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Abstract. We examine reconfigurations between triangulations and
near-triangulations of point sets, and give new bounds on the number
of point moves and edge flips sufficient for any reconfiguration. We show
that with O(n log n) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-
triangulation on n possibly different points. This improves the previously
known bound of O(n2) edge flips and point moves.

1 Introduction

An edge flip is a graph operation that is defined on (near)-triangulations1. An
edge flip on a triangulation is simply the deletion of an edge, followed by the
insertion of another edge such that the resulting graph remains a triangulation.
The definition of an edge flip gives rise to several natural questions: Does there
always exist a sequence of flips that reconfigures a given triangulation to any
other triangulation? Are there bounds on the lengths of such sequences if they
exist? Can these sequences be computed? These questions have been studied in
the literature in many different settings. In particular, Wagner [19] proved that
given any two n-vertex triangulations G1 and G2, there always exists a finite
sequence of edge flips that reconfigures G1 into a graph isomorphic to G2. Sub-
sequently, Komuro [10] showed that in fact O(n) edge flips suffice. Recently, Bose
et al. [2] showed that O(log n) simultaneous edge flips suffice and are sometimes
necessary. This setting of the problem is referred to as the combinatorial setting
since the triangulations are only embedded combinatorially, i.e. only the cyclic
order of edges around each vertex is defined.

In the geometric setting, the graphs are embedded in the plane with edges
represented by straight line segments. Pairs of edges can only intersect at their
endpoints. Edge flips are still valid operations in this setting, except that now
the edge that is added must be a line segment that cannot properly intersect any
of the existing edges of the graph. This implies that there are valid edge flips
� Research supported in part by the Natural Science and Engineering Council of
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in the combinatorial setting that are no longer valid in the geometric setting.
Lawson [12] showed that given any two geometric near-triangulations N1 and
N2 embedded on the same n points in the plane, there always exists a finite
sequence of edge flips that transforms the edge set of N1 to the edge set of N2.
Hurtado, Noy and Urrutia [9] showed that O(n2) flips are always sufficient and
that Ω(n2) flips are sometimes necessary.

Note that in the geometric setting, only the near-triangulations that are
defined on the specified point set can be attained via edge flips. For example, no
planar K4 can be drawn on a convex set of four points without introducing a
crossing.

In order to resolve the discrepancy between the combinatorial and geometric
settings, Abellanas et al. [1] introduced a geometric operation called a point
move. A point move on a geometric triangulation is simply the modification of
the coordinates of one vertex such that after the modification the graph remains
a geometric triangulation. That is, the move is valid provided that after moving
the vertex to a new position, no edge crossings are introduced. They also showed
that with O(n2) edge flips and O(n) point moves, any geometric triangulation on
n points can be transformed to any other geometric triangulation on n possibly
different points.

The question which initiated our investigation is whether or not O(n2) edge
flips are necessary. In this paper, we show that with O(n log n) edge flips and
point moves, we can transform any geometric near-triangulation on n points to
any other geometric near-triangulation on n possibly different points. Next, we
show that if we restrict our attention to geometric near-triangulations defined
on a fixed point set of size n, the problem is just as difficult even with the use
of point moves. Finally, we show that with a slightly more general point move,
we can remove the extra log factor from our main result.

2 Results

In the remainder of the paper, all triangulations and near-triangulations are ge-
ometric. It is assumed that the outer face any given near-triangulation is convex,
and that any two near-triangulations involved in a reconfiguration have the same
number of points on the convex hull.

We assume that the n vertices of any given triangulation are in general po-
sition. It is not difficult to see that O(n) point moves can reconfigure a triangu-
lation to this form. We begin with some basic building blocks that will allow us
to prove the main theorems.

Lemma 1. [2] A reconfiguration between two triangulations of the same point
set that is in convex position can be done with O(n) edge flips.

Lemma 2. [9] Let v1, v2 and v3 be three consecutive vertices on the outer face
of a near-triangulation T1. Let C be the path from v1 to v3 on the convex hull
of all vertices but v2. A near-triangulation T2 containing all edges of C may be
constructed from T1 with t edge flips, where t is the number of edges initially
intersecting C in T1.
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Lemma 3. Given a near-triangulation T , any vertex p ∈ T with degree d > 3
that is inside the convex hull of the vertices of T can have its degree reduced to
3 with d − 3 edge flips.

