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Abstract. Morphological perceptrons use a lattice algebra approach to
learn and classify a set of patterns. Dendritic structure combined with
lattice algebra operations have properties that are completely different
than those of traditional perceptron models. In the present paper, we fo-
cus our attention in single layer morphological perceptrons that classify
correctly the parity of all bit strings of length n, as a one-class pat-
tern recognition problem. The n-bit parity problem is the n-dimensional
extension of the classic XOR problem in the Euclidean plane and is com-
monly used as a difficult benchmark to test the performance of training
algorithms in artificial neural networks. We present results for values of
n up to 10, obtained with a training algorithm based on elimination.

1 Introduction

The n-bit parity problem is defined as follows, given a binary n-dimensional
input vector, * = (x1,...,x,), the parity is 1 if the number of 1’s in x is odd,
otherwise the parity is 0. Arithmetically, the parity equals (1 +---+2,) mod 2.
The parity problem, categorized as a statistical neutral problem [1], is known
to be a “hard” learning benchmark for neural network classifiers and has been
the subject of considerable research and experimentation [2-4]. In [4], a single
hidden layer feedforward neural network with (n/2)+ 1 hidden units for even n,
or (n+1)/2 hidden units for odd n, without direct connections, and sigmoids for
hidden and output units, correctly classifies all 2" input patterns. The weights
of the network are explicitly computed, e.g., the weights between the hidden and
output layers are found by solving a system of h x h linear equations where 7 is
the number of hidden units. For n € {3,..., 7}, training experiments by gradient
type algorithms using a single or two hidden layer topology with a variable
number of hidden units in each layer are reported in [5-7]. Another network
architecture based on the majority algorithm [8], solves the parity problem with
an:n: 1 topology for n odd, or a (n+ 1) : n : 1 topology for n even. The
network weights equal £1 only, it has no direct connections between the input
and output layers, and requires n? connections from the input layer to the hidden
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layer. Stacked vs. cross-validation generalization performance of classifiers have
been addressed in [9]; for n = 9,13, generalization accuracy improves rapidly
if the number of training exemplars exceeds one third of the entire class, and
sin(x) is used as the activation function for the nodes in the hidden layers. In
[10], a reduced number of iterations during the training phase is accomplished
by modifying the performance index or the activation function slope used in
the Levenberg-Marquardt (LM) optimization technique; a comparison against
LM is made for n = 2,3, 4 with 2,{2,3}, 6 hidden units respectively. A different
approach used for 3-8 bit parity problems [11], uses a network that adds a
hidden neuron to its hidden layer when several consecutive attempts failed to
escape from a local minimum using standard LM. Therefore, neural networks
with the least number of hidden units are constructed in agreement with the
theoretical results stated in [2,4].

Recently, the foundation of morphological perceptrons (MPs) with dendritic
structure was established in [12-16] as a new paradigm in machine learning.
It was proved that a single layer morphological perceptron (SLMP) with one
output neuron can approximate, to any desired degree of accuracy, any compact
set of points in pattern space, whether it is convex or non-convex, connected or
not connected, or contains a finite or infinite number of points [13]. Specifically,
SLMPs were built to solve the parity problem for n = 2 (XOR) and n = 3; this
paper gives the solution to the general case using SLMPs training by elimination
[13,14].

Our work is organized as follows: Section 2 gives a brief background of single
neuron computation based on lattice algebra and describes the basic architecture
of an SLMP. Section 3 outlines the SLMP training algorithm based on elimina-
tion and Section 4 presents numerical results obtained for values of n up to 10,
as well as comments about the neural architecture and its performance. Finally,
in Section 5 we give our conclusion to the research presented here.

2 Morphological Perceptrons with Dendrites

Computation at a neurode M in the classical theory of artificial neural networks
(ANNs) is performed within the ring of real numbers (IR, +.x), by adding the
products of neural values and connection weights from all input neurons con-
nected to M, followed by the application of a nonlinear activation function.
Morphological neurocomputation is performed using the bounded lattice group
(R100, A, V,+) where IRy is the extended real number system, A = min,
V = max, and + is addition. Therefore, the output from neuron M is computed
as the minimum or maximum of the sums of neural values and corresponding
synaptic weights, and it is nonlinear before application of an activation func-
tion. To bear a closer resemblance with biological neurons and their processes,
artificial dendrites with excitatory and inhibitory responses are incorporated in
morphological neurons to perform logical computations as suggested by recent
research in the biophysics of real neurons (see References in [13]).

