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Abstract. A reasonably efficient password based key exchange (KE)
protocol with provable security without random oracle was recently pro-
posed by Katz, et al. [17] and later by Gennaro and Lindell [13]. However,
these protocols do not support mutual authentication (MA). The authors
explained that this could be achieved by adding an additional flow. But
then this protocol turns out to be 4-round. As it is known that a high en-
tropy secret based key exchange protocol with MA1 is optimally 3-round
(otherwise, at least one entity is not authenticated since a replay attack
is applicable), it is quite interesting to ask whether such a protocol in
the password setting (without random oracle) is achievable or not. In
this paper, we provide an affirmative answer with an efficient construc-
tion in the common reference string (CRS) model. Our protocol is even
simpler than that of Katz, et al. Furthermore, we show that our protocol
is secure under the DDH assumption (without random oracle).

1 Introduction

In the area of secure communications, key exchange (KE) is one of the most
important issues. In this scenario, two interactive parties are assumed to hold
long-term secrets. Through an interactive procedure, they establish a temporary
session key and then use it to encrypt and authenticate the subsequent commu-
nication. There are two types of KE protocols in the literature. In the first case,
each party holds a high entropy secret (e.g., a signing key of a digital signa-
ture). Research along this line has been well studied, see [1, 6, 8, 12]. The other
case is a password authenticated key exchange protocol (see [19] for a detailed
description), in which it is assumed that the two parties only share a human-
memorable (low entropy) password. Unlike a high entropy secret, it is believed
that an exhaustive search attack (or a dictionary attack) is feasible. In fact, it is

1 We do not consider a protocol with a time stamp or a stateful protocol (e.g., a
counter based protocol). In other words, we only consider protocols in which a session
execution within an entity is independent of its history, and in which the network is
asynchronous.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 267–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



268 S. Jiang and G. Gong

this attack that makes a construction of a secure password based KE protocol
more difficult than the high entropy secret based one.

1.1 Related Work

Password authenticated key exchange was first studied by Bellovin and Merritt
[4]. Since then, it has been extensively studied in literature [5, 16]. However, none
of these solutions had provable security. The first effort to achieve provable se-
curity was due to Lucks [18]. Halevi and Krawczyk [15] proposed a password KE
protocol in an asymmetric setting: a user only holds a password while the server
additionally has a private key of a public key cryptosystem. Password KE proto-
cols without this asymmetric assumption were proposed in [2, 7]. However, these
protocols including [18] were proved in the random oracle model. It is known [9]
that a random oracle based cryptographic construction could be insecure when
the oracle is replaced by any real function. In the password setting, it is even
worse since a minor weakness of the real function might open the door to a
dictionary attack. The first solution without random oracle was due to Goldre-
ich and Lindell [14]. Actually, their protocol was based on a general assumption
only (i.e., the existence of trapdoor permutation). But this solution is very inef-
ficient. A reasonably efficient construction in CRS model without random oracle
was proposed by Katz, et al. [17]. We shall refer to this as the KOY protocol. An
abstract framework for this protocol was proposed by Gennaro and Lindell [13].
Nevertheless, these protocols do not support mutual authentication (MA). Katz,
et al. mentioned in their paper that a mutual authentication can be made by
adding an additional flow. This is indeed true. However, the resulting protocol
is then 4-round. It is known that a high entropy secret based KE protocol with
MA is optimally 3-round. Thus, it is quite interesting to ask whether there exists
such a protocol in the password setting without random oracles.

1.2 Contribution

In this paper, we provide an affirmative answer to the above problem with an ex-
plicit construction. Our construction is in the CRS model (as in [13, 17]), where
all the parties have access to a set of public parameters drawn from a predeter-
mined distribution, but nobody knows the corresponding secret key if any. Our
construction is optimally 3-round. Comparing with work in [13, 17], it addition-
ally supports mutual authentication and is also simpler than KOY protocol in
the sense of exponentiation cost. Nevertheless, their work has been instructive
to us. In fact, one technique in their construction helps us in authenticating the
initiator. As our important contribution, we formally prove the security under
the Decisional Diffie-Hellman (DDH) assumption (without random oracles).

