and the right-hand term for the number of levels considered by uniformization.
n gives the number of steps which is considered by uniformization, depending
on the error εt. In Figure 6 the computation time is depicted for different time
intervals. For larger time intervals the state space grows as uniformization needs
to consider more steps which results in larger computation times.

Model Checking Infinite-State Markov Chains 251

6 Conclusions

In this paper we have presented model-checking algorithms for checking CSL
properties against infinite-state CTMCs, in particular for QBDs. The model
checking algorithms make extensive use of uniformization for transient anal-
ysis (for time-bounded until) and matrix-geometric methods for determining
steady-state probabilities (for the steady-state operator). The model checking
algorithms as presented are new. Our approach to analyze the transient state
probabilities of infinite-state CTMC is also new. We have shown the feasibility
of the model checking algorithms by a case study.

We are aware of the fact that when checking nested formulas, the number of
levels that have level-dependent properties grows, which makes the algorithms
less efficient. On the other hand, practice reveals that the nesting depth of logical
expressions to be checked is typically small [6], so that this is not so much of a
disadvantage after all.

At various points, the presented algorithms can be made more efficient. For
instance, for checking time-bounded until we have introduced the notion of level
diameter. In practice, there might be two different diameters, depending on the
direction of crossing a level (to higher or to lower levels). Exploiting this fact
might lead to smaller finite-state Markov chains to be considered.

We also required the QBD under study to be strongly connected, in order
to make use of the fact that the steady-state probabilities do not depend on
the starting state. It is left for further investigation how the model checking
algorithms have to be adapted to account for non-strongly connected QBDs.

By restricting ourselves to level-independent formulas, we restrict the set of
CSL formulas that can be checked. For model checking level-dependent CSL for-
mulas new model checking algorithms will be needed, since in that case we cannot
exploit the level-independent QBD structure to cut the infinite set of states.

We note that there has been done a substantial amount of work on model
checking infinite-state systems, e.g., on regular model checking [1] and proba-
bilistic lossy channel systems [19], however, not in the context of continuous-time
Markov chains, as we have presented here. It remains to be investigated whether
and how we can exploit these results in our context.

Finally, we need to complete our work on the tool chain for specifying and
model checking infinite-state systems, and possibly will integrate it into other
model checking tools for CTMCs. First details on this, and on many of the other
issues addressed in this paper, can be found in the recently completed diploma
thesis [18].

References

1. P. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In P. Gardner and N. Yoshida, editors, Proc. Concur 2004, number 3170
in Lecture Notes in Computer Science, pages 35–48, 2004.

2. A. Aziz, K. Sanwal, and R. Brayton. Model checking continuous-time Markov
chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

252 A. Remke, B.R. Haverkort, and L. Cloth

3. C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical charac-
terisation of performability properties. In Proc. 27th Int. Colloquium on Automata,
Languages and Programming (ICALP’00), number 1853 in Lecture Notes in Com-
puter Science, pages 780–792, 2000.

4. C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algo-
rithms for continuous-time Markov chains. IEEE Transactions on Software Engi-
neering, 29(7):524–541, July 2003.

5. A. Bell. Distributed evaluation of stochasic Petri nets. PhD thesis, Dept. of Com-
puter Science, RWTH Aachen, 2004.

6. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specification
for finite-state verification. In Proc. 21st Int. Conf. on Software Engineering, pages
411–420. IEEE CS Press, 1999.

7. A. El-Rayes, M. Kwiatkowska, and G. Norman. Solving infinite stochastic process
algebra models through matrix-geometric methods. In Proc. 7th Process Alge-
bras and Performance Modelling Workshop (PAPM’99), pages 41–62. University
of Zaragoza, 1999.

8. D. Gross and D.R. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Operations Research, 32(2):343–
361, 1984.

9. B.R. Haverkort. Performance of Computer Communication Systems. John Wiley
& Sons, 1998.

10. B.R. Haverkort, H. Hermanns, and J.-P. Katoen. On the use of model checking
techniques for dependability evaluation. In Proc. 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’00), pages 228–237. IEEE CS Press, 2000.

11. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A tool for model-
checking Markov chains. International Journal on Software Tools for Technology
Transfer, 4(2):153–172, 2003.

12. J.-P. Katoen. Concepts, Algorithms, and Tools for Model Checking. Arbeitsberichte
des IMMD 32(1), Friedrich-Alexander Universität Erlangen Nürnberg, June 1999.

13. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: a hybrid approach. International Journal on Software Tools for
Technology Transfer, 6(2):128–142, 2004.

14. G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi birth
and death processes. Journal of Applied Probability, 30:650–674, 1993.

15. I. Mitrani, A. Ost, and M. Rettelbach. TIPP and the spectral expansion method. In
F. Baccelli, A. Jean-Marie, and I. Mitrani, editors, Quantitative Models in Parallel
Systems, pages 99–113. Springer, 1995.

16. M.F. Neuts. Matrix Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Johns Hopkins University Press, 1981.

17. A. Ost. Performance of Communication Systems. A Model-Based Approach with
Matrix-Geometric Methods. PhD thesis, Dept. of Computer Science, RWTH
Aachen, 2001.

18. A. Remke. Model Checking Quasi Birth Death Processes. Master’s thesis, Dept.
of Computer Science, RWTH Aachen, 2004
(http://www.cs.utwente.nl/∼anne/pub/modelchecking.pdf).

19. Ph. Schnoebelen. The verification of probabilistic lossy channel systems. In C.
Baier, B.R. Haverkort, H. hermanns, J.-P. Katoen, and M. Siegle, editors, Vali-
dation of Stochastic Systems, volume 2925 of Lecture Notes in Computer Science,
pages 445–465, 2004.

20. J. Zhang and E.J. Coyle. Transient analysis of quasi-birth-death processes. Stochas-
tic Models, 5(3):459–496, 1989.

	Introduction
	Infinite-State CTMCs
	The Logic CSL
	Model Checking Algorithms
	Level Independence of CSL Formulas
	Atomic Propositions and Logical Operators
	Steady-State Operator
	Time-Bounded Next Operator
	Time-Bounded Until Operator

	Case Study: A Dual-Job-Class Cyclic-Server System
	Conclusions

