Handling Expected Polynomial-Time Strategies
in Simulation-Based Security Proofs

Jonathan Katz! and Yehuda Lindell?*

! Department of Computer Science, University of Maryland, USA
jkatz@cs.umd.edu
2 Department of Computer Science, Bar-Ilan University, Israel
lindell@cs.biu.ac.il

Abstract. The standard class of adversaries considered in cryptogra-
phy is that of strict polynomial-time probabilistic machines (or circuits).
However, expected polynomial-time machines are often also considered.
For example, there are many zero-knowledge protocols for which the
only simulation techniques known run in expected (and not strict) poly-
nomial-time. In addition, it has been shown that expected polynomial-
time simulation is essential for achieving constant-round black-box zero-
knowledge protocols. This reliance on expected polynomial-time simula-
tion introduces a number of conceptual and technical difficulties. In this
paper, we develop techniques for dealing with expected polynomial-time
adversaries in the context of simulation-based security proofs.

1 Introduction

Informally speaking, the simulation paradigm (introduced in [I5]) states that
a protocol is secure if the adversary’s view in a real protocol execution can
be generated solely from the information that it legitimately possesses (i.e., its
input and output). The implication of this statement is that the adversary learns
nothing from the protocol execution, since everything that the adversary sees in
such an execution could be generated by the adversary itself. This paradigm can
be instantiated in a number of different ways, where the differences that we refer
to here relate to the complexity of the real adversary and the complexity of the
simulator that generates the adversary’s view.

The most straightforward way of instantiating the simulation paradigm is
to require that for every strict polynomial-time adversary there exists a strict
polynomial-time simulator that generates the required view. However, in many
cases it is not known how to construct such simulators; rather, it is shown that for
every strict polynomial-time adversary there exists an expected polynomial-time
simulator that generates the required view. Essentially, this instantiation of the
simulation paradigm has become the default one (at least for zero-knowledge).
This reliance on expected polynomial-time simulation is problematic for the
following reasons:

* Most of this work was carried out while the author was at IBM T.J. Watson.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 128 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Handling Expected Polynomial-Time Strategies 129

1. Aesthetic Considerations: The intuition behind the simulation paradigm
is that anything an adversary can learn from its interaction in a real protocol
execution, it could also learn given only the input and the output. This follows
because the adversary can run the simulator itself and thus obtain a view that
is essentially the same as its view in a real execution. However, if the adversary
is only allowed to run in strict polynomial-time while the simulator may run in
expected polynomial-time, then the adversary cannot run the simulator (because
it doesn’t have enough time). One immediate solution to this problem is to allow
the adversary to run in expected polynomial-time as well. However, as we will
see in Section [[1] below, this turns out to be problematic for technical reasons.

2. Technical Considerations (Composition): Consider the case that a se-
cure protocol 7 calls a secure subprotocol p. Furthermore, both m and p are
proven secure for strict polynomial-time adversaries using expected polynomial-
time simulation. (Here, this means that 7 is proven secure under the assumption
that p is replaced by some ideal function evaluation.) Now, the typical way of
proving that 7 is secure when it calls the real subprotocol p is to first replace
p with a simulated version, and then prove the security of w. However, this
strategy will fail since it yields an ezpected polynomial-time adversary for w (be-
cause the adversary for 7 actually runs an internal expected polynomial-time
simulation of p); yet 7 is proven secure only for strict polynomial-time adver-
saries.

In order to stress the implications of this difficulty, consider the following
natural protocol. The parties first run a coin-tossing protocol (that uses ex-
pected polynomial-time simulation) in order to generate a common random
string. Following this, the parties run a protocol that is secure in the com-
mon random string model (in this model, some trusted party provides both
parties with the same uniformly distributed string). If the protocol that is de-
signed for the common random string model is proven secure with respect to
strict polynomial-time adversaries (which is usually the case), then the security
of the coin-tossing protocol does not imply that the larger protocol is secure.
The reason for this “gap” is the fact that simulation of the coin-tossing proto-
col yields an expected polynomial-time adversary, in the presence of which the
protocol in the common random string model may not be secure. We remark
that — seemingly due, at least in part, to these difficulties — all simulation-
based composition theorems of which we are aware (e.g., [I44L[5]) deal only
with the case of protocols proven secure via strict polynomial-time
simulation.

In conclusion, expected polynomial-time simulation is currently a fact of life
when it comes to proving the security of many cryptographic protocols. However,
this causes difficulties especially when a protocol proven secure using expected
polynomial-time simulation is used as a subprotocol.

1.1 Potential Ways of Resolving the Difficulties

There are at least two possible ways of dealing with the difficulties raised above:

130 J. Katz and Y. Lindell

1. Require Simulators to be ‘“as Powerful” as Adversaries: One way of
resolving the above difficulties is to require simulators and adversaries to lie in
the same complexity class. Here, there are two natural choices: (a) require both
the adversary and the simulator to run in STRICT polynomial-time, or (b) allow
both the adversary and the simulator to run in EXPECTED polynomial-time.

Limitations of the first choice (requiring STRICT polynomial-time for both
adversary and simulator) were demonstrated in [3], who show that there do not
exist constant-round zero-knowledge protocols with black-box simulators run-
ning in strict polynomial time. We note that non black-box simulation strategies
running in strict polynomial-time are known to exist [1,2]. However, all known
“highly efficient” protocols are black-box. Thus, given our current knowledge,
strict polynomial-time simulation techniques still pose a limitation on efficiency.

Before considering the second choice, where both simulators and adversaries
run in EXPECTED polynomial-time, we briefly address the issue of defining ex-
pected polynomial-time adversaries. Loosely speaking, Feige [7] defined that an
adversary A attacking a protocol 7 runs in expected polynomial-time if it runs
in expected polynomial-time when interacting with the honest parties running m.
Here, A may run for an unbounded amount of time when interacting with other
machines (for example, an adversarial verifier for zero-knowledge needs only run
in expected polynomial-time when interacting with the honest prover). The justi-
fication for such a definition is that the goal of an adversary is to attack an honest
party. Therefore, any strategy that is “efficient” when interacting with an honest
party is “feasible”. We call this notion expected polynomial-time with respect to
the protocol 7. A more stringent definition, advocated by Goldreich [9], requires
the adversary to run in expected polynomial-time when interacting with any
interactive machine. We call this notion expected polynomial-time in any interac-
tion. Clearly, any machine that is expected polynomial-time in any interaction is
also expected polynomial-time with respect to any protocol 7; it is also not hard
to see that the converse is not true. Thus, the second notion defines a strictly
smaller set of adversaries than the first.

We are now ready to discuss the implementation of the simulation paradigm
in which both the adversary and the simulator run in expected polynomial-time.
Feige [7] showed that the known simulation strategies for computational zero-
knowledge all fail when considering adversaries that run in expected polynomial-
time with respect to the protocol. In contrast, it was shown by [16-Appendix
A.1] that the Feige-Shamir zero-knowledge argument system [7,[8] remains both
zero-knowledge and an argument of knowledge even when the adversarial party
runs in expected polynomial-time in any interaction. (We stress that the re-
sult of [16] does not hold for adversaries that run in expected polynomial-time
with respect to the protocol.) It was further demonstrated by [16-Appendix A.2]
that the known simulator for the Goldreich-Kahan zero-knowledge proofU sys-
tem [11] does not remain zero-knowledge for adversaries that run in expected

! Recall that in a proof system soundness holds even for all-powerful provers, whereas
in an argument system it holds only for polynomial-time provers.