2 Security Model

In this section, we introduce a formal model of security. This model is mainly
adopted from Bellare, et al. [2] and [3]. Our difference is in the mutual authenti-
cation where we feel our definition is more reasonable. Details are provided later.
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The basic security model without MA was previously adopted by Katz, et al.
[17] and Gennaro and Lindell [13]. We start with the following notations, which
will be used throughout the paper.

− D: a password dictionary with a polynomial size (otherwise, it becomes
a KE problem with high entropy secrets). WOLG, we assume that D =
{1, · · · , N} with a uniform distribution for some N > 0.

− Pi: party i, either a client or a server. If it is a server, then it could
individually share a password with a set of clients.

− Π li
i : protocol instance li within party Pi. We require that li be unique

within Pi in order to distinguish local instances. However, we do not re-
quire it is globally unique, which reflects the practical concern for possible
independence of different parties.

− Flowi: The ith message exchanged between two particular instances.
− sidli

i : the session identifier of a particular instance Π li
i .

− pidli
i : the party with which instance Π li

i believes that he has been inter-
acting.

Partnering. We say two protocol instances Π li
i and Π

lj
j are partnered if (1)

pidli
i = Pj and pidlj

j = Pi; (2) sidli
i = sidlj

j .

Adversarial Model. Roughly speaking, the adversary is allowed to fully control
the external network. He can inject, modify, block and delete messages at will.
He can also request any session keys adaptively. Formally, he can adaptively
query the following oracles.

• Execute(i, li, j, lj): When this oracle is called, it checks whether instances
Π li

i and Π
lj
j are fresh. If either of them is old, it outputs ⊥. Otherwise,

a protocol execution between Π li
i and Π

lj
j takes place. At the end of the

execution, a complete transcript (messages exchanged between the two in-
stances) is returned. This oracle call models a threat from an eavesdropping
adversary.
• Send(d, i, li, M) : When this oracle is called, message M is sent to in-

stance Π li
i as Flowd. If instance Π li

i does not exist but d ≥ 2, or if oracle
Send(d, i, li, ∗) was called before, or if instance Π li

i already exists but either
Send(d − 2, i, li, ∗) was not previously called or its output was ⊥ if called,
then the oracle output is set to ⊥; otherwise, the oracle output is whatever
Π li

i returns. We stress that the oracle response needs to be consistent with
Send(d − 2t, i, li, ∗) for all t > 0. Furthermore, when Send(0, i, li, null) is
called, it first checks whether instance Π li

i is fresh. If it is old, then the
output is set to ⊥; otherwise, Π li

i is initiated within Pi, and the output is
whatever Π li

i returns as Flow1. Similarly, when Send(1, i, li, M) is called, it
first checks whether instance Π li

i is fresh. If it is old, then the output is set
to ⊥; otherwise, an instance Π li

i is initiated within party Pi as a responsor
with input M. The output is whatever Π li

i outputs as Flow2. The oracle call
reflects a threat from man-in-the-middle attack.
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• Reveal(i, li) : When this oracle is called, it outputs the session key of in-
stance Π li

i if it has accepted and completed with a session key derived;
otherwise, it outputs ⊥. This oracle reflects the threat from a session key
loss.
• Test(i, li) : This oracle does not reflect any real concern. However, it provides

a security test. The adversary is allowed to query it once. The queried session
must be completed and accepted. Furthermore, this session as well as its
partnered session (if it exists) should not be issued a Reveal query. When
this oracle is called, it flips a fair coin b. If b = 1, then the session key of Π li

i

is provided to adversary; otherwise, a random number of the same length is
provided. The adversary then tries to output a guess bit b′. He is successful
if b′ = b.

Having defined adversary behavior, we come to define the protocol security.
It contains two conditions: correctness and privacy. The mutual authentication
is considered in the privacy condition.

