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Abstract. The smallest known biological organisms are, by far, the
viruses. One of the unique adaptations that many viruses have aquired
is the compression of the genes in their genomes. In this paper we study
a formalized model of gene compression in viruses. Specifically, we define
a set of constraints that describe viral gene compression strategies and
investigate the properties of these constraints from the point of view of
genomes as languages. We pay special attention to the finite case (rep-
resenting real viral genomes) and describe a metric for measuring the
level of compression in a real viral genome. An efficient algorithm for
establishing this metric is given along with applications to real genomes
including automated classification of viruses and prediction of horizontal
gene transfer between host and virus.

1 Introduction

In contrast to the lengthy, often redundant, genomes of higher organisms, the
genomes of viruses are extremely efficient in the encoding of their genes. Where
mammalian genomes, for example, possess lengthy introns which code for no
genes at all, any given segment of a viral genome may be a coding region for sev-
eral genes. In addition to prefix and suffix overlap of viral genes, some genes may
also be encoded in a retrograde fashion (that is, the gene would be read in a direc-
tion opposite to other genes). These systems provide evidence that viruses have
evolved a special type of information compression technique. Studying this natu-
ral compression system in a rigorous setting could yield insight into the structure
of viral genomes and may contribute to a basis for classifying such structures.

In this paper, we will specifically consider the types of compression seen in two
small double-stranded DNA virus families, Papillomavirus and Polyomavirus,
and single-stranded RNA viruses from the Bornavirus, Coronavirus and, to a
lesser extent, the Filovirus and Retrovirus families.
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The importance of this genetic compression becomes obvious when consid-
ering the structure of viruses. Viruses generally consist of two principal compo-
nents: a protein capsid, and genetic material inside the capsid. The capsid serves
as protection for the genetic material and also as a mechanism for inserting the
genetic material into a host cell. The genetic material may consist of single- or
double-stranded DNA or RNA and, in some rare cases, a mixture of the former
possibly also including proteins.

The need for compression stems from the fact that the size of the capsid
limits the amount of room for genetic information inside the virus. In the case
of Polyomaviruses, the genome is constrained to be approximately 5kbp (5,000
basepairs) of DNA (compare to the human genome of size 3,150,000 kb), yet still
manages to encode 6 distinct genes.

We exposit here a formal model of the viral compression techniques in terms
of constraints on languages. For example, we would say that a language satisfies
the “viral overlapping compression” property if some prefix of some word in the
language is also a suffix of some other word in the language. We can likewise
define constraints for other viral compression techniques, including retrograde
encodings. We will focus here on deterministic modeling of the gene-level me-
chanics, in contrast to the probabilistic analysis of [8], which addresses gene
compression from the point of view of evolutionary pressures and constraints on
entire genomes.

The organization of the paper is as follows: In section 2 we consider basic no-
tation and prerequisites. In section 3 we define formal versions of the basic viral
compression techniques and investigate relationships and dependencies between
them. We consider also the question of for which families of languages it is possi-
ble to decide these properties. Section 4 focuses on the finitary case of the problem
as this is the most interesting from the point of view of applied viral genetics. We
present efficient algorithms to decide each of the properties for real viral genomes.
Section 5 contains our conclusions and a discussion of practical applications.

2 Notation and Prerequisites

For a general introduction to virology, we refer the reader to [3] and [10]; for
formal language theory preliminaries, we refer to [9]. Let Σ be a finite alphabet.
We denote, by Σ∗ and Σ+, the sets of words and non-empty words, respectively,
over Σ and the empty word by λ. A language L is any subset of Σ∗. For a word
w ∈ Σ∗, we denote the length of w by |w| and the reversal of w by wR. Let N

be the set of positive integers. Furthermore, for k ∈ N, define Σ≥k = {w ∈ Σ∗ |
|w| ≥ k}.