Handling Expected Polynomial-Time Strategies 131

polynomial-time in any interaction (and so likewise for expected polynomial-time
with respect to the protocol). Furthermore, there is no computational proof sys-
tem that is known to remain zero-knowledge for adversaries that run in expected
polynomial-time (under any definition). We therefore conclude that allowing
both the adversary and the simulator to run in EXPECTED polynomial-time is
problematic because we simply don’t know how to construct simulators for such
adversaries. This is in contrast to the case when both the adversary and the
simulator run in strict polynomial-time which, as we have mentioned, suffers
from limitations which are inherent.

We remark that requiring simulators to be “as powerful” as adversaries ad-
dresses not only the aesthetic difficulty raised above, but also the issue of com-
position. This is due to the fact that once the simulator lies in the same class as
the adversary, the general strategy for proving secure composition (as sketched
above) is a viable one.

2. Prove a Direct Composition Theorem: A second and incomparable ap-
proach addresses the technical issue of protocol composition, but does not deal
with the above-mentioned aesthetic considerations. (Arguably, we can live more
easily without aesthetics than without protocol composition.) In this approach, a
composition theorem of the following type is proven: If two protocols 7 and p are
both proven secure for strict polynomial-time adversaries while using expected
polynomial-time simulation, then the composition of © with p is also secure for
strict polynomial-time adversaries while using expected polynomial-time simula-
tion. Such an approach may be pursued independently of the previous approach,
and is worthwhile since many known protocols only satisfy the “strict/expected”
notion of security. Namely, even if it is possible to construct protocols that are
secure when both the adversary and the simulator run in expected polynomial-
time, one may still want to use existing protocols that have been proven secure
only for adversaries that run in strict polynomial-time (while using expected
polynomial-time simulation).

1.2 Our Results

The main focus of this paper is to develop techniques for working with expected
polynomial-time adversaries and simulation. We take the first steps in this direc-
tion and present two incomparable results, corresponding to the two approaches
discussed in the previous section.

1. Simulation for Expected Polynomial-Time Adversaries. Our first re-
sult focuses on achieving expected polynomial-time simulation for expected poly-
nomial-time adversaries. Before describing the result, we discuss one of the cen-
tral technical problems that arises when dealing with expected polynomial-time
adversaries: expected polynomial-time machines are not closed under “oracle
composition”. In more detail, let A be an oracle machine belonging to a class C
and let B be any machine that also belongs to class C. Then, we say the class C is
closed under oracle composition if the machine A® also belongs to C (when count-
ing the steps of both A and B in their executions). This property of closure under

132 J. Katz and Y. Lindell

oracle composition is important for black-box simulations (where machine A is
the simulator and machine B is the adversary), and holds for the class of strict
polynomial-time machines. However, the class of expected polynomial-time ma-
chines is not closed under oracle composition. To see this, consider the following
two machines:

1. Machine A queries its oracle with the message 0 and receives back a message
x. Next, A queries its oracle with = and halts.

2. Machine B receives an input ¢. If ¢ equals its random tape r (where |¢| =
|r| = k, the security parameter), then B runs for 2* steps and halts. Other-
wise, it replies with r and halts.

Machine A runs in strict (and thus expected) polynomial-time. Likewise, ma-
chine B runs in expected polynomial-time because the probability (over choice of
random tapes) that ¢ = r is 27% (and thus B runs for 2* steps with probability
27F). However, the composed machine A? always runs for more than 2" steps.
We therefore conclude that the composition of an expected polynomial-time sim-
ulator with an expected polynomial-time adversary may not yield an expected
polynomial-time simulation. We stress that this problem is not just hypotheti-
cal. Rather, as we have mentioned earlier, many concrete protocols and expected
polynomial-time simulators suffer from this problem [7,[I6]. Furthermore, simple
solutions, like truncating the execution after some polynomial number of steps,
do not work; see [3] for some discussion.

Ideally, we would like to present conditions under which closure under oracle
composition can be achieved for expected polynomial-time machines. This would
allow us to construct an expected polynomial-time simulator that fulfills the
conditions, and immediately derive simulation even when the adversary runs
in expected polynomial-time. Toward this goal, we prove a theorem that shows
how to automatically convert a class of simulators (characterized by a certain
property) so that they remain expected polynomial-time even if the adversary
runs in expected polynomial-time. More precisely, let S be a black-box simulator
with the following two properties:

1. 8 runs in expected polynomial-time when given any oracle A (even if A is
all-powerful). We stress that here we do not include A’s running time in the
complexity of S. We also remark that most known black-box simulators have
this property.

2. Every oracle query that S makes to its oracle A during its simulation is
“strongly indistinguishable” to A from some partial view of a real protocol
execution. By “strongly indistinguishable”, we mean that the oracle query
is computationally indistinguishable for circuits of size «(k), for some super-
polynomial function a(k) = k~() . We remark that by making an appropriate
a(k)-hardness assumption, most known black-box simulators can be easily
modified so that they fulfill this property.

Let A be an expected polynomial-time adversary and let S be a simulator
that fulfills the above properties. We show that by truncating S* at a(k) steps,
the resulting machine is a “good” simulator that runs in expected polynomial-
time. We thus obtain a type of closure under oracle composition, as desired.

Handling Expected Polynomial-Time Strategies 133

An important corollary of this theorem is a proof that, under mildly su-
perpolynomial hardness assumptions, there exist computational zero-knowledge
proofs for all N'P that remain zero-knowledge even if the adversarial verifier runs
in expected polynomial-time. As we have mentioned above, prior to this work
no such proof system was known to exist. We note that our corollary has the
following caveat: Our simulator for the zero-knowledge proof runs in expected
polynomial-time only when given a statement x that is in the language L; see
Section B3l for more detailsﬁ

We note that the above result does not achieve closure under oracle com-
position in its utmost generality, because it holds only for the above-described
class of simulators. Nevertheless, many (if not most) known simulators can be
modified so that they belong to this class. Furthermore, it is impossible to prove
closure for all simulators, because closure under oracle composition for expected
polynomial-time machines simply does not hold. Of course, it may still be pos-
sible to widen the class of simulators for which closure holds, and to remove the
superpolynomial hardness assumptions.