Correctness. If two partnered instances both accept, then they conclude with
the same session key except for a negligible probability.

Privacy. We define two types of adversary success:

� If at any moment, an instance Π li
i with pidli

i = Pj has accepted and com-
pleted with a session key derived while there does not exist an instance Π

lj
j

with pidlj
j = Pi such that the exchanged messages seen by Π li

i and Π
lj
j prior

to this moment (especially not including the currently generated message by
Π li

i if any) are equal, then we announce the success of adversary. Further-
more, if such an instance Π

lj
j indeed exists, then we require it is unique

except for a negligible probability.
� If the above event does not happen but the adversary succeeds in the test

session, we also announce its success.

We use random variable Succ to denote the above success events. We define the
advantage of adversary A as Adv(A):= 2 Pr[Succ]− 1.

Now we are ready to provide a formal definition of security.

Definition 1. A password authenticated key exchange protocol with mutual au-
thentication is said to be secure if it satisfies

• Correctness.
• Privacy.

If adversary A makes Qsend queries to Send oracle, then

Adv(A) <
Qsend

|D| + negl(n), (1)

where D is the password dictionary, n is the security parameter.
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Remarks. Here we give two comments on our definition and that in [2].

1. From our first privacy condition, whenever an instance Π li
i with pidli

i =
Pj accepts and completes, there exists an (essentially) unique instance in
Pj (say, Π

lj
j ) with pidlj

j = Pi interacting with it and also the exchanged
messages prior to the moment Π li

i accepts are not tampered. This is indeed
our intuition about “Π lj

j is authenticated”.
2. In Bellare, et al. [2], MA is said to be violated if one instance terminates

while no partner instance exists. This definition is not always satisfactory.
Indeed, session identifier sidli

i for instance Π li
i is popularly [13, 17] defined

as a complete transcript seen by Π li
i . Under this SID, their version of MA

is always violated since once the adversary holds on the last message the
partnership is never established. However, this problem does not occur for
our version of MA since we only consider the messages exchanged before
the considered instance (i.e., Π li

i ) accepts and completes. We stress that a
provable MA property of a particular protocol in [2] does not contradict our
remark here since their SID is defined as a partial transcript. More discussions
on the definition appear in the full paper [11].

3 Our Protocol

In this section, we introduce our 3-round construction under the common refer-
ence string (CRS) model, where all the parties have access to the public param-
eters that are drawn from a predetermined distribution. In reality, this condition
could be realized by a trusted third party or a threshold scheme. Assume p, q
are large primes with q|(p−1); Gq is the (unique) multiplicative subgroup of F ∗

p

of order q; g, h are uniformly random generators of Gq; H is a collision resistant
hash function; e← GenPK(1n) is the public key for a chosen ciphertext attack
(in the postprocessing model) (CCA2) secure public key cryptosystem E (we
stress that nobody knows the secret key of Ee); F is a pseudorandom function
family and its realization with secret key σ is denoted by Fσ(). Our protocol is
presented as Figure 1. Assume that password πij is ideally shared between party
Pi and Pj . In order to establish a session key, Pi and Pj interact as follows.
Assume Pi speaks first. He picks x← Zq uniformly, computes a plain ElGalmal
ciphertext A|C and sends it together with id Pi to Pj as Flow1. When Pj receives
Flow1, he chooses λ1, λ2 ← Zq, and computes µ, C ′, σ, r, ω, Σ properly, where r
is used as the random input in encryption of Σ, and if it requires a longer string,
r can be defined as Fσ(3)|Fσ(4)| · · · until it is long enough. We prefer the sim-
ple case since the security proof under this modification is essentially identical.
Then he sends µ|ω|Pj back to Pi (as Flow2). Using µ, Pi is able to compute σ
since σ = µx. Then he verifies whether ω is a ciphertext of H(µ|A|C ′|Pj |Pi)
using random bits r. If the verification is successful, then he believes Pj is
authentic and therefore returns an authentication tag τ = Fσ(2) as Flow3. Fur-
thermore, he outputs a session key sk = Fσ(1) and terminates. When Pj receives
τ , he checks whether τ is correct. If the verification succeeds, he believes Pi is
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Fig. 1. Key Exchange Protocol Execution between Pi and Pj

authentic. Therefore, he accepts and outputs a session key sk = Fσ(1). If the
verification fails, it rejects. Note in the above interaction, implementation issues
(e.g., a validity check whether appropriate elements belong to Gq) are omitted
for simplicity.

