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Abstract. RSA-KEM is a popular key encapsulation mechanism that
combines the RSA trapdoor permutation with a key derivation function
(KDF). Often the details of the KDF are viewed as orthogonal to the
RSA-KEM construction and the RSA-KEM proof of security models the
KDF as a random oracle. In this paper we present an AES-based KDF
that has been explicitly designed so that we can appeal to currently held
views on the ideal behaviour of the AES when proving the security of
RSA-KEM. Thus, assuming that encryption with the AES provides a
permutation of 128-bit input blocks that is chosen uniformily at ran-
dom for each key k, the security of RSA-KEM against chosen-ciphertext
attacks can be related to the hardness of inverting RSA.
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1 Introduction

The RSA [16] public key cryptosystem has been used for more than twenty
years and, during that time, a good understanding of how we might best use
the basic encryption primitive has evolved [3, 17, 18]. One recent addition to the
literature is the RSA Key Encapsulation Method (RSA-KEM) due to Shoup [18];
see [2, 8, 11, 20] for similar constructions. Two attractive features of RSA-KEM
are its natural simplicity and its excellent security properties. Very loosely, we
can summarise the encapsulation process in the following way:
1. Generate an input w (of appropriate size) at random.
2. Encrypt w using RSA for transport to the recipient.
3. Generate keying material y = KDF(w) for use in the subsequent symmetric-

based session encryption.
It is clear that the intended recipient can recover w from the received ciphertext
and then generate y so that both sender and receiver can agree on the same
symmetric key. When the underlying key derivation function (KDF) is modelled
as a random oracle or a black box, the security of RSA-KEM (in a chosen-
ciphertext attack model) can be provably related to the hardness of inverting
the RSA primitive.

In this paper we consider the role of the KDF. The properties of the KDF
are such that a hash function is often used to build the KDF and there are
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many dedicated and thoroughly suitable designs. However, since we are likely to
appeal to the AES [12] for any subsequent symmetric-based session encryption,
it might be preferable to build our KDF out of the AES rather than support an
additional algorithm. Furthermore, it might be desirable to have a design based
on the AES which would provide some immunity from continued cryptanalysis
of current hash function proposals [4, 19].

Of course, it is well-known that a hash function can be built out of a block
cipher [5, 9] and, at first sight, it appears that one of these constructions might
suffice. However, our work is further motivated by the following goal. Instead
of modelling the KDF as a random oracle, we would like to provide an explicit
KDF construction that allows us to demonstrate the security of RSA-KEM based
upon reasonable assumptions about the underlying block cipher (i.e. the AES).
Thus our goal is to obtain a security proof for RSA-KEM under the assumption
that the block cipher used in our KDF construction acts as an ideal family of
random permutations indexed by the choice of key. Such an assumption on the
block cipher is often referred to as the Shannon, ideal cipher, or black-box model
and it is used widely (see for example Black et al. [5]).

Now our goal is not difficult to achieve for a block cipher with a sufficiently
large block length (say at least twice the desired security level in bits). However,
we would particularly like to use the AES, and the only block length permitted
for the AES is 128 bits (even though the original cipher Rijndael [6] offered
more flexibility in this regard). This is a problem since typical approaches for
a block cipher-based KDF appear to be at the mercy of birthday attacks; the
security level is bound by only half the block length (i.e., 64 bits in the case
of a 128-bit block cipher). Since the standardized block ciphers at our disposal
have a block length of either 64 or 128 bits, the security level attained using such
mechanisms might not be viewed as adequate. While these birthday attacks may
not immediately break the security of the full scheme RSA-KEM, they do seem
to make it difficult to achieve a sufficiently-tight security proof.

So the goal of our work has been to achieve the level of security offered by
conventional constructions that use a 256-bit block cipher, but to do so via a
construction built around a 128-bit block cipher. More generally, in the ideal
cipher model and using our construction built around a block cipher with block
size kb, an adversary making q oracle queries should not be able to exploit any
weakness with a probability better than

c · q2

22kb
(1)

for some reasonably small constant c. This is approximately as hard as finding
collisions for an ideal hash function with output 2kb bits. Our trick in accom-
plishing this with a 128-bit block cipher is to use an encryption key that is twice
the length of the input block; i.e. to use a 128-bit block cipher with a 256-bit
key. Thus, our specific construction is valid for the AES and all AES finalists,
as well as a range of block ciphers that use 64- and 128-bit block lengths1.
1 Though the security level for 64-bit block lengths is unlikely to be appropriate.
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2 Notation and Specification

Establishing some of the machinery that we need in our construction might
initially appear to be somewhat complicated. However the description of the
scheme itself is straightforward and can be found in Section 2.2.