2. A Composition Theorem. The above theorem holds for a restricted class
of simulators, but achieves generality with respect to closure under oracle compo-
sition. Our second result is the opposite in that it holds for all black-box simula-
tors, but relates only to a specific type of composition. Specifically, under a super-
polynomial hardness assumption, we prove an analogue of the modular sequential
composition theorem of Canetti [4] for protocols that are proven secure for strict
polynomial-time adversaries using expected polynomial-time simulation. Loosely
speaking, the modular sequential composition theorem of [4] states that if a secure
protocol 7w contains sequential ideal calls to some functionalities, then it remains
secure even when these ideal calls are replaced by sequential executions of sub-
protocols that securely realize the functionalities. The original result of [4] was
previously known to hold only for protocols proven secure via strict polynomial-
time simulation (in fact, in the full version we show that the proof of [4] fails in
general for protocols proven secure via expected polynomial-time simulation). In
contrast, our analogous result holds even if these protocols are proven secure using
expected polynomial-time simulation (and only for strict polynomial-time adver-
saries). However, we also note that the proof of [4] requires no hardness assump-
tions, in contrast to ours which requires a superpolynomial hardness assumption.

We remark that both our results hold even for the larger class of adversaries
running in expected polynomial-time with respect to the protocol under consid-
eration [7].

Related Work. The problem of simulation in expected polynomial-time was
first posed by [7]; here we provide the first (partial) answers to some of the

2 Standard definitions require a simulator to generate a distribution that is indis-
tinguishable from the view of the verifier only when it receives a statement x € L.
However, polynomial-time machines are typically required to run in polynomial-time
for all inputs (i.e., even for x ¢ L).

134 J. Katz and Y. Lindell

open questions posed there. The existence of constant-round zero-knowledge
arguments with strict polynomial-time (non black-box) simulation was demon-
strated in [IL[2]. The feasibility of obtaining constant-round arguments of knowl-
edge with strict polynomial-time extraction was then shown in [3]. They also
showed that such protocols do not exist when the simulator or extractor is
black-box. Thus, the protocols of [IL2LB] provide an alternative to expected
polynomial-time simulation. In this work, we take a different approach and de-
velop techniques for working with expected polynomial-time simulation. This
has the advantage of not ruling out the many protocols (including most of
the highly efficient protocols) that rely on expected polynomial-time
simulation.

2 Definitions and Preliminaries

The security parameter is denoted by k; for conciseness, we equate the security
parameter with the input length. (We therefore consider security for “sufficiently
long inputs”.) We denote by A(z,z,r) the output of machine A on input z,
auxiliary input z, and random coins r. The running time of A is measured in
terms of the length of its first input = (where |z| = k), and the exact running
time of the deterministic computation A(x, z,r) is denoted by timea (A(z, z,7)).
A runs in strict polynomial time if there is a polynomial p(-) such that for
all z,z, and all r, it holds that times(A(x, z,7)) < p(|z]). A runs in expected
polynomial time if there is a polynomial p(-) such that for all z and z, it holds
that Exp, [timea(A(z, z,7))] < p(|z|).

Running Time for ITMs. If A is an interactive Turing machine (ITM), we let
A(x, z,7;-) denote the “next message function” of A on inputs z, z, and random
coins 7. The ITM A runs in strict polynomial time if there is a polynomial
p(+) such that for all z,z,r, and any sequence of messages mm, it holds that
timea (A(x, z,mm)) < p(|z|).

Defining expected polynomial-time ITMs is more complicated, and at least
two such definitions have been considered. We first present the definition of
Feige [7]. As mentioned in the Introduction, the idea behind this definition is that
any adversarial strategy that is efficient when run against the specified target is
feasible. Thus, the running-time of an adversary when interacting with an arbi-
trary ITM (that is not the honest party under attack) is irrelevant. Informally,
an ITM A is therefore said to run in expected polynomial-time with respect to a
particular protocol 7 if there exists a polynomial p(-) such that for all inputs, the
expected running time of A when interacting with honest parties running m is at
most p(|z|). (The expectation here is taken over the random coins of both A and
the honest parties.) More formally, let timea((A(z, za,7), B(y,2p,5s))) denote
the running time of A with input z, auxiliary input z, and random coins r,
when interacting with B having input y, auxiliary input zp, and random coins
s. Then:

Handling Expected Polynomial-Time Strategies 135

Definition 1. An ITM A runs in expected polynomial-time with respect to an
ITM B if there exists a polynomial p(-) such that for all z,y with |z| = |y| and
all auxiliary inputs z4, zp € {0, 1}*, the following holds:

Expr,s [timeA(<A(I7ZAa T)? B(y7 ZB; 5)>)] < p(|1‘|)

Let 7 = (P, P2) be a two-party protocol. Then an adversary A runs in
expected polynomial-time with respect to 7 if it runs in expected polynomial-time
with respect to P; and in expected polynomial-time with respect to Ps.

The above definition relates to the case of two-party protocols. The extension
to the multiparty case is obtained by considering the expected running-time of
A when interacting (simultaneously) with every subset of honest parties.

As we have mentioned above, the fact that an adversary A runs in expected
polynomial-time with respect to a protocol m means nothing about its running
time when it interacts with other machines. A definition of the above sort makes
sense in a cryptographic context, but is arguably a somewhat strange way of
defining a “complexity class”. An alternative approach advocated by Goldre-
ich [9] therefore states that an ITM runs in expected polynomial time if there
exists a polynomial p(-) such that for all inputs, the expected running time of
A when interacting with any (even all powerful) ITM is at most p(|x|). Here,
the expectation is taken over the random coins of A only. In such a case, we say
that A runs in expected polynomial-time in any interaction. More formally:

Definition 2. An ITM A runs in expected polynomial-time in any interaction if
for every ITM B it holds that A runs in expected polynomial-time with respect
to B (as defined in Definition).

It is immediate that if an ITM A runs in expected polynomial-time in any
interaction, then A also runs in expected polynomial-time with respect to any
protocol w. Furthermore, it is not difficult to show that for many protocols 7,
the class of adversaries running in expected polynomial-time with respect to m is
strictly larger than the class of adversaries running in expected polynomial-time
in any interaction. Since all our results hold even with respect to the stronger
definition, and we view it as preferable in the cryptographic context, we adopt
Definition [in this paper.

Expected Polynomial-Time Oracle Machines. Let A be an oracle machine
that receives oracle access to an ITM B. In the execution of A with B, denoted by
AB (y’zB’s?')(a:, z4,7), machine A receives input z, auxiliary-input z4 and random
tape r, and provides queries of the form 7 to its oracle which are answered as
B(y, zg, s;m). We distinguish between two notions of running time for an oracle
machine AZ:

1. timea(ABW=5:5) (24, 7)) denotes the exact running time of A on input
z, auxiliary-input z4, and random tape r when interacting with the oracle
B(y, 2, s;-), counting calls to B as a single step (i.e., we only “look” at the
steps taken by A).

136 J. Katz and Y. Lindell

2. timey, g(ABW25:5) (1, 24 1)) denotes the total running time of both A and
B in the analogous execution. Here, the steps taken by B to answer A’s
queries are also counted.

Given the above, we can define expected polynomial-time oracle machines.
An oracle machine A is said to run in expected polynomial-time if there exists a
polynomial p(-) such that for every (even all powerful) machine B, all sufficiently-
long inputs z, and every auxiliary input z, Exp,[timea(AZ(z,2,7))] < p(|z]).
Likewise, the composed machine AP is said to run in expected polynomial-
time if there exists a polynomial p(-) such that for all sufficiently-long inputs
x and y with |z| = |y|, and all auxiliary inputs z4 and zp, it holds that
Exp, [times; p(ABW=5:9) (2, 24,7))] < p(|z|). Note that for any strict poly-
nomial-time B, if A runs in expected polynomial-time (not counting the steps
of B) then so does AP (where B’s steps are counted). We stress, however, that
this does not necessarily hold when B runs in expected polynomial time (under
either definition considered earlier).