3.1 Comparison with KOY Protocol

Now we provide a more detailed comparison with KOY protocol. As mentioned
before, KOY protocol does not support MA, or it is 4-round if an additional
flow is added. In contrast, our protocol is 3-round with MA. Each party in their
construction needs 15 exps while ours needs at most 4 exps plus one ciphertext
of a CCA2-secure PKE(note it is easy to find such a PKE with a ciphertext cost
less than 11 exps). Their construction employs a one-time signature to “bind”
the whole transcript while we do not use such a technique since it requires the
responsor to store the whole transcript, which might be more vulnerable to denial
of service (DoS) attack. However, we stress their construction is instructive to
us. Specifically, in authentication of initiator, we use a technique that if A|C
is not an ElGamal ciphertext of gπij , then σ is uniformly random in Gq. This
technique is essentially from KOY protocol with a relaxation of Cramer-Shoup
ciphertext [10] to ElGamal ciphertext.



Password Based Key Exchange with Mutual Authentication 273

4 Security

In this section, we prove the security of our protocol.

Theorem 1. Let Γ be the password authenticated key exchange protocol in Fig-
ure 1. Let a, b, c be polynomially related to the security parameter n. Assume
e← GenPK(1n) is the public key of a CCA2 secure public key cryptosystem E;
H : {0, 1}∗ → {0, 1}a is a collision resistant hash function uniformly taken from
a family H; p, q are large primes with q|(p − 1); F is a pseudorandom function
family from {0, 1}b to {0, 1}c; Gq is the (unique) multiplicative subgroup of or-
der q in F ∗

p ; g, h are random generators of Gq. Then under DDH assumption,
protocol Γ is secure.

Proof. Define sidli
i to be the whole transcript seen by instance Π li

i . Assume Π li
i

and Π
lj
j are partnered and both accept. Then, pidli

i and pidlj
j are consistent

and the messages are faithfully exchanged. Thus, Pi and Pj derive the same σ:
σ = µx = Aλ1C ′λ2 . Thus, the correctness follows.

In the rest, we concentrate on the proof of the privacy condition. We look
the protocol execution as a game between a simulator and an adversary A. The
simulator picks large prime p, q with q|(p − 1) and takes g ← Gq, u ← Zq,
(e, d)← Gen(1n)(= (GenPK,GenSK)(1n)), F a pseudorandom function family
from {0, 1}b to {0, 1}c and H uniformly from a family of a collision resistant
hash function (CRHF). He lets h = gu. Then he sets the public parameters
as g, h, H,F , e, p, q and assigns passwords to parties as in the real protocol. He
simulates the protocol execution with adversary A.

We construct a sequence of slightly modified protocols Γ1, Γ2, · · · from Γ and
show that the success probability of A in Γi is no less than that in Γi−1 except
for a negligible gap for any i ≥ 1, where Γ0 := Γ. And then we bound the success
probability of A in the last variant. Before our actual proof, we assume that in
response to any oracle query, the basic validity check in its definition has already
been successfully verified thus the output is never ⊥.

For given two parties Pi and Pj with common password πij , we say A|C
is inconsistent if logg A �= logh Cg−πij . We first introduce the following simple
fact, where the proof is mainly due to the fact that λ1, λ2 are both uniform in
Zq (independent of anything else).

Fact 1. If A|C is inconsistent, then σ is uniformly random in Gq, given A|C|µ
where σ and µ are derived according to the responsor’s execution.