A full trio is a language family closed under homomorphism, inverse homo-
morphism and intersection with regular sets. A full trio is also referred to as a
cone. It is known that every full trio is closed under arbitrary a-transductions1

and hence arbitrary gsm mappings. We refer to [1, 4] for the theory of AFL’s.

1 An a-transducer is also referred to as a rational transducer.
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For a binary relation � ⊆ Σ∗ × Σ∗ and a language L ⊆ Σ∗, we define

�(s) = {t ∈ Σ∗ | (s, t) ∈ �},

�(L) = {t ∈ Σ∗ | s ∈ L, (s, t) ∈ �},

�R = {(s, tR) | (s, t), ∈ �},

�−1 = {(t, s) | (s, t) ∈ �},

�−R = (�−1)R.

We will consider the following well-known relations. Let w, v ∈ Σ∗.

1. prefix order: w ≤p v (or (w, v) ∈≤p) if and only if v = wx for some x ∈ Σ∗.
2. suffix order: w ≤s v (or (w, v) ∈≤s) if and only if v = xw for some x ∈ Σ∗.
3. infix order: w ≤i v (or (w, v) ∈≤i) if and only if v = xwy for some x, y ∈ Σ∗.

Also, for each of the relations above, we prepend the word “proper”, which will
be denoted by <p, <s, <i where we enforce that x, y ∈ Σ+ above.

For example, ≤p (L) = {w ∈ Σ∗ | v ≤p w, v ∈ L} and ≤−R
i (L) = {w ∈ Σ∗ |

xwRy ∈ L, x, y ∈ Σ∗}.

3 Viral Properties

Before formally stating the definitions of the viral properties, we will define the
following sets which will be used for the conditions.

Let L ⊆ Σ∗ be a language, and let n ∈ N such that 1 ≤ n ≤ 6 and let k ∈ N.
Then we define the following sets:

U(1, L, k) = {w ∈ Σ∗ | ∃u ∈ Σ≥k, x ∈ Σ+, v ∈ Σ∗, xu ∈ L, w = uv},

U(2, L, k) = {w ∈ Σ∗ | ∃v ∈ Σ≥k, y ∈ Σ+, u ∈ Σ∗, vy ∈ L, w = uv},

U(3, L, k) = U(1, L, k) ∪ U(2, L, k),
U(4, L, k) = {w ∈ Σ∗ | ∃u, v ∈ Σ≥k, x, y ∈ Σ+, xu ∈ L ∧ vy ∈ L, w = uv},

U(5, L, k) = {w ∈ Σ≥k | ∃u, v ∈ Σ∗, uwRv ∈ L},

U(6, L, k) = {w ∈ Σ≥k | ∃u, v ∈ Σ∗, uwRv ∈ L+}.

Furthermore, for each i, 1 ≤ i ≤ 6, k ∈ N and L ⊆ Σ∗, let Z(i, L, k) = U(i, L, k)∩
L.

So, for example, Z(i, L, k) consists of all words w ∈ L such that there exists
a word u of length at least k, a non-empty word x and a word v whereby xu is
in L and w = uv which is also in L.

We now define the properties that we will study.

Definition 1. Let L ⊆ Σ∗, let n satisfy 1 ≤ n ≤ 6 and let k, l ∈ N. We say that
L satisfies condition W (n, k, l) if |Z(n, L, k)| ≥ l.

We also call condition W (1, k, l) the l-weak k-prefix overlapping property,
condition W (2, k, l) the l-weak k-suffix overlapping property, condition W (3, k, l)
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the l-weak k-overlapping property, condition W (4, k, l) the l-weak k-double-sided
overlapping property, condition W (5, k, l) the l-weak k-retrograde overlapping
property and condition W (6, k, l) the l-weak k-concatenated retrograde overlap-
ping property.

For example, a language L satisfies W (1, k, l) if and only if there exists l
distinct words w ∈ L whereby w = uv for some u, v, x ∈ Σ∗, with u of length at
least k,x non-empty and xu ∈ L.

We also define a strong version of the properties above.