Requiring an expected polynomial-time oracle machine to run in the same
(expected) amount of time when interacting with any machine B, even one
which is computationally unbounded, seems to be overly stringent. However,
all black-box simulators that we are aware of fulfill this condition. This extra
condition is also needed for our results. We also remark that our definition of
expected polynomial-time oracle and composed machines is asymptotic. That is,
the machine is only required to run in (expected) time p(|z|) for all long enough
a’s. As long as all machines considered halt on all inputs (and all random tapes),
this is equivalent to the standard notion. (Indeed, we will assume this “halting
condition” for all machines.)

3 Simulation for Expected Polynomial-Time Adversaries

In this section, we show how protocols proven secure against strict poly-time
adversaries using a certain class of black-box simulation can in fact be proven
secure against expected poly-time adversaries as well.

3.1 Preliminaries

As we have mentioned, the results of this section hold for a certain class of black-
box simulators. We begin with a high-level description of secure computation,
and then define the class of simulators. For the sake of simplicity, we present
the results here for the case of two-party protocols. The extension to multiparty
protocols is straightforward.

Secure Two-Party Computation. We provide a very brief and informal over-
view of the definition of security for two-party computation. For more details,
see [4[10]. In the setting of two-party computation, two parties wish to jointly
compute a (possibly probabilistic) functionality f : {0,1}* x {0,1}* — {0,1}* x
{0,1}*, where f = (f1, f2). That is, upon respective inputs = and y, the parties

Handling Expected Polynomial-Time Strategies 137

wish to compute f(z,y) so that party P; receives fi(z,y) and party P» receives
fa(z,y). Furthermore, the parties wish to ensure that nothing more than the
output is revealed and that the function is correctly computed, even if one of
the parties behaves adversarially. These requirements (and others) are formalized
by comparing a real protocol execution to an ideal execution involving a trusted
party. In an ideal execution with f, the parties send their inputs = and y to a
trusted party who computes f(z,y) and sends fi(z,y) to P; and fa(x,y) to Ps.
Of course, the adversary who controls one of the parties can choose to send any
input it wishes to the trusted partyﬁ In contrast, in a real execution the parties
P; and P; run a protocol 7, where one of the parties may be corrupted and thus
under the complete control of the adversary A. Informally, we say a protocol 7
is secure if for every real-model adversary A interacting with an honest party
running 7, there exists an ideal-model adversary S interacting with a trusted
party computing f, such that the output of A and the honest party in the real
model is computationally indistinguishable from the output of S and the honest
party in the ideal model. We note that in this work we consider static adversaries
who corrupt one of the parties before the protocol execution begins.

Notation. Let m# = (P;, P») be a two-party protocol and let f be a two-party
functionality. We denote by REAL, 4(x,y, z) the output of a real execution of ©
where party P; has input x, party P, has input y, and the adversary A has input
z. Likewise, we denote by IDEAL; s(x,y, z) the output of an ideal execution with
f where the respective inputs are as above. Since we are interested in black-box
simulation, we present the definition for a black-box simulator S:

Definition 3. (secure computation with black-box simulation): Let f and 7 be as
above. Protocol 7 is said to black-box securely compute f (in the malicious model)
if there exists a non-uniform probabilistic expected polynomial-time oracle ma-
chine (ideal adversary/simulator) S such that for every non-uniform probabilis-
tic polynomial-time real-model adversary A, every non-uniform polynomial-time
distinguisher D, every polynomial p(-), all sufficiently-long inputs z and y such
that |z| = |y|, and all z € {0, 1}Pov (=D,

IPr[D(IDEAL g4 (2,1, A)) = 1] — Pr[D(REAL, 4(z, 3, 2)) = 1]| < m.

We note that S is an expected polynomial-time oracle machine as defined ear-
lier. That is, for every A the expected value of times(S*) is polynomial (even if
A is computationally unbounded). To be more exact, however, the running-time
of § may also depend on the messages it receives from the trusted party (and in
particular, the random coins used by the trusted party to compute the functional-
ity). We therefore denote by times(IDEAL; gac:) (¥, y, A)) the running-time of SA
here. Adapting the earlier notation, we denote the expected running-time of S
not counting A’s steps by Exp,[times(IDEAL; sac=m (1121 5) (T, Y, A)], and its ex-
pected time counting A’s steps by Exp, [times; a(IDEALf sac:.m (111) (%, Y, A)].

3 The adversary also has control over the delivery of the output from the trusted party
to the honest party. Therefore, fairness and output delivery are not guaranteed.

138 J. Katz and Y. Lindell

(The expectations above are actually also over the random-coins of the function-
ality. In this extended abstract, we ignore this issue.)

We now define a stronger notion of simulation which, informally, requires
not only that the final output of IDEAL g4 be indistinguishable from REAL; 4,
but also that each partial transcript generated during the simulation is indistin-
guishable from the (corresponding) partial transcript of a real execution of the
protocol. Furthermore, we require that indistinguishability holds in a “strong”
sense even against algorithms running in some slightly superpolynomial time.
We begin by defining the following distributions:

1. SiMy sa(x,y, z,7,i) is defined by the following experiment: choose a random-
tape s €p {0,1}* and run SAE7) (1% 5) in the ideal model with f. Let
query; be the it" oracle query made by S to A; if no such query is made,
then set query, = L. Output query,.

2. REAL, A(2,y,2,7,4) is defined by the following experiment: choose s €pg
{0,1}* and run a real execution where A has random-tape r and the honest
party has random-tape s. Let T be the vector of messages sent by the honest
party to A in this execution, and let Tj denote the first j messages in 7.
Next, run the experiment SIM sa(x,y,2,7,i) above (with an independent
choice of s) and obtain query,. If query; = L, then output L. Otherwise, let
j denote the number of messages in query,, and output T]-.

We note that the reason for running SIM in the second distribution is just
to decide the length of the partial transcript to output. That is, we wish to
compare the distribution of query, to the partial transcript of a real execution
of the appropriate length. We are now ready for the formal definition.

Definition 4. (a-strong black-box simulation): Let 7 be a two-party protocol
that is secure under black-box simulation, and let § be a black-box simulator
for m. We say that S is an a-strong black-box simulator for 7 (and say that 7
is secure under a-strong black-box simulation), if for every strict polynomial-time
adversary A, every non-uniform algorithm D running in time at most a(k), all
i € N, all sufficiently large x and y, and all z,r € {0,1}*,

1
a(k)’
If the above holds for adversaries A that are expected polynomial-time with

respect to 7, then we say that 7 is secure under a-strong black-box simulation for
expected polynomial-time adversaries.