Let Ny,..., N, denote a set of input neurons with dendrites. Assume these
neurons provide synaptic input at an output neuron M also with dendrites. The
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value of the neuron N; travels along its axonal tree until it reaches the synaptic
knobs that make contact with the dendrites of neuron M. The weight w;\k is
associated to the axonal branch of the neuron NV; terminating on the kth dendrite
of M; A = 0 represents inhibitory input, and A = 1 represents excitatory input
to the dendrite. The kth dendrite of M will respond to the total input received
from the neurons Ny, ..., N, and will either reject or pass the input. The value
computed at the kth dendrite of M, for input & € IR™ is given by

o A A\ DO+ wd), 1)

i€I(k) NeL(3)

where z; is the value of neuron N;, I(k) C {1,...,n} is the index set of input
neurons with terminal knobs that synapse on the kth dendrite of M, L; C
{0,1} denotes the two only possible types of synapses the input N; may have
on dendrite k of M, and pj, € {—1,1} signals if the kth dendrite of M, inhibits
(pr = —1) or accepts (pr = 1) the received input. In (1), note that, if A = 0,
then the input —(x; + w,) is inhibitory, and excitatory for A = 1 since in this
case we have (z; + w},).

The total value received by M is computed as the minimum of 74 (x) for
all k = 1,..., K where K denotes the total number of dendrites of M and its
next state is determined by a Heaviside type hard limiter f. Before application
of the activation function f, neuron M has its own inhibitory (p = —1), or
excitatory response (p = 1). The final output value of the morphological neuron
M is therefore given by

K
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A single layer morphological perceptron (SLMP) with one output neuron, de-
picted in Fig. 1, is a morphological neuron endowed with a finite number of
dendrites and n input neurons that follows the propagation rule (2). For the
n parity problem, we restrict the pattern space to the discrete boolean space
{0,1}™ of n-dimensional binary vectors.

3 SLMP Training Algorithm

The architecture of an SLMP is not predetermined beforehand. It is during the
training phase that the morphological neuron grows new dendrites while the
input neurons expand their axonal branches to synapse on the new dendrites
to learn the training patterns. The algorithm proposed in [13] is based on elim-
ination of misclassified patterns; basically, an initial hyperbox containing all
patterns is reduced through elimination of foreign patterns and smaller regions
that enclose them. Training ends when all foreign patterns in the training set
have been removed. Removal is performed by computing the intersection of the
regions recognized by the grown dendrites, as expressed by the total input value
to neuron M, i.e., by 7(x) = ps /\kK:1 T ().
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Fig. 1. SLMP with n input neurons N; and one output neuron M

SLMP training by elimination algorithm is outlined below and its math-

ematical description with more detailed steps can be found in [13]. The algorithm
builds and trains an SLMP to recognize the training patterns as either belong-
ing to class Cy (odd parity) or not belonging to it. Hence it solves a one-class
problem, where the class of interest is denoted by C and the rest of points in

pattern

space by Cj (even parity). In the present study, C; U Cy = {0,1}".

Algorithm 3.1. (SLMP training by elimination [17].)

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

Grow a first dendrite, D1, that recognizes the hyperbox enclosing all
patterns labeled class C. This dendrite is excitatory. Initialize the
dendrite counter K = 1.

Using the K dendrites grown thus far, D1, ..., D, use (2) to compute
the output of the perceptron for each pattern in the training set.

If all training patterns are correctly classified, STOP. Otherwise,
increment K and grow another dendrite, Dj. This dendrite will be
inhibitory.

Select a pattern in class Cj that is erroneously classified as belonging
to class Cf.

Find a region enclosing the pattern selected in STEP 4 such that this
region may also contain other patterns from Cj but not from Cj.
Assign weights and responses to make dendrite D g recognize the region
determined in STEP 5.

Repeat from STEP 2.
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The separation surfaces drawn in pattern space during training are always
closed and the trained SLMP will always correctly recognize 100% of the patterns
in the training set. Thus, the SLMP procedure based on lattice computation
with dendrites provides a competitive learning alternative compared with other
multilayer perceptron architectures mentioned in the Introduction [4, 8, 11].

4 Numerical Results and Performance

Each training pattern set for the n parity problem was formed as an augmented
matrix 7" with 2" rows and n + 1 columns, by adjoining the class vector C' to
the binary matrix B of patterns using the following expressions

Bij = mod ([(i—1)2'7"],2), (3)
where ¢ = 1,...,2" and 7 = 1,...,n. The training algorithm described in 3.1
was applied to each matrix T to generate the corresponding dendritic structure
as well as compute the weights and responses of the SLMP that solves the parity

problem for n = 1 to 10. For example, Table 1 shows the network parameters
for n = 4.