2.1 Pre-requisites

Our particular key derivation function KDFE is defined in terms of any block
cipher E with the property that the key length is at least twice the block length.
Let E be a block cipher with block length kb bits and key length at least 2kb

bits. We will assume that the key length is exactly 2kb; in the case of a longer
key only the first 2kb bits will be used and the other bits will be fixed to some
prescribed value. Moreover, we will assume that kb is a multiple of 8. For each
integer k > 0 let {0, 1}k denote the set of bit-strings of length k. For integers
j ≥ 0 and k > 0 with j < 2k, let (j)k be the k-bit big-endian representation of
j (e.g., (13)6 = 001101). The concatenation of two bit-strings X and Y will be
denoted X‖Y . For two bit-strings r1 and r2 of the same length, r1 ⊕ r2 denotes
the bitwise exclusive-or of r1 and r2. In situations where a bit-string r of length
k and an integer j < 2k are combined, the expression r ⊕ j denotes the sum
r ⊕ (j)k. We also use the following notational shorthand. For an integer m and
a bit-string s = v0‖v1 consisting of 2 blocks v0 and v1, each of length k, we set
s �m = (v0 ⊕m)‖(v1 ⊕m).

In our specification of KDFE we will appeal to a function δ that “tweaks”
the most significant two bits of a string in the following way. Given a bit-string
r of length kb, write r = (a)2‖r′ (clearly a ∈ {0, 1, 2, 3} and r′ ∈ {0, 1}kb−2) and
define δ(r) = δ((a)2‖r′) = ((a + 1) mod 4)2‖r′. The effect of δ is summarized in
the following table:

r 00‖r′ 01‖r′ 10‖r′ 11‖r′
δ(r) 01‖r′ 10‖r′ 11‖r′ 00‖r′

2.2 Definition of KDFE

Formally, we define KDFE as KDFE(w, L) with two input arguments w and L.
The first argument w is the secret input, while the second argument L is an
optional label to be associated with the key. Let Valid be the set of valid input
pairs (w, L) to KDFE . To process a pair (w, L) ∈ Valid, we need to apply a deter-
ministic encoding function β to (w, L) to give an input string of an appropriate
form (i.e., a sequence of blocks, each of bit length kb). We also need to generate
an initial value of bit length kb from (w, L) using a deterministic IV generator
τ : Valid→ {0, 1}kb.

The output from the encoding function β is a string R = (r1, . . . , rn) of
blocks ri, each of bit length kb. We assume that there is an upper bound nmax

on the maximum number of blocks in an output (r1, . . . , rn) = β(w, L) with
(w, L) ∈ Valid. We require that it be computationally straightforward to recover
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w and L in an unambiguous and unique manner from β(w, L) and the initial
value t0 = τ(w, L). Our recommended encoding function β(w, L) is specified as
β(w, L) = w‖L‖0k1‖(l(L))64; k1 is the minimum value such that the bit length
of β(w, L) becomes a multiple of kb.

The initial value t0 = τ(w, L) should contain the length in octets of w (even
in applications where the length is fixed) along with a “KDF Mode” indicator.

The output from KDFE will be a sequence U = (u1, . . . , uλ) of blocks ui,
each of bit length kb. We fix the number λ of blocks to be a constant. For a
shorter output, we just truncate U to the desired number of bits.

The specification of KDFE(w, L) now follows and consists of two stages. This
process is illustrated in Figure 1 provided in Appendix A.

1. Apply the encoding rule to give β(w, L) = (r1, . . . , rn) and set the initial
value t0 = τ(w, L).

2. Extend t0 to a padded initial value s0 = t0||t0 of length 2kb.
3. Process the blocks r1, . . . , rn as follows with i running from 1 to n:

ti,0 = Esi−1(ri)⊕ ri ;
ti,1 = Esi−1(δ(ri))⊕ ri ;
si = ti,0‖ti,1 . (2)

4. Generate λ blocks of output from sn as follows:

um = Esn�m(m) (1 ≤ m ≤ λ) (3)

(the kb-bit representation of m is encrypted). The output is the string

U = u1‖u2‖ . . . ‖uλ ,

which can be truncated to a smaller number of bits if desired.

2.3 Properties of KDFE

Our construction has some similarity to mechanisms for providing double block-
length hash functions out of a block cipher [9]. Schemes such as MDC-2 [10] were
designed to give a collision-resistant hash function when using the block cipher
DES [13] (with its short block and key sizes as well as unusual complementation
and weak key properties) as a building block. While the underlying motivation –
to gain a level of security greater than the block size initially allows – is common
to both applications, our KDF construction differs in many important ways, not
least in how the chaining variables are specified and used.

To gauge the performance of our proposal, we observe that to produce λ
blocks of output from n blocks of input, KDFE requires 2n+λ applications of E
with n + λ different keys. The computation can be carried out on p ≥ 2 parallel
processors, each applying the block cipher at most n + �λ/p	 times. The last λ
applications of E are fully parallelizable, whereas the first 2n applications are
inherently serial with only two computations performed in parallel.
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We note that while the AES is a fast cipher, the rate of encryption [7] for
the AES with a 256-bit key (which is what we require in our construction) is
comparable to the hashing rate of SHA-256 [14] (the NIST hash function that
offers a similar level of security to that offered in our construction). Since two
invocations of the AES are required at each step of the first stage of KDFE ,
we would expect our construction to compare reasonably well to one based on a
standardized hash function. Further, since the AES has a particularly lightweight
key schedule, even though there is considerable re-keying, we would not expect
the overhead to be too significant. Of course, it should also be stressed that
if KDFE is used as a component within RSA-KEM, then the RSA operation
is already likely to be a dominating factor (particularly the RSA private key
operation) in an application.