‘PY[D(SIMf,SA(%yﬂﬂ"ﬂ)) = 1] - Pr[D(REALﬂ',A(x7yaZ7T7i)) = 1]| <

Extended Black-Box Simulation. Finally, we introduce a generalization of
black-box simulation in which the black-box simulator is allowed to truncate its
oracle after it exceeds some (poly-time computable) number of steps «(-). We call
such a simulator extended black-box. We argue that this generalization is natural
in the sense that the simulator still does not “look” at the internal workings
of its oracle. We remark that when computing time(A®), oracle calls are still
considered a single step (even if A truncates B after some number of steps).

Handling Expected Polynomial-Time Strategies 139

Of course, time4, p(A®P) also remains unchanged. We note that by requiring
a(+) to be polynomial-time computable, we ensure that any extended black-box
simulator can be implemented by a non black-box simulator.

3.2 Simulation for Expected Polynomial-Time Adversaries

Theorem 5. Let a(k) = k“() be a superpolynomial function that is poly-time
computable, and let © be a protocol that is secure under a-strong (extended)
black-box simulation for strict polynomial-time adversaries. Then there exists a
superpolynomial function o'(k) such that 7 is secure under «o'-strong extended
black-box simulation for expected polynomial-time adversaries.

Proof: The idea behind the proof of this theorem is as follows. Since each
query made by the a-strong simulator S to the real adversary A is indistin-
guishable from a partial real transcript even for circuits of size a(k), it follows
that as long as A does not exceed (k) steps, it cannot behave in a notice-
ably different way when receiving an oracle query or a real partial transcript.
In particular, it cannot run longer when it receives an oracle query than it
would run when interacting in a real protocol execution, and we know that it
runs in expected polynomial-time in the latter case. We therefore construct a
new simulator & that works in the same way as S, except that it halts if A
ever exceeds O(a(k)) steps when answering a query. This enables us to pre-
vent A from ever running for a very long time (something which can cause
its expected running-time to be superpolynomial). Furthermore, by what we
have claimed above, A will behave in almost the same way as before, because
it can exceed «(k) steps only with probability that is inversely proportional
to (k). This will suffice for us to show that the new simulator is expected
polynomial-time even if A is expected polynomial-time. Of course, we must also
prove that the new simulation is no different than the old one. This follows
again from the fact that A must behave in the “same way” as in a real execu-
tion, as long as a(k) steps are not exceeded. We now proceed with the actual
proof.

Throughout the proof, we let k denote the length of x. Let S be the a-strong
black-box simulator for 7 that is assumed to exist, and define A as the algorithm
that behaves exactly as A except that it outputs L if it ever exceeds a(k)/2
steps. Then, we construct a new simulator S that receives oracle access to A and
emulates a simulation of S with A. That is, S chooses a random tape s € {0,1}*
and invokes S with random-tape s. Then, all oracle queries from S are forwarded
by S to its own oracle A and the oracle replies are returned to S unless the
oracle exceeds a(k)/2 steps while answering the query, in which case S returns
L (thereby emulating A). Furthermore, all communication between S and the
trusted party computing f is forwarded unmodified by S. We remark that S
is an extended black-box simulator because it truncates its oracle. (It makes no
difference whether S was extended black-box or not.) We first show that S runs
in expected polynomial time, even when A runs in expected polynomial-time
with respect to .

140 J. Katz and Y. Lindell

Claim 6. For every expected polynomial-time adversary A, the composed ma-
chine SA runs in expected polynomial time. That is, for every A there exists a
polynomial p(-) such that all sufficiently large = and y, and all z € {0,1}*, it
holds that Expr’s[time‘§+A(IDEALf’SA(N)(l‘z"S) (,y,N)] < p(k).

Proof: To prove the claim, first note that the running time of S consists of
two components: the steps taken by & and the steps taken by A in answer-
ing all of the oracle queries of S. By the linearity of expectations, it suffices
to show that the expectation of each of these components is polynomial. Since
S is an expected polynomial-time oracle machine, its expected running time is
polynomial when interacting with any oracle (see the end of Section [2]). It there-
fore remains to bound the total number of steps taken by A. This is equal to
Exp, > tlmeA()(i)], where 7 is a random variable denoting the number of

oracle queries made by S, and timei) (7) is arandom variable denoting the run-

ning time of A(z,7) in answering the i query from S. (Note that these random
variables may depend on both r and s, and also on the honest party’s inputs.)
The expected value of 7 is polynomial because S is an expected polynomial-

time oracle machine. We now show that the expected value of time‘ji(z T)(i) is

also polynomial for any . Applying Wald’s inequality (see Appendix [A]) then
completes the proof that the expected total number of steps taken by Ais poly-
nomial.

For any 4, it holds that Expm[timej(zm) (1)) = ExpT[ExpS[timej(zm)(i)]].

Furthermore, since A halts after a(k)/2 steps, it follows that for any fized r,
a(k)/2 a(k)/2
Exp, tlmeA(T) } Z t- Prs[tlme (= T) } Z Prs[tlme A=) (i) > t})

Notice that the distribution on the message sequence input to A here (namely,
the i*" query from S) is exactly that given by SIM; 54 (z,y,2,7,1). Now, let
time 4., (i) be a random variable denoting the running time of A(z,r) when
run on input distributed according to REAL_ 4(x,v,2,7,1). (Recall that this is a

message of the same length as query,, that A receives in a real execution.) We
first claim that, for large enough z and y, for any z,r, ¢, and for t < a(k)/2,

1
ot (1)

Pr, [timeA(Z7T) (1) > t] — Pry [timei(zvr)(i)

>t <
This follows because otherwise we obtain a non-uniform distinguisher, in
contradiction to the fact that S is an a-strong black-box simulator. In more
detail, given an auxiliary input 2’ = (z,7,t) with ¢ < a(k)/2, and a sequence of
j messages T'; we simply run A(z r) on message sequence T';, and output 1 iff A
exceeds t steps. For large enough k, the total running time of this distinguishing
algorithm (including the overhead for maintaining a counter and running /l) is
at most a(k). Therefore, by Definition] it follows that Eq. () holds. We remark
that the non-uniformity of Definition Ml is essential here. We thus have that:

Handling Expected Polynomial-Time Strategies 141

a(k)/2 s a(k)/2 1
t:Zl Pry {timeA(Zﬂ,) (1) > t} < t:Zl (Prs[timeA(zm)(i) >t + a(k))
1 a(k)/2
=5t Z Pr;[time 4. . (1) > 1], (2)
t=1
s

and therefore the expected value of time)(z) is bounded by the expression

A(z,r
in Eq.). Using the simple observations that: (1) time . (1) < time g,)
(where the latter expression refers to the total running time of A(z,r) in a real
execution), and (2) time 4, ., < timey4(. ;) (because A is truncated whereas A

S

is not), we see that the expected value of time (= T)(i) is bounded by:

A
1 a(k)/2 1
5+ > Prftimeyi,) > 1 < 5 +Exp,[timea(]
t=1

where Exp [timey.)] is simply the expected running time of A in a real
protocol execution with the honest parties. The fact that A runs in expected
polynomial-time with respect to w therefore implies that the expected value of
timei(z’r) (i) is polynomial, completing the proof of Claim [l 0