Proof. Let P be the polygon that is the union of all triangles incident to p. By
Meister’s two-ears theorem [13], if P has more than three vertices, then it has at
least two disjoint ears2. At most one of them can contain p. Therefore p and one
of the ears form a convex quadrilateral. We may flip the edge from p to the tip of
the ear, effectively cutting the ear from P and reducing the number of vertices
of P by one. This process may be continued until P is reduced to a triangle that
contains p as desired. ��

Lemma 4. Given a near-triangulation T , any vertex p ∈ T with degree 3 that is
inside the convex hull of the vertices of T can be moved to a new position in the
triangulation along a straight path crossing t edges, using at most 2t edge flips
and 2t + 1 point moves, assuming the path does not cross through any vertices.

Proof. Suppose that p is joined by edges to vertices v1, v2 and v3. Without loss
of generality, let edge v2v3 intersect the path that p must follow, and let this
path continue into triangle v2v3v4, as shown in Figure 1.

Clearly p can be moved anywhere within triangle v1v2v3 without the need
of any edge flips. Then it can be moved along its path, as close to edge v2v3 as
necessary, so that the quadrilateral pv2v3v4 becomes convex. This allows edge
v2v3 to be flipped into edge pv4. Now p may continue along its path. As soon as
it enters v2v3v4, edge pv1 may be flipped into v2v3. Now, with two edge flips and
two point moves, p has crossed through the first edge intersecting its path, and
still has degree 3. By the same argument, p may traverse its entire path with two
edge flips and two point moves for each intersecting edge. One additional point
move is required in the last triangle. Note that only three edges in the original
and final triangulations will be different. ��

v1

v2

v3

v4

p

Fig. 1. A vertex p and a straight path that it must move along (dashed). p can pass
through any edge with two edge flips.

2 A triangle, defined by three consecutive vertices of a polygon, is an ear if it is empty
and the vertices form a convex angle. The second vertex is the tip of the ear.
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Lemmata 3 and 4 imply the following result:

Lemma 5. Given a near-triangulation T , any vertex in the interior of the con-
vex hull of the vertices of T with degree d can be moved to a new position in the
triangulation along a path crossing t edges, using O(d + t) edge flips and point
moves.

Lemma 6. An edge can be constructed between a convex hull vertex and any
other vertex in a triangulation using O(n) edge flips, with the aid of one moving
point that is moved O(n) times.

Proof. Let v1 be the hull vertex. First suppose that the second vertex is an
interior point. Then it will play the role of the moving point, and we will label
it p. We can move p directly towards v1, until it is located within a triangle that
has v1 as a vertex. Now v1 and p must be joined with an edge. Next we move p
back along the same line to its original position, always maintaining edge v1p. To
do this, we consider the set of triangles that intersect p’s path, as in Lemma 4.
The point p can always enter a triangle intersecting the path back to its original
location. The difference is that once it has crossed an intersecting edge, we do
not restore the edge. This means that p will accumulate edge degree. An issue
that needs to be taken care of is that of maintaining a triangulation when p is
about to lose visibility to another vertex. This occurs when one of its incident
edges is about to overlap with another edge in the triangulation, as shown in
Figure 2.

Suppose that edge pv3 is about to overlap with edge v3v4. Vertices v3 and
v4 cannot be on opposite sides of the remaining path that p must traverse,
otherwise v3v4 may be flipped. The point p must share an edge with v4 in this
configuration. Points p and v3 are also part of another triangle, along with some
vertex v∗ which may be anywhere on the path from v1 to v3. These two triangles
must form a convex quadrilateral pv∗v3v4, otherwise p would have already lost
visibility to v∗. Thus pv3 may be flipped into v4v

∗, which means that v3 is
removed from the polygon that intersects p’s path. The result is that when p
reaches its original position, it leaves a fan3 behind it, which includes edge v1p.

v2

v3

v1

v4

p

Fig. 2. Maintaining a triangulation while extending edge v1p: p has moved from a
position close to v1 (shown white), and still has to traverse the dashed segment to its
original position. Edge pv3 causes a problem if p is to continue.

3 A fan is a star-shaped polygon with a vertex as its kernel.
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Overall one edge flip is used when p enters a new triangle, and at most one flip
is used for every edge that attaches to p.

If both vertices of the edge that we wish to construct are on the hull, then
we can take any point p within the hull and move it close to v1 and onto the
segment between the two hull vertices. p can then move along this segment to
the second hull vertex until it is connected to both. At this moment, p may be
perturbed so that the three vertices form a triangle. This triangle might contain
other edges incident to p. Lemma 2 implies that these edges may be removed so
that the desired edge can be constructed with O(n) edge flips. ��

2.1 Triangulations

With the basic building blocks in place, we now prove one of our main results.