Game Γ1. Now we modify Γ0 to Γ1 with the only difference in Execute query,
where C in Γ1 is chosen uniformly random. Using a hybrid argument or a better
proof similar to Lemma 2 in [17], both with reduction to DDH assumption, we
have

Lemma 1. Under DDH assumption in Gq, the success probabilities of A in Γ
and Γ1 are negligibly close.

Game Γ2. We modify Γ1 to Γ2 with only difference in Execute queries where r, τ

and skli
i (= sk

lj
j ) in any Execute(i, li, j, lj) are chosen uniformly random from
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{0, 1}3c. Note A|C is inconsistent in Execute queries of Γ1 (and Γ2) except for
a negligible probability. By Fact 1, one can conclude the following lemma using
a standard hybrid argument with reduction to the pseudorandomness of F .

Lemma 2. The success probabilities of A in Γ1 and Γ2 are negligibly close.

Game Γ3. Now we modify Γ2 to Γ3 with the only difference in computing ω
in Execute query, where Simulator picks C∗ ← Gq randomly and defines ω =
Ee(H(µ|A|C∗|Pj |Pi); r) instead of a ciphertext of Σ = H(µ|A|C ′|Pj |Pi). Here r
is uniformly random (as in Γ2). By a standard hybrid argument with reduction
to the semantic security2 of cryptosystem E (note the challenge template should
be set according to the above modification), we have the following lemma.

Lemma 3. The success probabilities of A in Γ2 and Γ3 are negligibly close.

Game Γ4. Till now, we have finished modifying Execute oracle. Next, let us
consider Send oracle. Before that, we introduce some notations. We say that a
message is adversary-generated if it is not exactly equal to the output of a Send
oracle or a Flow in a response of an Execute oracle; otherwise, we say it is an
oracle-generated message. Consider any query Send(2, i, li, µ|ω|Pj). If there ex-
ists Send(1, j, lj , A|C|Pi) such that it outputs µ|ω|Pj and that A|C|Pi is exactly
the output of Send(0, i, li, null), then we say that Send(2, i, li, µ|ω|Pj) matches
with Send(1, j, lj , A|C|Pi); otherwise, we say that a none-match event happens
to Send(2, i, li, µ|ω|Pj). Now we modify Γ3 to Γ4 with the only difference: upon
any query Send(2, i, li, µ|ω|Pj), if a none-match event happens to it (note Simu-
lator can check this since it controls all the oracles), then deciding accept/reject
only depends on whether ω can be decrypted to Σ = H(µ|A|C ′|Pj |Pi) or not,
where A|C| is in the output of Send(0, i, li, null) and C ′ = Cg−πij . If it accepts
in this case, it announces the success of A and halts. Note in case of a match
event it responses as in Γ3.

Lemma 4. The success probability of A in Γ4 is no less than that in Γ3.

Proof. Note in case of a none-match event, if Send(2, i, li, µ|ω|Pj) in Γ4 rejects,
then it rejects in Γ3 too. Therefore, before a none-match event is accepted in Γ4,
adversary view in Γ4 is identically distributed as that in Γ3. On the other hand,
an accepted none-match event in Γ4 already announces the success of A. Thus,
the conclusion follows. �	

Game Γ5. Now we modify Γ4 to Γ5 such that C in any send(0, i, li, null) is taken
uniformly random from Gq. In order of consistency (in view of A), we need to
take care of other oracle definitions. Send(1, j, lj , M) remains unchanged. Since
there does not exist x in A|C such that the normal action can be executed,
Send(2, i, li, A|C|Pj) is modified as follows.

i) If there exists a unique lj such that Send(2, i, li, µ|ω|Pj) matches with
Send(1, j, lj , M), then it accepts (without verification of ω) and computes

2 Here semantic security suffices and CCA2 security will be required later to deal with
Send oracle.
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τ = Fσ(2) using σ defined in Send(1, j, lj , M). Then, he outputs τ and de-
fines the session key skli

i = Fσ(1). If there are two or more lj , l′j , · · · such
that the above match event holds simultaneously (in the future, we call it
a multi-match event), then it chooses one match randomly and follows the
same procedure.

ii) If a none-match event happens to Send(2, i, li, µ|ω|Pj), then it responses as
in Γ4 (i.e. it decrypts ω, and decides to announce the success of A or to
reject).