2.4 Design Rationale

An overall goal has been to design KDFE in a manner that puts minimal con-
straints on the encoding method β; the security of KDFE should not rely on how
inputs are encoded as long as β is reversible. Here we give our rationale behind
other aspects to the design of KDFE .

The First Stage in KDFE

The purpose of the first stage of the algorithm is to translate the input into a
secret sn in a collision-resistant manner. Specifically, it should be hard to find
two distinct inputs (w, L), (w′, L′) such that the corresponding outputs sn, s′n′

from the first stage are equal. This is to provide a high level of assurance that
different sets of keys are used in the second stage of the algorithm for different
inputs. Note that it is easy to find inputs such that the outputs are related in a
prescribed manner. Specifically, if we replace the last block rn in the first stage
with δ(rn), then the rightmost kb bits of the new output key coincide with the
rightmost kb bits of the old output key, except that the two leftmost positions in
each block may differ. Yet in the ideal cipher model, such a correlation cannot
be exploited in a useful manner by an adversary.

In round i of the first stage, the same key si−1 is used for both encryptions.
This introduces an effect that we may actually benefit from. Namely, we can con-
trol the behaviour of the output key si in such a way that collisions with padded
initial values are impossible. Indeed, si cannot be equal to a padded initial value
since this would imply that Esi−1(ri) = Esi−1 (δ(ri)), which is impossible. The
same is true for sn �m; if Esn−1(rn)⊕ rn⊕m = Esn−1(δ(rn))⊕ rn⊕m, then we
would again have Esn−1(rn) = Esn−1(δ(rn)), which is impossible. If such colli-
sions had been possible then it would have been difficult to achieve our desired
security bound (1) without putting undesirable restrictions on the size of the set
of possible initial values.

The Second Stage in KDFE

In the second stage we use different keys to derive the blocks um and our
approach has some similarity to the counter mode of operation for a block
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cipher [15]. If we were to use a single key, then we would see a small bias in
the output due to the non-existence of collisions Es(r) = Es(r′). This would
result in a violation of (1). Indeed, in applications where plenty of output is
desirable, the security bound would be weak enough to be a concern in practice.

To minimize the probability of reusing a key, we derive the mth key from sn

by adding a simple counter m to sn. In this manner, if

sn �m = s′n′ �m′ (4)

for some m, m′ ∈ {0, . . . , λ}, then

sn = s′n′ � (m′ ⊕m) = s′n′ �m′′

for some m′′ ∈ {0, . . . , λ̂}, where

λ̂ =
{

0 when λ = 0;
2�log2 λ�+1 − 1 otherwise.

(5)

Consequently, while there are (1 + λ)2 pairs (sn �m, s′n′ �m′) to be considered
in (4), there are only 1 + λ̂ values on s′n′ for each sn that give a collision in
(4). In particular, the constant c in our security bound (1) will turn out to be
proportional to λ rather than to λ2.

The keys in the second stage are obtained from sn by adding the same counter
value to each of the two blocks in sn. This is to ensure that the derived blocks do
not collide with padded initial values. The counter starts at 1 to avoid undesirable
collisions between keys used in the first stage and keys used in the second stage.
For instance, there may be two inputs for which, in the first case, sn is used as
a key in some round n + 1 of the first stage, while in the second case, the same
sn is used in the second stage2. It seems worth taking the precaution to provide
this separation.

The Use of the Function δ
The function δ is chosen so that δ(δ(r)) 
= r. Otherwise a function δ′ (e.g.
one that maps r to r ⊕ d for some d) would suffer from the property that if
Esi−1(ri) ⊕ ri = Esi−1 (δ′(ri)) ⊕ δ′(ri), then ri and δ′(ri) both yield the same
intermediate si in (2). This would result in a violation of our bound (1) and a
modified security bound would contain a term of the form c · q/2kb .

We have chosen δ to be simple, modifying only two bits of the input. As well
as having little impact on efficiency this facilitates the security analysis. To see
this, consider the order of an element r defined as the smallest integer j such
that r = δj(r), where δj is shorthand for δ applied j times. Clearly the order of
any element r with respect to δ is only four. While it seems that any order larger
than two would result in a security bound of the form we require (1), analysis
could be harder. The reason is as follows.