Definition 2. Let L ⊆ Σ∗, let n satisfy 1 ≤ n ≤ 6 and let k ∈ N. We say that L
satisfies condition V (n, k) if L ⊆ U(n, L, k). Equivalently, L satisfies condition
V (n, k) if and only if L = Z(n, L, k).

We also refer to each of these properties by replacing the prefix “l-weak” of
each condition above with “strong”.2

We now consider the relationships of these properties to each other. The
following is immediate from the definitions.

Lemma 1. Let i, j satisfy 1 ≤ i, j ≤ 6, k, l ∈ N and let L ⊆ Σ∗. Then the
following are true:

1. If U(i, L, k) ⊆ U(j, L, k) then both L satisfies V (i, k) implies L satisfies
V (j, k) and L satisfies W (i, k, l) implies L satisfies W (j, k, l).

2. If |L ∩ Σ≥k| ≥ l, then L satisfies V (i, k) implies L satisfies W (i, k, l).
3. If L ∩ Σ≤k 	= ∅, then L does not satisfy V (i, k).

Also, we note the following:

Lemma 2. Let L ⊆ Σ∗, k ∈ N. Then the following are true:

1. U(4, l, k) ⊆ U(i, l, k), for each i ∈ {1, 2, 3},
2. U(5, l, k) ⊆ U(6, l, k),
3. Z(1, L, k)R = Z(2, LR, k) and thus |Z(1, L, k)| = |Z(2, LR, k)|.

Proof. The first three statements are straightforward. For the fourth statement,
let z ∈ Z(1, L, k)R. Thus, zR = uv ∈ L, xu ∈ L, u ∈ Σ≥k, x ∈ Σ+, v ∈
Σ∗. Then z = vRuR ∈ LR, uRxR ∈ LR and z ∈ Z(2, LR, k). Conversely, let
z ∈ Z(2, LR, k). Thus, z = uv, vy ∈ LR, v ∈ Σ≥k, y ∈ Σ+, u ∈ Σ∗. Then
vRuR, yRvR ∈ L, vRuR ∈ Z(1, L, k) and z = uv ∈ Z(1, L, k)R. ��

Combining Lemma 1, 2, we obtain:

Proposition 1. Let L ⊆ Σ∗, k, l ∈ N. Then the following statements are true:

1. L satisfies W (1, k, l) or W (2, k, l) implies L satisfies W (3, k, l),
2. L satisfies V (1, k) or V (2, k) implies L satisfies V (3, k),

2 While prefix/suffix overlap compression is very common in viruses, it is not often
the case that every gene will have some overlap; hence the motivation to study
“weakened” versions of these operations.
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3. L satisfies W (4, k, l) implies L satisfies W (1, k, l), W (2, k, l) and W (3, k, l),
4. L satisfies V (4, k) implies L satisfies V (1, k), V (2, k) and V (3, k),
5. L satisfies W (5, k, l) implies L satisfies W (6, k, l),
6. L satisfies V (5, k) implies L satisfies V (6, k).
7. L (respectively LR) satisfies W (1, k, l) iff LR (resp. L) satisfies W (2, k, l),
8. L (respectively LR) satisfies V (1, k) iff LR (resp. L) satisfies V (2, k).