Theorem 1. With O(n log n) edge flips and point moves, we can transform any
geometric triangulation on n points to any other geometric triangulation on n
possibly different points.

Proof. We transform one triangulation to another via a canonical configuration.
As shown in Figure 3, the interior vertices form a backbone (i.e. their induced
subgraph is a path). The top of the backbone is joined to the topmost hull vertex
v1, and all interior vertices are joined to the other two hull vertices, vL and vR.

The canonical configuration is constructed in a divide-and-conquer manner.
We perform a radial sweep from v1, to find the median vertex interior to the
convex hull, vM . After constructing edge v1vM we move vM directly away from
v1 towards the base vLvR, maintaining v1vM until triangle vMvLvR contains no
interior points. By Lemma 6, we use O(n) operations to accomplish this. Now, we
transform v1vMvL and v1vMvR into backbone configurations by induction since
they are smaller instances of the same problem. The resulting configuration is
shown in Figure 4.

We now show that the two sides may be merged using O(n) operations.
As shown in Figure 5a, we first move the lowest vertex of a backbone into a
position that is close to the base and is along the extension of edge v1vM . This
requires one edge flip. The vertices on the left/right backbones are processed in

vR

v1

vL

Fig. 3. The canonical configuration used for triangulations.
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vM

v1

vL vR

Fig. 4. The configuration of a triangulation prior to merging the backbones on each
side of the median vertex vM .

(a) (b)

Fig. 5. Merging two backbones into one.

ascending order, and are always moved just above the previous processed vertex,
as shown in Figure 5b. Each vertex will require two point moves and one edge
flip. Thus v1vLvR is reconfigured into canonical form, and by a simple recurrence
the number of edge flips and point moves used is O(n log n). It is trivial to move
a canonical triangulation to specific coordinates using n point moves. Thus the
transformation between any two triangulations may be completed. ��

2.2 Near-Triangulations

If the initial graph is a near-triangulation, Theorem 1 does not directly apply.
Some care must be taken to handle a non-triangular outer face. Details are given
in the proof of the following theorem:

Theorem 2. With O(n log n) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-triangula-
tion on n possibly different points.

Proof. As in the case with triangulations, we transform one near-triangulation
to another via a canonical configuration. In the primary canonical configuration,
shown in Figure 6, one chosen hull vertex (v1) is joined by chords to all other
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v1

T

Fig. 6. The primary canonical configuration used for near-triangulations.

hull vertices. Thus v1 is in the kernel of a convex fan. Every triangle of the fan,
except for one, is empty. All interior vertices, located in the non-empty triangle
T , are in the canonical configuration of a triangulation.

We first construct all edges of the top-level fan configuration, leaving interior
vertices in their original positions. Then within each triangle of the fan, we
rearrange the interior vertices into a canonical triangulation. Finally, we merge
all triangles of the fan, so that all interior points move to a single triangle and
are in canonical form.

To construct the fan chords, we always divide the problem into two roughly
equal parts. We begin by constructing two chords as follows: perform a radial
sweep from v1 to successive hull vertices vi {2 ≤ i ≤ n − 1}, always keeping
fewer than n

2 vertices in the swept region. Let vj be the last hull vertex for which
this holds. Construct chords v1vj and v1vj+1. The unswept region not including
triangle v1vjvj+1 contains fewer than n

2 vertices. The swept region contains fewer
than n

2 vertices. Triangle v1vjvj+1 may contain an arbitrary number of vertices,
but this is not a sub-problem (we will not look at this region again during the
construction of the fan). Now we can continue a new sweep on each side of
v1vjvj+1. Construction of the two chords could take O(n) edge flips and point
moves, as described in Lemma 6. However the even split of the sub-problems
ensures that the total number of operations is O(n log n).

Each fan triangle v1vivi+1, containing ki interior points, can be reconfigured
into a backbone structure with O(ki log ki) operations, by Theorem 1. Thus the
total number of edge flips and point moves used to reconfigure all triangles of
the fan into backbone structures is O(n log n).

Now we are left only with the task of merging the fan triangles so that only
one of them will contain all interior points. We can add ki interior points of a
canonical triangulation to an adjacent canonical triangulation using O(ki) edge
flips and point moves. The ki points are processed in descending order and are
always added to the top of the adjacent triangulation, as shown in Figure 7.