Until now, we have shown that S runs in expected polynomial-time. It re-
mains to show that it is an o/-strong (extended black-box) simulator for expected
polynomial-time adversaries, for some superpolynomial function o’(k). First, S
is an expected polynomial-time oracle machine because it inherits this from S.
Next, we claim that for every expected polynomial-time A, every non-uniform
algorithm D running in time at most «(k), all ¢ € N, all sufficiently large 2 and
y, and all z,r € {0,1}*,

1
o (k)

for some superpolynomial function (k). This follows from the facts that (1)
the composed machine SA runs in expected polynomial-time, and (2) the only
time that S4 and S differ is if A exceeds a(k)/2 steps. That is, let p(k) be
the expected running time of the composed machine SA. Then, by Markov’s in-
equality, the probability that 4 will exceed a(k)/2 steps is at most 2p(k)/a(k).
Therefore, the statistical difference between SIM £G4 (z,y,2,r,1) and

SIMy sa(x,y, z,7,1) is at most o' (k) e 2p(k)/a(k). Combining this with the
assumption that S is an a-strong simulator and so SIMy ga(x,y,2,7,i) can be
distinguished from REAL, a(x,vy, z,7,1) with probability at most 1/a(k), we con-
clude that

Pr[D(siM; ga(2,y, 2,1,4)) = 1] — Pr[D(SIMf sa (2, y, 2,7,9)) = 1]| <

1
a'(k)

PY[D(SIMf,gA (x,y,2,7,1)) = 1] = Pr[D(REALx a(x,y,2,7,7)) = 1]| <

where o/ (k) o (1/a(k) + 1/a”(k))~'. We conclude that S is an o/-strong ex-
tended black-box simulator, as required. [|

142 J. Katz and Y. Lindell

3.3 Zero-Knowledge Proofs — A Corollary

Consider now the zero-knowledge functionality for an NP-language L. This func-
tion is defined by f(z,x) = (A, xr(x)), where x(z) = 1 if and only if x € L.
A zero-knowledge protocol is a protocol 7 that securely realizes f for strict
polynomial-time adversaries. Now, for the sake of concreteness, consider the
zero-knowledge protocol of Goldreich, Micali, and Wigderson [13]. Assuming
the existence of commitment schemes that are hiding for circuits of size a(k),
it is easy to verify that the black-box simulator provided by [13] is a-strong
for strict polynomial-time adversaries. Therefore, by applying Theorem [we
obtain that the protocol of [13] is also black-box secure for adversaries that
run in expected polynomial-time with respect to the protocol. The soundness
condition is unaffected by the above. We therefore obtain the first computa-
tional zero-knowledge proof system that remains zero-knowledge for expected
polynomial-time adversaries (with respect to either of the definitions in Sec-
tion @)E Thus, as a corollary of Theorem [we partially resolve the open ques-
tions from [Z[16] discussed in the Introduction. (The result is only “partial”
because we need superpolynomial hardness assumptions, and due to the caveat
below.)

We remark that there is a subtle, yet important, caveat to the above. The
simulator is only a-strong in the case that the input is a statement = € L.
This is due to the fact that when x ¢ L, it may be possible for a distin-
guisher D to distinguish partial transcripts of the simulator from partial tran-
scripts of a real execution just by checking if the statement is in the lan-
guage (unless distinguishing € L from = ¢ L is also assumed to be hard
for circuits of size a(k)). On the one hand, this is fine because simulators
are only required to generate indistinguishable distributions in the case that
x € L. On the other hand, this is a problem because our simulator is not
even guaranteed to run in expected polynomial-time for z ¢ L. Thus, within
a proof of security, one cannot invoke the zero-knowledge simulator on a state-
ment x that may or may not be in the language, unless it is assumed that
it is hard to distinguish z € L from = ¢ L in time «(k). In the full ver-
sion of this paper, we discuss the ramifications of this caveat in greater de-
tail.

3.4 Protocol Composition and Other Scenarios

We note that our result above has been stated for the stand-alone setting
of secure computation. However, it actually holds for any setting, as long as
the black-box simulator is a-strong for that setting. In particular, the result
holds also for the setting of protocol composition where many protocol execu-
tions are run (and thus the simulator interacts with the trusted party many
times).

4 In fact, computational zero-knowledge arguments were also not known to exist for
adversaries that are expected polynomial-time with respect to the protocol.

Handling Expected Polynomial-Time Strategies 143

4 A Modular Composition Theorem

Our goal in this section is to prove a modular composition theorem for secure
multi-party computation which is analogous to the result of Canetti [4], but
which holds even for protocols proven secure against strict polynomial-time ad-
versaries while using expected polynomial-time simulation. As in Section [3] the
results of this section are stated for the two-party case; the extension to the
multiparty case is straightforward.

The sequential composition theorem of [4] can be informally described as
follows. Let m be a two-party protocol computing a function g, designed in an
(idealized) model in which the parties have access to a trusted party who eval-
uates functions fi, ..., f;,; furthermore, assume that at most one ideal function
call is made during any round of 7. This model is called the (fi,..., fin)-hybrid
model, denoted HYBRID 1 fm because parties send real messages from the pro-
tocol m and also interact with a trusted party computing functions fi,..., fi.
Let p1,..., pm be a sequence of two-party protocols such that p; securely com-
putes f; (as in Definition [B3]), and let 7#t>-#™ denote the “composed protocol”
in which each ideal call to f; is replaced by an invocation of p; (we stress that
each executed protocol p; is run to completion before continuing the execution
of 7). The composition theorem then states that if 7 securely computes g in the
hybrid model, and if each p; securely computes f;, then the composed real pro-
tocol 7PLPm gecurely computes g. An important point to note is that the proof
of [4] only considers the case that each of the component protocols p; is proven
secure via strict polynomial-time simulation. In fact, the proof of [4] demon-
strably fails (in general) for the case of protocols proven secure via expected
polynomial-time simulation; a counterexample is provided in the full version of
this paper. In this section, we show that a suitable modification of the approach
of 4] can be used to prove an analogous modular composition theorem even when
each of the component protocols is proven secure via expected polynomial-time
simulation.

We view this result as important both for conceptual reasons as well as for
reasons of efficiency and practicality. Conceptually, there seems to be no fun-
damental reason that a composition theorem of this sort should not hold for
the case of expected polynomial-time simulation; a number of technical barriers,
however, make proving such a result difficult. From a practical point of view,
many existing protocols — and, in particular, efficient ones — seem to require
a proof of security via expected polynomial-time simulation. The composition
theorem proven here enables protocol designers to enjoy the benefits of modular
design and analysis, while ultimately allowing (more) efficient sub-protocols to
be “plugged-in” for each of the components.

Preliminaries. We assume that the reader is familiar with [4], and so we borrow
notation to the extent possible. In our proof, we use pseudorandom function
families that are indistinguishable from random even for circuits of size a(k), for
some superpolynomial function ae. We call these a-secure pseudorandom functions.