The Send(3, j, lj , M) answers normally. The rest oracles remain unchanged (note
the validity follows from the fact that their actions do not depend on the above
modification).

Lemma 5. The success probabilities of A in Γ4 and Γ5 are negligibly close.

Proof. To relate Γ4 and Γ5, we define a slightly modified Γ4 as Γ ′
4. The only

difference is that in case of a match event in Γ ′
4, Send(2, i, li, µ|ω|Pi) responses

as i) in definition of Γ5. On the one hand, if lj is always unique (whenever a
match event happens), then adversary views in Γ4 and Γ ′

4 are identically dis-
tributed since a unique match event is always accepted in Γ4. On the other hand,
the probability that a multi-match event happens throughout the simulation is
negligible since µ is uniform in Gq. Thus, the success probabilities of A in Γ4
and Γ ′

4 are negligibly close. Notice that executions of Games Γ ′
4 and Γ5 are dif-

ferent only in that C is real or random. Thus, if the conclusion were wrong, a
standard hybrid argument directly would reduce to break DDH assumption, a
contradiction. Details are omitted. �	

Game Γ6. Now we modify Γ5 to Γ6 with the only difference in oracle Send(1, j, lj ,
A|C|Pi). If A|C is consistent: C = Augπij , it announces the success of adversary
A and exits (recall Simulator knows u := logg h; recall normally C �= Augπij

since C is chosen uniformly random in oracle Send(0, ∗, ∗, null)); otherwise, it
answers normally (as in Γ5). The rest oracle definitions remain unchanged as
in Γ5. Note this modification only increases the success probability of A. In-
deed, if A|C is always inconsistent, then the adversary view in Γ6 is identically
distributed as in Γ5; otherwise, A already succeeds in Γ6. Thus, we have

Lemma 6. The success probability of A in Γ6 is no less than that in Γ5.

Game Γ7. Γ7 is modified from Γ6 as follows. In order to answer oracle Send(1, j,
lj , A|C|Pj) in Γ7, Simulator chooses σ uniformly random from Gq instead of
Aλ1C ′λ2 . Other oracle definitions remain unchanged as in Γ6 (here the validity
is due to the fact that the state information λ1, λ2 is not required in these oracle
definitions).

Lemma 7. The success probabilities of A in Γ6 and Γ7 are equal.

Proof. Whenever σ is defined in Γ6 (and Γ7), this implies that A is not an-
nounced to succeed in Send(1, j, lj , A|C|Pi) and thus A|C is inconsistent. Thus,
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from Fact 1, the adversary view in Γ6 and Γ7 is identically distributed. The
conclusion follows immediately. �	

Game Γ8. Now we modify Γ7 to Γ8 with the only difference: (r, τ, skli
i ) in Send

oracles are chosen uniformly random from {0, 1}3c, which is the range of F .
Details are as follows. Whenever any Send(1, j, lj , A|C|Pi) is called, Simulator
follows the oracle definition in Γ7 except r is random in {0, 1}c. When any
Send(2, i, li, µ|ω|Pj) oracle is called, Simulator responses as in Γ5 − Γ7 with
the following exception: in case of a match event, τ, skli

i are taken uniformly
random in {0, 1}c and furthermore he saves tuple (µ, τ, skli

i , i, j) in his memory.
Whenever any Send(3, j, lj , τ

′) is called, Simulator searches for (µ, ∗, ∗, ∗, j) in
his memory. If a unique tuple is found, then it recovers (τ, skli

i , i) from this tuple
and checks whether τ ′ = τ. If it holds, Send(3, j, lj , τ

′) accepts and concludes
the session key sk

lj
j := skli

i . If more than one such a tuple are found, then it
chooses one randomly and follows the same procedure. Otherwise, if either of the
above two checks (i.e., search and comparison) fails, it rejects. The rest oracle
definitions (Reveal, Test, Execute) remain unchanged (the validity follows
since such definitions are independent of the way Send chooses (r, τ, skli

i )).