Thus we obtain one triangle in canonical form next to an empty triangle. It
is just as easy to merge two canonical triangles separated by an empty triangle.
If we encounter two or more adjacent empty fan triangles, we may use Lemma 1
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Fig. 7. Merging two adjacent fan triangles.

TT TT

Fig. 8. Handling multiple adjacent empty fan triangles. Triangles marked (T) contain
triangulations.

to reconfigure them so that they will not affect the fan-merging process (see
Figure 8). By the above arguments, once we select the triangle that is to finally
contain all of the interior points (the median triangle is a good choice), we can
iteratively merge its neighboring triangles onto it using a total of O(n) edge flips
and point moves.

Finally we are left with a single triangle containing all interior points in
canonical form. On either side, we may have an arbitrary triangulation (resulting
from handling multiple adjacent empty fan triangles), but the vertices will be in
convex position. By Lemma 1 they may be moved to our desired configuration
using O(n) edge flips.

We must still show that this primary canonical configuration can be moved
to specific coordinates. This can be done with O(n) point moves, though space
restrictions prevent us from going into any detail. ��

2.3 Remarks

Our algorithms also work for labeled triangulations, with minor care needed.
Constructing the canonical configuration resembles merge-sort.

If two triangulations have the same point set, the problem is no easier than
the general problem. Suppose that there exists an algorithm that can transform
a triangulation T1 on a given n-point set to a triangulation T2 on the same point
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(a)
(b) (c)

(d)(e)

Fig. 9. Problem on fixed point set is not easier.

set using Fn = o(n log n) edge flips and point moves. Then this algorithm can
be used to transform a triangulation on one point set to any other triangulation
on a possibly different point set with Fn +O(n) edge flips and point moves. This
argument is summarized in Figure 9. Let Figure 9a be the input triangulation.
With Fn flips and moves, move to the triangulation in Figure 9b where every
vertex is adjacent to the lower left vertex v� of the outer face.

Now consider the triangulated polygon, P , that consists of edges not adjacent
to v�. Notice that if we perform a radial sweep from v�, the boundary of P is
monotonic. At least two of the triangles in P are disjoint ears, which means there
must exist an ear tip that is an interior vertex and is also joined to v� by an edge
in the original triangulation. We may move this point directly towards v� and
cut the ear from P . This still leaves a monotone polygon P ′. By continuously
locating such ears, and moving them to a predefined convex position, we can
obtain the configuration illustrated in Figure 9c. The monotonicity of P (and
its descendants) and the convexity of the final configuration of interior points
guarantee that no edge crossings will occur. This process requires a linear number
of point moves.

Next, by Lemma 1, we can use O(n) edge flips to obtain the triangulation
where the lower right vertex of the outer face is adjacent to every vertex, as
illustrated in Figure 9d. From here, it is trivial to move to the canonical config-
uration.

We conclude with the following:

Theorem 3. If an algorithm exists that can reconfigure between any two geo-
metric triangulations of the same point set with o(n log n) edge flips and point
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moves, then we can also transform any geometric triangulation on n points to
any other geometric triangulation on n different points with o(n log n) flips and
moves.

It is tempting to try to find a fast algorithm that will construct a monotone
path, as illustrated in the transition from Figure 9a to Figure 9b. Consider
the polygon that is the union of all triangles incident to the lower left vertex
of Figure 9b. By continuously cutting ears of this polygon, we may get to a
triangulation that is similar to that of Figure 9a, using O(n) edge flips. The
similarity is that all neighbors of the lower left vertex will be in convex position.
However, we have little control over the resulting positions of the remaining
edges if we use only O(n) operations. It is possible to create triangulations for
which the reversal of this ear-cutting technique is not possible. In fact, Figure 9c
serves as an example, if we add a few more vertices inside the large triangle. In
this figure none of the edges directly visible from the lower left vertex can be
flipped, so there is no obvious way to achieve a monotone path with fewer than
O(n log n) operations.

We finally consider the following more powerful point move as an alternative
to the point move studied so far. In this more powerful point move, we can
delete an interior vertex of degree three (and all its incident edges), and create
a new vertex of degree three inside another triangle of the triangulation. With
this type of move we can reconfigure triangulations using O(n) operations. We
simply select a triangle incident to a hull edge and create a backbone inside.
This is done by continuously selecting a vertex of constant degree from outside
the triangle, reducing its degree to three, and moving it to the lower end of the
backbone.
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