144 J. Katz and Y. Lindell

The Composition Theorem. The composition theorem we prove is analogous
to the one shown in [4] for the case of strict polynomial-time simulation. The
only differences are that on the one hand, our proof holds also for the case of
expected polynomial-time simulation, and on the other hand, we require black-
boz simulation and the existence of a-secure pseudorandom functions (the proof
of [4] holds for any type of simulation and requires no hardness assumptions). We
stress that, unlike in Section Bl here we consider the case that the real adversary
runs in strict polynomial-time. Our proof of Theorem [@is rather informal; a full
and rigorous proof appears in the full version.

Theorem 7. Assume the existence of a(k)-secure pseudorandom functions for
some a(k) = kM. Let fi,..., fm and g be two-party functions, let be an two-
party protocol that black-box securely computes g in the (fi,..., fin)-hybrid
model where no more than one ideal evaluation call is made at each round, and
let p1,...,pm be two-party protocols such that each p; securely computes f;.
Then protocol 71> +#m securely computes g.

Proof: We follow the structure and notation of the proofs of [4-Theorems
5, 15] and [4-Corollaries 7, 17] as closely as possible. We focus on the case
m = 1; the general case follows easily using the techniques described here (and
is omitted due to lack of space). We begin with a high-level overview of our
proof, stressing where it diverges from [4]: Let f = f; be a two-party function,
7 a protocol in the f-hybrid model, p a protocol that securely computes f, and
P the composed protocol. Given a strict polynomial-time adversary A in the
real world (who interacts with parties running 7°), our goal is to construct an
expected polynomial-time ideal-world adversary S (interacting with a trusted

party who evaluates g) such that IDEAL, s = REALgzs 4. We proceed in the
following steps:

— As in [4], we first construct from A a (natural) real-world adversary A, who
interacts with parties running p as a stand-alone protocol. The security of
p implies the existence of an expected polynomial-time simulator S,, who

interacts with a trusted party evaluating f, such that IDEALf s, = REAL, 4, -

— Asin [4], using A and S, we construct an adversary A, interacting with par-

ties running 7 in the f-hybrid model and satisfying HYBRIDfr A, = REALz, 4.

Contrary to [4], we cannot at this point claim the existence of an expected

polynomial-time ideal-world adversary S, who interacts with a trusted party

. < . .
evaluating g, such that IDEAL, s = HYBRID7fT A, (such a claim, if true, would

complete the proof). We cannot make such a claim because A, runs in ez-
pected polynomial-time but the security of m only guarantees the existence
of a “simulator” for strict polynomial-time adversaries.

— Instead, we first construct a modified adversary A’ (still interacting with

parties running 7 in the f—hybrid model) that runs in expected polynomial

time and for which HYBRIDf A= HYBRIDf A, under the assumption that

a-secure pseudorandom functlons exist. Thlb forms the crux of our proof,
and further details are given below.

Handling Expected Polynomial-Time Strategies 145

— Let S, denote a black-box simulator for 7 (as in Definition B]). We define
an ideal-world adversary S by running a slightly modified version of S;
with oracle access to .A’. We then prove that (1) IDEAL, s = HYBRID::,A;;
and (2) that S runs in expected polynomial time (even when taking the
running time of A/ into account). The proof of the second claim relies
on the existence of a-secure pseudorandom functions. We stress that we
do not claim the above is true when S, is run with oracle access to an
arbitrary expected polynomial time machine (indeed, the claims may not
be true if S; is run with oracle access to the original A,), but rather
we only make these claims with regard to the specific A’ that we con-
struct.

We now proceed with the proof. Since the first steps of our proof — namely,
the construction of A,, S,, and A, — are exactly as in [4], we omit the details
here but instead provide only a high-level description of the adversary A, which
runs in the f-hybrid model. Loosely speaking, A, runs A until the protocol p
is supposed to begin. At this point, A expects to run p, whereas A, should use
an ideal call to f. Therefore, A, invokes S, giving it the current internal state
2P of A as its auxiliary input, and forwarding the messages between S, and the
trusted party computing f. The output of S, is an internal state of A at the
end of the execution of p; adversary A, continues by invoking A on this state
and running A until the conclusion of m. We remark that A;’s random-tape
is parsed into r and r*, and A, invokes A with random-tape r and S, with
random-tape 7*. This concludes the (informal) description of A,. As in [, it

holds that HYBRIDf: AL = REAL» 4. In this case, however, A, is an expected
polynomial-time adversary.

Sidetrack — Motivation for the Proof. At this point, it is possible to pro-
vide the key idea behind the proof of the theorem. Let S, be the simulator
that is guaranteed to exist by the fact that 7 black-box securely computes g in
the f-hybrid model. Then, the main problem that arises in the proof of [4] is
that the expected running-time of S, when given access to the oracle A, may
not be polynomial. Consider the case that the strategy of S, involves “rewind-
ing” A,. Then, it is possible that A, will invoke S, a number of times with
the same random-tape r*. This introduces dependence between the executions,
and may cause S, to always run for a very long time. (The composition of the
machines A and B described in the Introduction yielded an exponential-time
machine exactly due to the fact that A invoked B with the same random-tape
twice.) The first solution that comes to mind would be to have A, choose an
independent random-tape every time that it invokes S,. However, S, works
when given an oracle A, with a fized random-tape, and therefore this solu-
tion does not work. Our solution is to instead modify A, so that it invokes S,
with a new pseudorandom tape each time (in a way reminiscent of a similar
technique used in [6]). By using a-strong pseudorandom functions, we ensure
that the pseudorandom tapes “look random” throughout the entire simulation
by Sx.

146 J. Katz and Y. Lindell

Back to the Proof. As described above, we modify A, to an adversary A,
using a family F of a-secure pseudorandom functions for a(k) = k<M. The
random tape of A/ is parsed as r,s, where r is used exactly as above (i.e., AL
invokes A with random-tape r), and s is used as a key to an a-secure pseudoran-
dom function. Then A’ sets the random-tape r* for S, to r* = Fy(2”), where
%z, is the current internal state of A when S, is invoked (instead of choosing
it randomly like A;). In addition, A/ halts with output L if it ever exceeds

a(k)/2 steps overall (not including steps used in computing Fj ﬁ Apart from
the above, A/ works in exactly the same way as A,. We now prove the following
claims:

Claim 8. Assuming that F is an a-secure family of pseudorandom functions,
A’ runs in expected polynomial time.