We see, however that if L1 = {abc, aa} and L2 = {abc, cc}, then Z(1, L1, 1) =
{aa, abc}, Z2(2, L1, 1) = {aa}, Z(1, L2, 1) = {cc} and also Z(2, L2, 1) = {abc, cc}.
So, in general, there are languages satisfying W (1, k, l) (respectively V (1, k)) but
not W (2, k, l) (respectively V (2, k)) and there are languages satisfying W (2, k, l)
(respectively V (2, k)) but not W (1, k, l) (respectively V (1, k)). We note also
that, since Z(3, L1, 1) = Z(1, L1, 1) ∪ Z(2, L1, 1) and Z(3, L2, 1) = Z(1, L2, 1) ∪
Z(2, L2, 1), there are languages satisfying W (3, k, l) (respectively V (3, k)) but
not W (1, k, l) (respectively (V (1, k)) and there are languages satisfying W (3, k, l)
(respectively V (3, k)) but not W (2, k, l) (respectively V (2, k)). Additionally,
Z(4, L1, 1) = {aa} and Z(4, L2, 1) = {cc}. Thus, in general, there are languages
satisfying W (1, k, l) (respectively V (1, k)) but not satisfying W (4, k, l) (respec-
tively V (4, k)), there are languages satisfying W (2, k, l) (respectively V (2, k))
but not satisfying W (4, k, l) (respectively V (4, k)) and there are languages sat-
isfying W (3, k, l) (respectively V (3, k)) but not satisfying W (4, k, l) (respec-
tively V (4, k). Further, let L3 = {a, b, c, abc}. Then Z(5, L3, 1) = {a, b, c} but
Z(6, L3, 1) = L3 and so, in general, there are languages satisfying W (6, k, l)
(respectively V (6, k, l)) but not W (5, k, l) (respectively V (6, k, l)).

We also define the following sets which we will use for a characterization.

C(1, L, k) =≤p (<−1
s (L) ∩ Σ≥k),

C(2, L, k) =≤s (<−1
p (L) ∩ Σ≥k),

C(3, L, k) = C(1, L, k) ∪ C(2, L, k),
C(4, L, k) = (<−1

s (L) ∩ Σ≥k) · (<−1
p (L) ∩ Σ≥k),

C(5, L, k) =≤−R
i (L) ∩ Σ≥k,

C(6, L, k) =≤−R
i (L+) ∩ Σ≥k.

Proposition 2. Let i satisfy 1 ≤ i ≤ 6, let k ∈ N and let L ⊆ Σ∗. Then
U(i, L, k) = C(i, L, k).

Proof. Let i = 1. “⊆” Let w ∈ U(1, L, k). Thus, there exists u ∈ Σ≥k, v ∈
Σ∗, x ∈ Σ+, xu ∈ L, w = uv. Therefore, u ∈<−1

s (L) ∩ Σ≥k and w ∈≤p (<−1
s

(L) ∩ Σ≥k).
“⊇” Let w ∈≤p (<−1

s (L) ∩ Σ≥k). Thus, there exists u, v ∈ Σ∗ such that
w = uv with u ∈<−1

s (L) ∩ Σ≥k. Hence, there exists x ∈ Σ+ such that xu ∈ L.
Let i = 2. “⊆” Let w ∈ U(2, L, k). Thus, there exists v ∈ Σ≥k, u ∈ Σ∗, y ∈

Σ+, vy ∈ L, w = uv. Therefore, v ∈<−1
p (L)∩Σ≥k and w ∈≤s (<−1

p (L)∩Σ≥k).
“⊇” Let w ∈≤s (<−1

p (L) ∩ Σ≥k). Thus, there exists u, v ∈ Σ∗ such that
w = uv with v ∈<−1

p (L) ∩ Σ≥k. Hence, there exists x ∈ Σ+ such that vx ∈ L.
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Let i = 3. Immediate from case 1, 2.
Let i = 4. “⊆” Let w ∈ U(4, L, k). Thus, there exists u, v ∈ Σ≥k, x, y ∈

Σ+, w = uv, (xu ∈ L∧vy ∈ L). Therefore, u ∈<−1
s (L)∩Σ≥k, v ∈<−1

p (L)∩Σ≥k

and w ∈ (<−1
s (L) ∩ Σ≥k)(<−1

p (L) ∩ Σ≥k).
“⊇” Let w ∈ (<−1

s )(L) ∩ Σ≥k)(<−1
p (L) ∩ Σ≥k). Thus, there exists u ∈<−1

s

(L) ∩ Σ≥k, v ∈<−1
p (L) ∩ Σ≥k with w = uv. Hence, there exists x, y ∈ Σ+ such

that xu ∈ L and vy ∈ L.
Let i = 5. “⊆” Let w ∈ U(5, L, k). Thus, there exists u, v ∈ Σ∗ with uwRv ∈

L and w ∈ Σ≥k. Then w ∈≤−R
i (L) ∩ Σ≥k.