We say that an input pair (s, r) to the block cipher E is of relevance in the
ith round of the first stage if (s, r) = (si−1, ri) or (s, r) = (si−1, δ(ri)). This
2 Essentially the set of possible sequences (r1, . . . , rn) is not necessarily “prefix-free”.
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means that the pair (s, r) is related to the two pairs (s, δ(r)) and (s, δ−1(r)) in
an obvious manner. Similarly, (s, δ(r)) is related to (s, δ2(r)), (s, δ2(r)) is related
to (s, δ3(r)), and so on and so forth. Consequently, if the order of r were large,
then we would have a long chain of related input pairs. This would make it hard
to analyse dependencies between pairs of inputs in the first stage of KDFE ,
which we require in the context of RSA-KEM. Thus the main benefit of δ as we
have defined it is to ensure that the corresponding chain of pairs is short; for
the given choice of δ, any set of the form {(s, r), (s, δ(r)), (s, δ2(r)), (s, δ3(r))}
has the property that each pair in the set is only related to other pairs in the
set and not to any pairs outside the set. This property makes it easier to obtain
stream-lined security proofs.

2.5 Some Related Applications

While an AES-based key derivation function (KDF) for use within RSA-KEM
is the focus of our work, we have actually designed something more flexible.
Very simple variants and extensions of our KDF design could be used as a mask
generating function MGFE , a block-cipher based hash function construction,
and as a block-cipher based message authentication code. However, these may
compare unfavourably with other, more established, mechanisms [9].

For instance, it is easy to modify KDFE(w, L) for use as a hash function and
we define the hash function HashE(M) as

HashE(M) = KDFE(M, φ) ,

where φ is the empty string. However, we need to make a few minor changes.
First, we change the encoding function and set

βhash(M) = β(M, φ) = M‖0k1‖(l(M))64 .

Here, l(M) is the length in bits (or bytes) of the message M and k1 is the
minimum value such that the bit length of βhash(M) becomes a multiple of
kb. Second, we fix the initial value t0, which should contain a “Hash Mode”
indicator, and we set λ = 2, which would give a hash function with a 256-bit
output.

KDFE(w, L) can also be used as the basis for a message authentication code.
Let the first argument w be the secret key and let the second argument L be the
message M to be authenticated (possibly a concatenation of the message and
other data). We can define the message authentication code MACE(w, M) as

MACE(w, M) = KDFE(w, M) ,

using the same encoding function β as in key derivation mode;

βmac(w, M) = w‖M‖0k1‖(l(M))64 .

The initial value t0 should be fixed and include the length in octets of w (even
in applications where the length is fixed) and also a “MAC Mode” indicator. A
typical parameter choice would be λ = 1 or 2 (the latter if collision-resistance is
desired). Of course, another possibility would be to define a message authenti-
cation code as HMAC [1] with HashE as the underlying hash function.



36 Jakob Jonsson and Matthew J.B. Robshaw

3 KDFE Within RSA-KEM (and f -KEM)

KDFE is intended for use as an AES-based key derivation function within RSA-
KEM [2, 18, 20]. However, to make the discussion as general as possible, we
consider an arbitrary trapdoor permutation f : Xf → Xf ; see below for a
formal treatment of trapdoor permutations. We briefly discuss even more general
encryption schemes at the end of Section 4. Let

KDF : Xf × L → {0, 1}∗

be a key derivation function, where L is a set of labels and {0, 1}∗ is the set of all
finite bit-strings. Then f -KEM is defined as follows, where the input to f -KEM
is a label L ∈ L.

1. Generate an element w ∈ Xf uniformly at random.
2. Compute y = f(w).
3. Compute U = KDF(w, L).
4. Output y, the ciphertext, and U , the derived secret.

In Section 4 we will analyse f -KEM in the special case that the underlying KDF
is KDFE .

For a security parameter k, let Fk be a finite family of pairs (f, f−1) with the
property that f is a permutation with inverse f−1; f takes as input an element x
in a set X = Xf and returns an element y in the same set X . We assume that the
running time of each of f and f−1 is polynomial in k. Let G be a probabilistic
polynomial-time (PPT) algorithm that on input 1k (i.e., k uniformly random
bits) outputs a pair (f, f−1) ∈ Fk. G is a trapdoor permutation generator. An
f -inverter I is an algorithm that on input (f, y) tries to compute f−1(y) for a
random y ∈ X . I has success probability ε = ε(k) and running time T = T (k) if

Pr
(
(f, f−1)← G(1k), y R← Xf : I(f, y) = f−1(y)

)
≥ ε

and the running time for I is at most T . In words, I should be able to com-
pute f−1(y) with probability ε within time T , where (f, f−1) is derived via the
trapdoor permutation generator and y is random. I solves the f problem.
Fk is a trapdoor permutation family with respect to (ε, T ) if there is no

f -inverter with success probability ε within running time T . The individual per-
mutation f is referred to as a trapdoor permutation.

4 Security Analysis

In this section we prove the security of f -KEM based on KDFE .
With the random oracle assumption on KDF it is straightforward to prove

that f -KEM based on KDF is secure against a chosen-ciphertext adversary if
f is a secure trapdoor permutation; see Shoup [18] for details. The purpose of
this section is to analyse f -KEM when KDFE (see Section 3) is used as the
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underlying KDF. Our goal is to show that the security of f -KEM can be related
to the hardness of inverting f if the block cipher E is modelled as an indexed
family of random permutations.