Proof (sketch): Consider a modified simulator A, who chooses a truly random-
tape r* for S, instead of a pseudorandom one. (In particular, the only difference
between A, and A, is that A, outputs L if it ever exceeds a(k)/2 steps.)
Then, the expected running time of A, on any set of global inputs global (which
includes both the inputs explicitly given to A, as well as the inputs and random
coins of the honest parties and the random coins of the trusted party) is at most:

a(k)/2 a(k)/2
Z Pr, .« [time 4 (global) > ¢] Z Pr,. .« [time 4 (global) >]
t=1 t=1

Z Pr,.,-[time4_(global) > t] < pa, (k)

where p_(-) is the polynomial upper-bound on the expected running-time of
A, and where we ignore the time required to maintain a counter for the number
of steps (since this only affects the expected running time by a multiplicative
polynomial factor). Now, since 7* is actually chosen pseudorandomly by A’ we
have that for large enough k, every value of global and all ¢t < «(k)/2:

1
Pr, s[time 4 (global) > t] — Pr,.,«[time 4 (global) > #]| < —. (3)

a(k)
(Eq. @) ignores the time spent by A/ in computing F; because, as above, it
only affects the expected running-time by a multiplicative polynomial factor).
Otherwise, we can construct a distinguisher D for F as in the proof of Claim [6]
(details appear in the full version). We conclude that the expected running-time

of Al on global inputs global and large enough k equals

® There is an additional subtlety here, in that S, may require a superpolynomial
number of coins while the output of F§ is polynomial. However, this can be easily
resolved: by construction, we never require more than (k) coins for S,.Coins for S,
can thus be generated as needed by letting the i*® coin required by S, be given by
Fs(2°| (i) where (i) is the log(a(k))-bit representation of i.

Handling Expected Polynomial-Time Strategies 147

a(k)/2 a(k)/2

1
Z Pr, s[time.a: (global) > ¢] < Z <Prr r=[time 4 (global) > #] + (k))
«

which equals at most p4_ (k) + 1, and so is polynomial. 0O

Claim 9. Assuming that F is an a-secure family of pseudorandom functions,

it holds that HYBRIDfr, Ve = HYBRID? A,

Proof (sketch): Let A be the same as in Claim[Bl Since the expected running-
time of A, on security parameter 1* is polynomial (for any set of global inputs),
the probability that A, exceeds a(k)/2 steps is negligible. Hence HYBRIDf

is statistically close to HYBRID . Now, A’ is identical to A except that it
uses a pseudorandom 7" while A uses a truly random r*. Since A/ and A
both run in at most a(k)/2 steps (for the case of A/, not counting the time
required to compute Fy), the assumption that F is an a-secure family of pseu-
dorandom functions immediately implies that HYBRIDfr 4 18 computationally
!

Tr) us

indistinguishable from HYBRID (details omitted), completing the proof.

Defining the Simulator S. Since 7 black-box securely computes g, there exists
an oracle machine S, satisfying the conditions of Definition B] (with appropriate
modifications for comparing the f-hybrid and ideal models). Our simulator S
works by simply invoking S, with oracle A/, with the limitation that it halts
with output L if it ever exceeds a(k)/2 steps (including the running time of A/
but, again, not including time spent computing Fy). Our aim is to show that

(1) S runs in expected polynomial-time (even when taking the running time of

A’ into account), and (2) HYBRID£7A, = IDEAL, s. We stress that neither of

these claims are immediate since A/ is an ezpected polynomial-time adversary,
and the simulator S, has only been proven for the case that it is given a strict
polynomial-time oracle.

Claim 10. Assuming that F is an a-secure family of pseudorandom functions,
S runs in expected polynomial time.

Proof (sketch): We use the same general technique as in the proof of Claim [g]
but the proof here is slightly more complicated. First imagine an adversary S
that differs from S in the following way: whenever S, is called from within A,
S monitors the value of 2” at that point. Let z! denote the ™" value of 2 in
the execution of 8. Then instead of setting 7} = F. 5 (20), S instead chooses 7
as follows: if 2!/ = z;’ for some j < i, then set rj = r7. Otherwise, choose 7}
uniformly at random (the technicalities raised in footnote [{ can be handled in
the obvious way). We first show that S runs in expected polynomial-time, and
then claim (as in the proof of Claim B that the expected running-times of S
and S cannot differ “too much”.

The running time of S is the sum of three components: times_, the running
time of S, when counting its oracle calls to A’ as a single step; time 4., the

148 J. Katz and Y. Lindell

running time of A/ (when answering oracle calls of S;) but excluding time
spent running S,; and times,, and the running time of S, when called by A’
(each time A’ is run)ﬁ By linearity of expectation, we can analyze each of these
individually. The expected value of timeg_ is polynomial since Sy is an expected
polynomial-time oracle machine (as defined in Section [Z). Furthermore, since
A’ runs in strict polynomial time when excluding the steps of S,, and since
S makes an expected polynomial number of calls to A’ , the expected value of
time 4, is polynomial as well. It remains to analyze times,. This variable is equal
to S st timeg (i), where timeg (i) represents the running time of S, in its i
execution. Since the random coins r; used in the i*® execution of S, are chosen
at random, the expectation of times, (i) is polynomial for all i. Wald’s inequality
(cf. Appendix [A]) thus implies that the expected value of times, is polynomial.
Exactly as in the proof of Claim [§ the fact that F is a-secure can be used
to show that S runs in expected polynomial time as well. We omit the details
(which are identical) here. O

To complete the proof of the main theorem, we need to prove that IDEAL, s =
HYBRID7{ - The proof of this is largely similar to the end of the proof of The-
orem [B] and appears in the full version of this paper. [|

References

1. B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS,
pages 106115, 2001.
2. B. Barak and O. Goldreich. Universal Arguments and their Applications. 17th
IEEE Conference on Computational Complexity, pages 194-203, 2002.
3. B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction.
SIAM Journal on Computing, 33(4):783-818, 2004.
4. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143-202, 2000.
5. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd FOCS, pages 136-145, 2001.
6. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge.
STOC 2000.
7. U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. Ph.D. Thesis,
Weizmann Institute, 1990.
8. U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
CRYPTO’89, Springer-Verlag (LNCS 435), pages 526-544, 1989.
9. O. Goldreich. Foundations of Cryptography: Volume 1 — Basic Tools. Cambridge
University Press, 2001.
10. O. Goldreich. Foundations of Cryptography: Volume 2 — Basic Applications. Cam-
bridge University Press, 2004.
11. O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology, 9(3):167-190, 1996.

6 As discussed earlier, we again ignore time spent computing Fi.

Handling Expected Polynomial-Time Strategies 149

12. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM Journal on Computing 25(1):169-192, 1996.

13. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of
the ACM 38(1):691-729, 1991.

14. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. Journal of Cryptology 7(1):1-32, 1994.

15. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, 18(1):186-208, 1989.

16. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation. Journal of Cryptology, 16(3):143-184, 2003.

A Wald’s Inequality

We state a (slightly modified version of) Wald’s inequality here. The proof is
provided in the full version.

Lemma 11. Let Y7,Y5,... be an infinite sequence of non-negative random vari-

ables such that Exp [Y;] < N for all i. Let 7 be a non-negative integer random
variable for which, for all 4, Pr[r = i] depends only on Yi,...,Y;. Define Y’ def

ST, Y; (with the sum defined as 0 in case 7 = 0). Then Exp [Y]| < N-Exp[7].

	Introduction
	Potential Ways of Resolving the Difficulties
	Our Results

	Definitions and Preliminaries
	Simulation for Expected Polynomial-Time Adversaries
	Preliminaries
	Simulation for Expected Polynomial-Time Adversaries
	Zero-Knowledge Proofs -- A Corollary
	Protocol Composition and Other Scenarios

	A Modular Composition Theorem
	Wald's Inequality