“⊇” Let w ∈≤−R
i (L) ∩ Σ≥k. Then there exists u, v with uwRv ∈ L and

w ∈ Σ≥k.
Let i = 6. “⊆” Let w ∈ U(6, L, k). Thus, there exists u, v ∈ Σ∗ with uwRv ∈

L+, w ∈ Σ≥k. Then w ∈≤−R
i (L+) ∩ Σ≥k.

“⊇” Let w ∈≤−R
i (L+) ∩ Σ≥k. Then there exists u, v with uwRv ∈ L+, w ∈

Σ≥k. ��
This leads naturally to some decision problems. One would like to provide

algorithms to test whether languages (or genomes) satisfy these properties.
Namely, can we decide whether a given language satisfies one of the proper-
ties, depending on the language family that the given language is in? For each
weak condition, this amounts to deciding whether |Z(i, L, k)| ≥ l and for each
strong condition, it amounts to deciding whether Z(i, L, k) = L.

Proposition 3. Let L1, L2 be language families effectively closed under inter-
section and the full trio operations with L1 being effectively semilinear and L2
having a decidable equality problem. Then the following are true:

1. For each k, l ∈ N and i, 1 ≤ i ≤ 4, it is decidable whether L ∈ L1 satisfies
W (i, k, l) and it is decidable whether L ∈ L2 satisfies V (i, k).

2. If L1, L2 are also effectively closed under reversal, then it is decidable whether
L ∈ L1 satisfies W (5, k, l) and it is decidable whether L ∈ L2 satisfies
V (5, k).

3. If L1, L2 are also effectively closed under reversal and +, then it is decid-
able whether L ∈ L1 satisfies W (6, k, l) and it is decidable whether L ∈ L2
satisfies V (6, k).

Proof. It is easy to construct a-transducers which output ≤−1
p (L), ≤−1

s (L), <−1
p

(L), <−1
s (L), ≤p (L), ≤s (L) for each L in L1 or L2. Also, every intersection-

closed full trio is closed under union and concatenation since L1$Σ∗ ∩ Σ∗$L2
is in L1 and L2, there is an a-transducer which outputs L1 ∪ L2 and there is
a homomorphism which outputs L1L2. Thus, Z(1, L, k), Z(2, L, k), Z(3, L, k),
Z(4, L, k) are in L1 and L2. Additionally, if L1, L2 are closed under reversal,
then Z(5, L, k) is in L1 and L2 and if L1, L2 are closed under reversal and
+, then Z(6, L, k) is in L1 and L2. Since L1 is effectively semilinear, we can
decide if L ∈ L1 is infinite [5] and if it is not, then we can effectively find the
length of the longest word in L. Then, we can test membership of every word
of length less than or equal to that length to determine whether |Z(i, L, k)| ≥ l



108 M. Daley and I. McQuillan

(emptiness is always decidable for semilinear sets, and since L1 is closed under
intersection with regular languages, we can decide whether w ∈ L by testing
whether L∩{w} 	= ∅). Also, by the decidability of equality for L2, the proposition
follows. ��

We denote by NCM the family of languages defined by one-way nondeter-
ministic, reversal-bounded multicounter machines. It is known that NCM is an
intersection and reversal closed full trio effectively closed under semilinearity [7].
Also, it is known that the family of regular languages is closed under all of the
operations above and has a decidable equality problem.

Corollary 1. For each L ∈ NCM, each i, 1 ≤ i ≤ 5 and each k, l ∈ N, it is
decidable whether L satisfies W (i, k, l). In addition, for each L ∈ REG, each i,
1 ≤ i ≤ 6 and each k, l ∈ N, it is decidable whether L satisfies W (i, k, l) and
V (i, k).