Lemma 8. The success probabilities of A in Γ7 and Γ8 are negligibly close.

Proof Sketch. Consider a slightly modified Γ7, denoted as Γ ′
7. Oracle defini-

tions in Game Γ ′
7 are identical to those in Γ8 except that (r, τ, skli

i (= sk
lj
j )) is

computed as Fσ(3), Fσ(2), Fσ(1). We show that the success probabilities of A in
Γ7 and Γ ′

7 are negligibly close. Indeed, for Send(1, ∗, ∗, ∗) and Send(2, ∗, ∗, ∗),
adversary views in Γ ′

7 and Γ7 are identical since their outgoing messages are
computed from the same definitions. In the full paper [11], we show that Send
(3, j, lj , τ

′) in Γ ′
7 can be answered consistently with Γ7 except for a negligible

probability.
Other oracle definitions in Γ ′

7 and Γ7 are identical. Thus, the success probabil-
ities of A in Γ7 and Γ ′

7 are negligibly close. Furthermore, the success probabilities
of A in Γ ′

7 and Γ8 are negligibly close, because their executions are identical only
except that (r, τ, skli

i ) in Γ8 are taken uniformly random and thus a standard
hybrid argument with reduction to the pseudorandomness of F can be applied. �	

Game Γ9. Γ8 is modified to Γ9 so that ω in Send(1, j, lj , A|C|Pi) is defined as
Ee[Σ′; r], where r is uniform in {0, 1}c and Σ′ = H(µ|A|C∗|Pj |Pi) for C∗ ← Gq.
The rest oracles are unchanged. We have the following result.

Lemma 9. The success probabilities of A in Γ8 and Γ9 are negligibly close.

Proof Sketch. We define Γ
(l)
8 to be the variant of Γ8 such that the first l

Send(1, ∗, ∗, ∗) queries are answered according to Γ9 and the rest queries are
answered according to Γ8. It follows Γ

(0)
8 = Γ8 and Γ

(η9)
8 = Γ9, where η9 is the

upperbound of number of queries Send(1, ∗, ∗, ∗). If the success gap in Γ8 and Γ9
were non-negligible, then there would exist z ∈ {1, · · · , η9} such that the success
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gap between Γ
(z−1)
8 and Γ

(z)
8 would be non-negligible. We build a CCA2 breaker

D9 for Ee as follows. He takes l randomly from {1, · · · , η9} and initializes public
parameters as done by Simulator except e provided by his challenger. Then, D9

simulates Γ
(l)
8 except for the lth Send(1, ∗, ∗, ∗) query, say Send(1, j, lj , A|C|Pi).

In this case, he computes Σ and gives (Σ, µ|A|Pj |Gq) to his encryption oracle,
requesting that a random message has a pattern Σ′ = H(µ|A|C∗|Pj |Pi) for
C∗ ← Gq. Then, he will receive ω∗, that is an encryption of either Σ or a random
message Σ′ of that pattern. Send(1, j, lj , A|C|Pi) outputs µ|ω∗|Pj . Different
from Simulator, D9 does not have a private key d for E. In the full paper, we
show that any Send(2, s, ls, µ

′|ω′|Pt) can be consistently answered except for a
negligible error probability.