The attack model against f -KEM is defined as follows and aligns with the
security model for key encapsulation schemes defined in Shoup [18]. The adver-
sary is given free access to a decryption oracle that on input (y, L) decrypts y
and outputs the corresponding secret U = KDFE(f−1(y), L). This means that
we consider the family of adaptive chosen-ciphertext attacks (typically referred
to as CCA2). The adversary also has free access to an E-oracle and a D-oracle
simulating encryption and decryption with the block cipher E.

The task for the adversary is to distinguish a secret U0 corresponding to a
certain challenge ciphertext (y∗, L∗) from a random string. To make the chal-
lenge nontrivial, we do not allow the adversary to query the challenge cipher-
text (y∗, L∗) at the decryption oracle after the challenge ciphertext has been
published. However, there are no other restrictions on decryption queries; the
adversary may well include either of y∗ and L∗ in a decryption query as long as
the query does not include both.

The attack experiment runs as follows. First, the adversary is given a trap-
door permutation f generated at random. The adversary is allowed to send
queries to her oracles during the entire attack and they may be chosen in an
adaptive manner depending on responses to previous queries. At any time of the
attack – but only once – the adversary sends a label L∗ to a challenge generator.
The challenge generator applies the f -KEM operation, producing a ciphertext
y∗ and a secret output U0. In addition, the generator selects a uniformly ran-
dom string U1 and flips a fair coin b. The generator returns y∗ and Ub; thus the
response depends on b.

At the end, the adversary outputs a bit b′. The distinguishing advantage ε of
the adversary is defined as

ε = Pr(b′ = b)− Pr(b′ 
= b) = 2Pr(b′ = b)− 1

where the probability is computed over all possible trapdoor permutations. The
adversary is referred to as an IND-CCA2 adversary. The main result now follows.

Theorem 1. Let A be an IND-CCA2 adversary against f -KEM based on KDFE

making qE queries to the E- and D-oracles and qf queries to the decryption
oracle (including one query to the challenge generator). Let

q = qE + (nmax + λ) · qf ,

where nmax is defined in Section 2.1. Assume that q ≤ 2kb/24. Moreover, assume
that the distinguishing advantage of A is ε′ and that the running time is bounded
by T ′. Then, viewing the block cipher E in the ideal cipher model, there is an
f -inverter I with success probability ε and running time T such that

ε = ε′ − 18(λ̂ + 1) · q2

22kb
− qf

|Xf | (6)

with λ̂ defined in (5) and
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T = T ′ + O(q · Tf ) + O(λ · qf ) , (7)

where Tf is the time needed to compute f on a given input.

The proof of Theorem 1 is given in Appendix B. Here we comment on the security
bounds in Theorem 1.

First, consider the difference ε′ − ε in success probabilities for the adversary
and the inverter. For typical applications, λ will be quite small, say at most 100;
this would give 100kb bits of (symmetric) key material as output. Assuming that
λ̂ = 27− 1 and q = 2kb−µ ≤ T ′ for some µ, the significant term in (6) is equal to

18 · 27

22µ
<

212

22µ
= 212−2µ .

Defining a success probability of an algorithm to be “negligible” if the time-
success ratio (time/probability) of the algorithm is at least 2kb , we may conclude
that ε′ − ε is “negligible” as long as q is at most 2kb−12; the running time of the
adversary is assumed to be at least q.

Next, consider the running time of the adversary in terms of the inverter.
A close examination of the proof of Theorem 1 yields that the term O(q · Tf )
in (7) is approximately 4Tf · q ≤ 4Tf · T ′. Namely, for each application of the
E-oracle simulation, the inverter applies f up to four times. As a consequence,
T ′/T is approximately 1/(4Tf). We may ignore the rightmost term O(λ · qf ) in
(7) as qf is typically bounded by a fairly small value such as 248. Note that the
factor Tf is not due to the specific KDFE construction but rather it is a generic
factor that is also present when the entire key derivation function is modelled as
a random oracle; see Shoup [18]. Hence, only the factor 4 is actually related to
the specifics of KDFE . To conclude, we lose approximately two bits of tightness
with respect to running time when replacing the random oracle with KDFE .

Remark. While we only consider trapdoor permutations, we conjecture that the
proof might extend to general deterministic public-key encryption algorithms [8].

5 Conclusion

In this paper we have introduced and analysed a new key derivation function
KDFE . Defined in terms of a block cipher E, KDFE has been specifically de-
signed as an AES-based key derivation function for use within the key encapsula-
tion mechanism RSA-KEM [18]. However the KDFE construction could also be
used as the basis for a mask generating function, a hash function, or a message
authentication code. While the KDFE construction might be somewhat unusual,
there is considerable value in considering designs that allow us to demonstrate
the security of RSA-KEM under reasonable assumptions on the behaviour of
AES rather than the black-box behaviour of some ad-hoc construction. We leave
the definition of alternative proposals as a matter for further research.
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A Pictorial Representation of KDFE
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Fig. 1. The two stages of KDFE ; E represents a kb-bit block cipher with a 2kb-bit key.
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B Proof of Theorem 1

Theorem 1. Let A be an IND-CCA2 adversary against f -KEM based on
KDFE making qE queries to the E- and D-oracles and qf queries to the
decryption oracle (including one query to the challenge generator). Let

q = qE + (nmax + λ) · qf ,

where nmax is defined in Section 2.1. Assume that q ≤ 2kb/24. Moreover,
assume that the distinguishing advantage of A is ε′ and that the running
time is bounded by T ′. Then, viewing the block cipher E in the ideal cipher
model, there is an f -inverter I with success probability ε and running time
T such that

ε = ε′ − 18(λ̂ + 1) · q2

22kb
− qf

|Xf |
with λ̂ defined in (5) and

T = T ′ + O(q · Tf ) + O(λ · qf ) ,

where Tf is the time needed to compute f on a given input.