4 Computational Verification of Viral Properties

Ideally, one would like to apply the formal definitions given here to real viral
genomes as a method for classifying viruses based on gene compression. In this
section we will consider fast algorithms to do exactly this, and their complexity.
Since all real viral genomes are finite, we will restrict ourselves to dealing with
finite input languages here. We will describe algorithms which will verify each
of the viral properties for a given input viral genome. A viral genome is a finite
language in which the words are the genes of the virus.

For a finite language L ⊆ Σ+, we let sL be the sum of the lengths of every
word of L (the length of the genome).

We recall a well-known and important result from [2]. A partial deterministic
finite automaton is a deterministic finite automaton in which each state need not
have a transition on every letter. The smallest partial DFA for a given regular
language is the partial DFA that recognizes the language and has the smallest
number of states. In [2], it is demonstrated that, for each word w ∈ Σ∗, the
smallest partial DFA accepting ≤−1

s (w) is linear in the length of w. Precisely,
it has at most 2|w| − 1 states and 3|w| − 4 transitions. Moreover, it is shown
that the smallest partial DFA accepting ≤−1

i (w) is linear in the length of w.
That is, if |w| > 2, then it has at most 2|w| − 2 states and at most 3|w| − 4
transitions. In addition, they show that for any w over a fixed finite alphabet
Σ, both the smallest partial DFA accepting ≤−1

s (L) and the smallest DFA
accepting ≤−1

i (L) can be built in time linear in the length of w.
Now, let L = {w1, . . . , wm} ⊆ Σ+. For our algorithms, we construct a method

which we call suffix dfa(L) which returns a DFA accepting ≤−1
s (L). Let w =

w1#w2# · · ·#wm#. Then ≤−1
s (w) = (≤−1

s (wm#)) ∪ (≤−1
s (wm−1#)wm#) ∪

. . . ∪ (≤−1
s (w1#)w2#w3# · · ·wm#). Let M = (Q, Σ ∪ {#}, q0, F, δ) be the

smallest partial DFA accepting ≤−1
s (w). Thus, it is clear that for every x ∈ Σ∗,

x ∈≤−1
s (L) if and only if x#v ∈≤−1

s (w) = L(M), where v ∈ (Σ ∪ {#})∗.
Moreover, since M is partial and the smallest DFA, for each y ∈ (Σ ∪ {#})∗,
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δ(q0, y) is defined if and only if yu ∈ L(M) for some u ∈ (Σ ∪ {#})∗. Thus, for
each x ∈ Σ∗, x ∈≤−1

s (L) if and only if δ(q0, x#) is defined. Hence, we transform
M into a new DFA M ′ by making the new final state set F ′ to be the set of all
states q ∈ Q such that δ(q, #) is defined, and by removing all transitions of the
form δ(q, #) = p for p, q ∈ Q. Let w ∈ L(M ′). Then w ∈ Σ∗ since there are no
transitions on # and necessarily w# is defined in M . Thus, w#v ∈ L(M) for
some v ∈ (Σ ∪ {#})∗. Thus, w ∈≤−1

s (L). Conversely, let w ∈≤−1
s (L). Then

w#v ∈ L(M) for some v ∈ (Σ ∪ {#})∗ and so w ∈ L(M ′). Hence we see that
L(M ′) =≤−1

s (L) and M ′ can be constructed in linear time from M which is
linear in |w| which is linear in sL. We note that suffix dfa(Σ−1L) =<−1

s (L).
Further, for a DFA M = (Q, Σ, q0, F, δ) over Σ and w ∈ Σ∗, define SM,k(w) =
{q ∈ Q | δ(q0, w1) = q, w1 ≤p w, |w1| ≥ k}. For each algorithm in this section,
we assume that we have some encoding of L as input, whereby there is only one
copy of each word given.