The rest oracles are answered normally as in Γ8 (or Γ9) since no decryption
is required any more. Thus, in case ω∗ is a ciphertext of Σ, then adversary view
in the simulation is negligibly close to that in Γ

(l−1)
8 ; otherwise it is negligibly

close to Γ
(l)
8 . Thus, a correct guess for z, which is non-negligible, immediately

implies non-negligible advantage of D9, a contradiction. �	

Bounding Success Probability in Γ9. Now let us consider protocol Γ9. The
adversary succeeds only possibly (1) at Send(1, j, lj , A|C|Pi) where he inputs a
consistent ElGamal ciphertext A|C, or (2) at oracle Send(2, i, li, µ|ω|Pj) where
a none-match event occurs, but the oracle decrypts ω to Σ = H(µ|A|C ′|Pj |Pi),
or (3) at Send(3, j, lj , τ), where the oracle accepts but τ is not the output by a
Send(2, i, li, ∗) that is matched to Send(1, j, lj , ∗), or (4) at Test query. Here
we stress that mutual authentication in Definition 1 is fully covered by (2) and
(3). For case (3), since τ will be compared with the value in the memory, suc-
cess here happens only when there are two Send(2, ∗, ∗, ∗) that match with
Send(1, j, lj , ∗). This implies that ∃ two Send(0, ∗, ∗, null) generate the same
output. This happens with only negligible probability since A is uniform in Gq.
We thus only consider cases (1), (2), and (4). We say the adversary attempt to
succeed in cases (1) (2) is an impersonation trial, denoted by ITri. In case (1),
no input can be successful in two protocol executions with different password
candidates (recall that D = {1, · · · , N} with N < q). In case (2), no input can
be accepted with non-negligible probability in two password candidates (other-
wise, we can break H in two steps: Step 1. Simulate the protocol execution and
record all the events in case (2); Step 2. Check whether the collision in case (2)
happens by trying to find two passwords that accept some recorded event simul-
taneously)3. Thus, we assume each input at case (1) or (2) can be accepted by at
most one password candidate. Notice that just before ITri happens, the adver-
sary view in Γ9 is completely independent of password. Thus, immediately after
the first ITri is rejected, the adversary view is distributed identically among a
password dictionary of size at least |D|− 1. The reason is: it has the same reject

3 Here in order for our attack to be polynomial time, we use the fact that |D| is
polynomially bounded. If |D| is super polynomial, although it is not the setting for
password KE protocol, a similar conclusion holds, see the full paper [11].
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event for at least |D| − 1 password candidates. Furthermore, using a simple in-
duction, we have the probability that the first l ITri events are rejected but it
succeeds in l + 1th ITri event is 1

|D|−l

∏l
i=1(1− 1

|D|−(i−1) ) = 1
|D| . Thus, suppose

the number of Send queries is upperbounded by Qsend. Then the success in ITri
happens with probability at most Qsend

|D| except for a negligible gap. Now we con-
sider case (4), this success event happens only if the success event in ITri does
not happen. In this case, since the session key is chosen uniformly random inde-
pendent of anything else. Thus, the success probability is exactly 1

2 except that
the session key was seen at a previous moment, which is only possible by Reveal
query. Note the test session is not allowed to issue Reveal query. We show the
revealed session must be its partnered session, which is not allowed by definition.
To this end, let Π li

i be the test session with pidli
i = Pj . Since Send(2, i, li, ∗)

accepts with skli
i derived, there must exist a matched Send(1, j, lj , ∗) and a tu-

ple (µ, τ, skli
i , i, j) is stored in the memory. And later only Send(3, j, l′j , τ

′) with

µ in the output of Send(1, j, l′j , M) will access this tuple and define sk
l′j
j = skli

i .
Note in this case, lj = l′j except for a negligible probability since µ is uniform in

Gq. The exchanged messages seen by Π li
i and Π

lj
j (unique except for negligible

probability) are identical by definition of match, and they see the same τ (as in
the tuple). Thus, pidli

i = Pj , pidlj
j = Pi and sidli

i = sidlj
j . That is, they are

partnered sessions.
As a summary, the success probability of adversary in Test session is exactly

1
2 . Let α be the probability of ITri event. Then the total success probability of
adversary is α + (1− α) 1

2 ≤ 1
2 + Qsend

2|D| .

Proof of Theorem 1. Summarizing the results in Lemmas 1- 9 and success
probability of A in Γ9, we have Adv(A) < Qsend

|D| + negl(n). ♠
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