Let A be the adversary. We will define an inverter I in terms of A where I
stores information on several lists:

1. f -List: Entries of the form (y, w) (with y = f(w)), sorted in alphabetic order
with respect to y. Refer to an entry starting with y as a y-entry.

2. KEM-List: Entries of the form (y, L, U) where L, w = f−1(y), and U satisfy
KDFE(w, L) = U . The entries are sorted alphabetically with respect to y
and then L. Refer to an entry starting with y as a y-entry.

3. History List: Entries of the form (si; (s0, r1, . . . , ri)), sorted with respect to
si where si is derived from s0 and r1, . . . , ri via i < nmax rounds of (2). Refer
to an entry starting with si as an si-entry.

4. E- and D-List: Entries of the form (s, (r1, v1), . . . , (rd, vd)) where vi = Es(ri)
sorted with respect to s. Within each entry pairs are sorted with respect to ri

on the E-list and with respect to vi on the D-list. Refer to an entry starting
with s as an s-entry. Since the E- and D-lists are essentially the same, we
suppress the D-list. Whenever I requires an output value v, it is implicitly
assumed that I looks on the D-list rather than on the E-list.

Let S0 be the set of possible padded initial values s0. Introduce additional
sets S1 and S2 as follows. S1 is the set of elements s such that there is an s-entry
on the history list, whereas S2 is the set of elements queried to the E- and D-
oracles (by either A or I) that are not contained in S0 or S1. At the beginning
of the experiment, all lists and all sets except S0 are empty.

Suppose that A sends a decryption query (y, L). Then I proceeds as follows.
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F1 If (y, L) is on KEM-list, output the corresponding U and exit.
F2 If no (y, L) is found on KEM-list, check if there is some y-entry on f -list

to examine whether w = f−1(y) is known. If w is known, simulate the
encryption oracle as specified below to compute U = KDFE(w, L), output
U , and exit.

F3 In the case that w is unknown, generate a string U as the concatenation of
λ uniformly random blocks of length kb, add (y, L, U) to KEM-list, output
U , and exit.
At some point during the attack, the adversary A requests a challenge ci-

phertext, providing as input a label L∗. I proceeds as follows; y∗ is the value
that he wants to invert.
C1 If (y∗, L∗) is a previous decryption query, output Error and exit.
C2 Generate uniformly random strings U0 and U1 of length λkb. Add (y∗, L∗, U0)

to KEM-list, flip coin b, output (y∗, Ub, U1−b), and exit.
Suppose that A sends an E-query (s, r). Say that Es(r) = v is consistent

if there is no conflict between this assignment and the pairs (ri, vi) within the
s-entry on E-list. I proceeds as follows.
E1 If v = Es(r) is already known, output v and exit.
E2 If s /∈ S0 ∪ S1, generate a uniformly random v such that the assignment

v = Es(r) is consistent. Add the pair (r, v) to the s-entry on E-list (introduce
the entry if necessary), output v, and exit.

E3 If s ∈ S0 ∪S1, for each j ∈ {0, 1, 2, 3} generate a uniformly random string vj

such that the four assignments vj = Es(δj(r)) are consistent. Add the pairs
(δj(r), vj) to the s-entry on E-list (introduce the entry if necessary).

E4 For 0 ≤ j ≤ 3, let sj = (vj ⊕ δj(r))‖(v(j+1) mod 4 ⊕ δj(r)). The simulation
fails if any of the 4(1 + λ) elements in

{sj �m : 0 ≤ j ≤ 3, 0 ≤ m ≤ λ} (8)

are contained in S1 ∪ S2 or collide with each other. Let E4-Err be the event
that this failure occurs at some point during the attack.

E5 If s ∈ S1, there is a (unique) s-entry (s = si; (s0, r1, . . . , ri)) on the history
list. If s ∈ S0, consider the “empty” entry (s; (s,−)) and let i = 0 and s0 = s.
If i+ 1 < nmax, then add the entries (sj , (s0, r1, . . . , ri, δ

j(r))) to the history
list.