Algorithm 1 input: k ∈ N, L ⊆ Σ+, Σ fixed, L finite, returns: largest l1, l2, l3
such that L satisfies W (1, k, l1), W (2, k, l2) and W (3, k, l2)
1: Let l1, l2, l3 := 0, v1, v2 := false, if k ≥ sL, return.
2: Let M = (Q1, Σ ∪ {#}, q0, F1, δ1) := suffix dfa(Σ−1L),
3: Let MR = (Q2, Σ ∪ {#}, p0, F2, δ2) := suffix dfa((LΣ−1)R)
4: for all w ∈ L do
5: if SM,k(w) ∩ F1 �= ∅ then
6: v1 := true, l1 := l1 + 1
7: end if
8: if SMR,k(wR) ∩ F2 �= ∅ then
9: v2 := true, l2 := l2 + 1,

10: end if
11: if either v1 or v2 is true, then
12: l3 := l3 + 1, v1 := false, v2 := false.
13: end if
14: end for

We have discussed above how to perform the method suffix dfa. It is easy
to pass in the reversal of a language to suffix dfa, in time linear in sL. Then,
in line 5 of Algorithm 1, we can check to see if the intersection is empty by
keeping a counter starting at k and running w through the transition function
of M , decreasing the counter at each step. Then, when the counter reaches 0,
we test every state we hit on input w to see whether it is a final state. If it is,
we increase l1 and set v1 indicating that w ∈ Z(1, L, k). Also, in line 8, we are
testing whether wR ∈ Z(1, LR, k). Indeed, by Lemma 2(3), wR ∈ Z(1, LR, k) if
and only if w ∈ Z(2, L, k). Thus, if this is true, we increase l2 and set v2 to true.
In addition, w ∈ Z(3, L, k) if and only if w ∈ Z(1, L, k) ∪ Z(2, L, k) and so we
increase l3 if and only if either v1 or v2 is true, and we reset each to false. In this
way, when the method completes, l1, l2 and l3 will be the maximum such that
L satisfies W (1, k, l1), W (2, k, l2) and W (3, k, l3), respectively. Furthermore, this
method runs in time O(sL) time.
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For the fourth property, our algorithm requires only a small modification. For
a word w, let w(i) be the ith position of w. This algorithm, for each word w,

Algorithm 2 input: k ∈ N, L ⊆ Σ+, Σ fixed, L finite, returns: the largest
integer l4 such that L satisfies W (4, k, l4)

Let l4, if k ≥ sL, return.
2: Let M = (Q1, Σ ∪ {#}, q0, F1, δ1) := suffix dfa(Σ−1L),

Let MR = (Q2, Σ ∪ {#}, p0, F2, δ2) := suffix dfa((LΣ−1)R)
4: for all w ∈ L do

Let b1, b2 be bit vectors of length |w| all initialized to 0, let j := 0,
6: while j ≤ |w| do

if δ(w(1) · · · w(j)) ∩ F1 �= ∅ then
8: set b1(j) := 1,

end if
10: if δ(w(|w|) · · · w(|w| − j + 1) ∩ F2 �= ∅ then

set b2(|w| − j + 1) := 1,
12: end if

j := j+1,
14: end while

if there exists j such that (k ≤ j)∧(k ≤ |w|−j+1)∧(b1(j) = 1)∧(b2(j+1) = 1)
then

16: l4 := l4 + 1.
end if

18: end for

remembers every position of w which has the prefix of that length in <−1
s (L)

and it also remembers every position of wR which has the prefix of that length
in <−1

s (LR). Then w = uv for some u, v with u ∈<−1
s (L), vR ∈<−1

s (LR) and
|u|, |v| ≥ k if and only if statement 14 is true. Hence, upon completion, l4 will
be the largest integer such that L satisfies W (4, k, l4). Furthermore, this method
also runs in O(sL) time.

Property 5 can also be verified easily. Indeed, wR is defined if and only if

Algorithm 3 input: k ∈ N, L ⊆ Σ+, Σ fixed, L finite, returns: largest integer
l5 such that L satisfies W (5, k, l5)

Let l5 := 0, if k ≥ sL then return.
2: Let M = (Q, Σ ∪ {#}, q0, F, δ) := suffix dfa(LR),

for all w ∈ L do
4: if δ(q0, w

R) is defined then
let l5 := l5 + 1.

6: end if
end for

wRu ∈≤−1
s (L) for some u if and only if wR ∈≤−1

i (L). Hence we can decide this
property in time O(sL).

For property 6, we note that a word w ≤i v ∈ L+ if and only if w ∈ R =
(≤−1

i (L)) ∪ (≤−1
s (L)L∗ ≤−1

p (L)). Moreover, it is easy to construct an NFA
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M = (Q, Σ, q0, F, δ) accepting R in linear time, with the number of states linear
in sL. In addition, it is well-known that we can test whether a word w is in the
language generated by an NFA in time O(|Q||w|) (see [6]). Thus, to find the
largest integer l6 such that L satisfies W (6, k, l), we construct the NFA from L
and decide membership of wR for each w ∈ L. This takes time O(|w1||Q|+ · · ·+
|wm||Q|) = O(|Q|sL). Thus, one can decide whether a finite language L satisfies
W (6, k, l) in time O(s2

L).
Finally, the strong properties can also be verified straightforwardly using the

algorithms presented above. Indeed, they are just a special case where l = |L|.
We summarize the preceding thusly:

Proposition 4. Let i satisfy 1 ≤ i ≤ 5 and let Σ be some fixed alphabet. Then
given a finite language L ⊆ Σ+ as input without duplicates and k ∈ N, we can
both find the largest integer l such that L satisfies W (i, k, l) and we can decide
whether L satisfies V (i, k) in time O(sL). Furthermore, we can both find the
largest l whereby L satisfies W (6, k, l) and we can decide whether L satisfies
V (6, k) in time O(s2

L).

5 Conclusions and Discussion

We have presented here a formalization of the process of gene compression that
occurs in many viral genomes. We have shown dependencies and relationships
between these properties and demonstrated that, in general, most of the weak
versions of the properties can be decided for languages defined by nondetermin-
istic finite automata augmented with reversal-bounded counters while the strong
versions can be decided for regular languages. Most significantly, we have given
algorithms which can efficiently decide these properties for real viral genomes
and provide information which is immediately useful to virologists.

These algorithms give us the ability to study the relative amount of gene
compression between related viruses in a quantifiable way. It may be possible
to infer evolutionary relationships between viruses using this information. The
fact that genes overlap one another provides a very serious constraint for viral
genome evolution. It is known that viruses occasionally aquire genes horizontally
(that is, a gene from an infected host becomes part of the virus’s own genome).
Clearly, only those genes which meet very specific constraints (e.g. those that are
“compressible” relative to the virus’s genome) will be able to be incorporated
into the virus. Using the algorithms presented here and real viral genome data,
we can find target genes in the host organism which, due to their structure, have
the greatest probability of being incorporated into the viral genome.

Finally, the formal properties here also present a framework for automated
classification of a virus given only its genome. The family of Coronaviruses, for
example, has a very regular genomic structure: a single strand of +-sense RNA of
length 27-30kb. The beginning of this RNA strand always encodes a viral poly-
merase (often as part of a polyprotein) and the remainder encodes a series of
“nested” genes. Each of these nested genes is a proper suffix of the previous gene.
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This structure can obviously be formally encoded using the properties given
here. Similar compression regularities can be found in other viral genomes and
encoded using our properties. Classification of a new virus is then simply a
matter of verifying compliance to our properties and then checking to see if this
matches any known structures.

By formalizing this ancient form of data compression, we have provided tools
which will allow for further insight in the molecular evolution of viruses and
assist in the automated classification of new viruses by reference to only their
genomes.
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