E6 For each j ∈ {0, 1, 2, 3}, check whether s0 and (r1, . . . , ri, δ
j(r)) correspond

to a valid input (w, L) to KDFE (meaning that s0 is the padded initial value
corresponding to (w, L) and β(w, L) = (r1, . . . , ri, δ

j(r))). If this is the case:
1. Compute y = f(w) and add (y, w) to f -list (if not present).
2. If there is an entry (y, L, U) on KEM-list, then KDFE(w, L) has already

been defined (implicitly) as U = u1‖u2‖ . . . ‖uλ. If this is the case, for
1 ≤ m ≤ λ assign

Esj�m(m) = um . (9)

For each m introduce an (sj � m)-entry on E-list, add (m, um) to the
(sj �m)-entry, and remove (y, L, U) from KEM-list.

E7 Output v0 = Es(r) and exit.
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The s-entry in step E5 being unique follows from the fact that E5 is the only
step where we add new entries to the history list; if some of the added keys
sj were already there (thus already contained in the set S1), the error E4-Err
would have occurred in step E4. The assignments in (9) are trivially consistent;
arriving at step E6 means that no error occurred in step E4, which implies that
sj �m has never been used as a key before.

Now consider a D-query (s, v) by A. I proceeds as follows.

D1 If r = Ds(v) is already known, output r and exit.
D2 Generate a random string r such that the assignment r = Ds(v) is consistent

and add (r, v) to the s-entry on E-list (introduce the entry if necessary).
D3 Check whether s ∈ S0 ∪ S1. If this is not the case, output r, and exit.
D4 Proceed with steps E3-E6 in the simulation above with s and r, keeping in

mind in step E3 that Es(r) has already been defined as v.
D5 Output r = Ds(v) and exit.

We need to analyse what could go wrong in this simulation. First, we have a
possible error in step C1, but this error occurs only if the adversary picks y∗ in
one of her decryption queries preceding the challenge ciphertext query; denote
this event as C1-Err. Since the adversary has no prior information about y∗,
Pr(C1-Err) ≤ qf/|Xf |. Note that this value is an extremely small value if f is
RSA with key size at least 1024 bits.

The remaining source of error is related to how I simulates the E- and D-
oracles. Besides the event E4-Err in step E4, we also have the potential error that
the uniformly random strings generated in steps C2 and F3 may not be consis-
tent with other values. To analyse the probability of this error, we introduce an
auxiliary algorithm J that can compute inverses of f . To make J indistinguish-
able from I for the adversary, we let J do exactly what I does during the whole
experiment until the adversary exits. At the very end, we add a checking phase,
where J proceeds with each entry (y, L, U) on KEM-list, computes w = f−1(y),
and simulates the encryption oracle as specified above on all inputs necessary
to compute KDFE(w, L) (keeping in mind as specified in step E6 that the end
result should be U).

Now J , and hence I, will provide a perfect simulation unless an error occurs
in step C1 or the error E4-Err occurs in step E4, either during the original exper-
iment or during the additional checking phase. Namely, as long as all responses
are consistent and chosen uniformly at random, there is no way for the adversary
to distinguish the two simulations.

Before we can estimate the probability of the error E4-Err, we need to count
the number of keys s for which J ever provides some assignment v = Es(r). Now,
while J simulates the E-oracle on some inputs not queried by A, the underlying
key is always part of some other explicit or implicit query from A. This implies
that the total number of keys is at most q = qE +(nmax +λ) · qf ; the latter term
(nmax + λ) · qf estimates the total number of keys used when responding to the
decryption queries and the challenge ciphertext query. In particular, the size of
S2 is at most q, as is the number of applications of each of the steps E1-E7.
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We also need an upper bound on the total number of assignments v = Es(r)
for any fixed key s. Such a bound is given by 4q. Namely, each E- and D-
query results in at most four assignments, whereas each decryption query and
the challenge ciphertext query results in at most 4nmax assignments in the first
stage and at most λ assignments in the second stage. For the last claim, note
that step E6.2 is applied at most once for each entry on KEM-list; the number
of entries on this list is bounded by qf .

In step E3, there are four assignments vj = Es(δj(r)). We refer to the set
Q = {(s, δj(r)) : 0 ≤ j ≤ 3} as a 4-set and to a pair of the form {(s, r), (s, δ(r))}
as a window. Within a 4-set Q there are four windows {(s, δj(r)), (s, δj+1(r))}
for 0 ≤ j ≤ 3.

To estimate Pr(E4-Err), consider a set of assignments to be made in step E3
(steps D2 and E3 in case of a decryption query) corresponding to a 4-set Q and
let s be the underlying key. Since s ∈ S0 ∪ S1 and since it is impossible for a
key once in S2 to end up in S1 (this would result in an error in step E4), each
previous application of the key s must have been an assignment of values for
a full 4-set (as opposed to an assignment of a single value as would have been
the case if s ∈ S2). As a consequence, the four values Es(δi(r)) all remain to be
assigned.

First, assume that the underlying query was not a decryption query; we did
not arrive at step E3 from step D4. For i ∈ {0, 1, 2, 3}, the adversary cannot
predict the two values vj = Es(δj(r)) and vj+1 = Es(δj+1(r)), and hence not
the value sj, with probability better than

1
(2kb − 4q)2

<
1

22kb
· 1
1− 8q/2kb

≤ 1
22kb

· 1
1− 1/3

=
3

22kb+1
=: ρ . (10)

The value 4q in the denominator is the upper bound derived above on the number
of previous queries with the key s; each such query corresponds to a value Es(r′)
that must be different from all Es(δi(r)). The second inequality follows from the
assumption q ≤ 2kb/24.

Next, assume that we arrived at step E3 from step D4. Thus the first of the
four queries in step E3 is a new D-query (s, v0). As in (10), the adversary cannot
predict any two of the four values

r = Ds(v0), v1 = Es(δ(r)), v2 = Es(δ2(r)), v3 = Es(δ3(r))
with probability better than ρ, not even if the two other values were revealed.
In particular, since the adversary needs at least two of these values to determine
any sj , no sj can be determined with probability better than ρ.

We may now easily compute a bound on the probability that we have a
collision between some element in the set (8) and some element in S2; refer to
this event as E4-Err2. Specifically, for any j and m, sj � m collides with any
fixed element in S2 with probability at most ρ. Since there are a total of at most
4(λ+1) · q values in (8) to be considered during the entire experiment and since
|S2| ≤ q, we have that

Pr(E4-Err2) ≤ ρ · 4(λ + 1) · q2 =
3 · 4(λ + 1) · q2

22kb+1
≤ 6(λ̂ + 1) · q2

22kb
; (11)

λ̂ was defined in (5).
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Next, consider the probability of a collision either between two of the elements
in the set (8) or between one of these elements and some element in the set S1;
refer to this event as E4-Err1. In such an eventuality, we have distinct (s, r) and
(s′, r′) such that {

Es(r) ⊕ r = Es′ (r′)⊕ r′ ⊕m

Es(δ(r)) ⊕ r = Es′ (δ(r′))⊕ r′ ⊕m
(12)

for some integer m (with 0 ≤ m ≤ λ̂). Now, each element in S1 corresponds to
a 4-set generated in a previous application of steps E3 and E4. This means that
we are effectively looking for collisions of the kind (12) with both keys in S0∪S1

and we have up to q different 4-sets among which we want to find a collision.
For any fixed previously known window W , and for each of the four windows

within the 4-set Q under consideration, the probability that the two windows
satisfy (12) is at most (λ̂ + 1) · ρ; use (10) and the fact that there are λ̂ + 1
possibilities for m. At the end of the experiment, there are a total of at most
42q(q − 1)/2 = 8q(q − 1) pairs of known windows from different 4-sets. This
implies that the probability that (12) holds for some pair of this kind is bounded
by

(λ̂ + 1) · ρ · 8q(q − 1) . (13)

Next, we turn our attention to windows within the same 4-set. Let Wi be
the window {(s, δi(r)), (s, δi+1(r))}. For 0 ≤ i ≤ 3, the pair (Wi, Wi+1) (indices
computed modulo 4) cannot satisfy (12). Namely, if

{
vi ⊕ δi(r) = vi+1 ⊕ δi+1(r)⊕m

vi+1 ⊕ δi(r) = vi+2 ⊕ δi+1(r)⊕m ,

then vi = vi+2, which is impossible. The remaining two cases (W0, W2) and
(W1, W3) both result in the same system of equations

{
v2 = v0 ⊕ c⊕m

v3 = v1 ⊕ c⊕m ;

c = r ⊕ δ2(r) = δ(r) ⊕ δ3(r) = 100 . . .0. By (10), the left-hand side cannot be
predicted with probability better than ρ even if the right-hand side (i.e., v0 and
v1) is known. As a consequence, since there are at most q known 4-sets and since
m can be chosen in λ̂ + 1 ways, the probability that (12) holds for some pair of
known windows from the same 4-set is bounded by

(λ̂ + 1) · ρ · q . (14)

Combining (13) and (14), we obtain that

Pr(E4-Err1) ≤ (λ̂ + 1) · ρ · 8q(q − 1) + (λ̂ + 1) · ρ · q

< 8(λ̂ + 1) · ρ · q2 =
12(λ̂ + 1) · q2

22kb
. (15)
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Summing (11) and (15), we conclude that

Pr(E4-Err) ≤ Pr(E4-Err1) + Pr(E4-Err2)

≤ 12(λ̂ + 1) · q2

22kb
+

6(λ̂ + 1) · q2

22kb
=

18(λ̂ + 1) · q2

22kb
. (16)

Now return to the original inverter I. Assume that A is able to guess the bit
b with advantage ε′ in a perfect simulation model. In the model provided by I,
the advantage of A is at least

ε = ε′ − Pr(E4-Err)− Pr(C1-Err) ≥ ε′ − 18(λ̂ + 1) · q2

22kb
− qf

|Xf | ,

the subtracted terms bounding the probability that J fails, in which case I does
not necessarily provide a perfect simulation. To demonstrate that ε is at least
the success probability of I, note that the only situation where the interactions
between I and A depend on b is in step E6 when the underlying values y and
L coincide with y∗ and L∗. Namely, this is the only place where U0 is used in
a way distinguishable from U1. However, if I obtains y∗ in step E6, then by
construction I obtains it from w∗ = f−1(y∗); hence I wins.
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