Table 1. Weights and responses of the SLMP that solves the 4-parity problem

[Di[lwir]wae[wii [wa [[wly [ why [wis [wiy [[ps |

1 0Ojl0|O0O]|O|—-1|—-1|-1|-1/|+1
2 co|loo|oo|oo||—-1]—-1|—-1|—-1(-1
3 oco|loo| 0] 0 ||—-1]—-1|—0c0|—0c0f—1
4 co| 0 |oco| O ||—1]|—00—1]|—00|l—1
5 co| 0|0 |ool|l—1|—c0|—00|—1][—-1
6 0 |loo|oo| 0 ||[—ool—1|—1|—0c0]|—1
7 0|oco| 0 |ool||—oc0|—1|—0c0|—1]|-1
8 010 |oo|ool||—o0|—0c0| —1|—1]|—1
9 0101|000 |[—ocol—oc0|—00|—0c0|—1

Entries in Table 1 marked with +00 mean that no excitatory/inhibitory con-
nection exists between the input neurons Ny, ..., N4, and the dendrites Dy, ...,
Dy of the output neuron M. Inspection of the parameters for each trained SLMP
using Algorithm 3.1 reveals that the number of dendrites K(n), and the number
of weights w(n) (both excitatory and inhibitory) necessary to solve the n-bit
parity problem are given by

K(n)=2""141, (5)
w(n) =n(K(n)+1). (6)

In addition, we observe that the SLMP weight assignments for n-bit parity con-
tains all the weights for (n —m)-bit parity for m = 1,...,n—2. For example, the
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weights for n = 3 are embedded in Table 1 and can be extracted by considering
the subtable formed by rows Dy, ..., D5 and columns wg‘k, waﬁ\k,wik. Similarly,
the weights for n = 2 (XOR) are obtained as the submatrix from Table 1 with
rows D1, Do, D3 and columns wék, wi‘k. Therefore, once an SLMP is trained for
n-bit parity, the SLMP for (n — m)-bit parity can readily be obtained with no
training; in this case, the weights correspond to the submatrix formed with rows
Dy, ..., Dyn-m;1 and columns w()‘Hm)k, e ,wfl‘k. The diagram shown in Fig. 2
illustrates the morphological neural structure that corresponds to Table 1.

X Xy X3 Xy

D 66 0000 60 N P (
D . A 7,(x)
20 0 .0 0
D, o oe o
Di_ce oe
D, o e o
»(x)
Die o oce
Die oe o
Do o o oh
Do o o o N
0-10-10-10 -1 Dy

Fig. 2. SLMP structure for 4-parity; 0,-1 at the bottom are weight values

Table 2 displays the number of patterns, the number of dendrites, the num-
ber of weights, the learning time (LT) needed to find the network parameters
(including I/0 file operations on data and result sets), and the recognition time
(RT) spent to classify correctly all patterns in boolean space for n = 1,...,10.
We remark that the training phase for each SLMP takes only one iteration to
complete without any convergence problems. The computer used was a Pentium
4 processor running at 1.2 GHz with 512 Mb main memory.

It is important to remark that direct comparison of the SLMP performance
against known numerical solutions to the n-bit parity problem, proposed by
several researchers, would be difficult since in each reported study different goals
and performance measures have been used. For example, in [7], the goal was
to compare the average number of epochs between a single hidden layer and
a two hidden layer network topology trained by backpropagation. On the other
hand, the results presented in [18, 19], were focused to find the minimum number
of hidden units in a single hidden layer topology together with the number
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Table 2. SLMP performance parameters for the n-bit parity problem

([ 2 [Kw] o] LT [ RT |
1 2 1 2| 200 ms 20 ms
2 4 3 81| 310 ms 20 ms
3 8 5 18 || 420 ms 20 ms
4 16 9 40 || 550 ms 20 ms
5 32 17 90 || 760 ms | 30 ms
6 64 33 204 || 1.71 sec| 70 ms
7 128 65 462 || 8.75 sec| 240 ms
8 256 129 | 1,040 || 1.13 min| 1.01 sec
9 512 257 | 2,322 || 9.54 min| 4.38 sec

10][1,024] 513[5,140 [| 1.4 hrs [ 19.05 sec|

of iterations needed to converge, respectively, by a dynamic node creation or
a feedforward neural network construction algorithm. Interested readers with
the n-bit parity problem as a pattern recognition challenge, will find specific
examples related to computer experiments and numerical results using a wide
variety of learning algorithms in [5,7,10,11,18,19].

5 Conclusion

The n-bit parity problem will remain a tough benchmark used to test the learn-
ing performance in artificial neural networks, as well as an interesting pattern
recognition problem by itself. The lattice algebra approach, coupled with the
novel idea of introducing dendrite computation in neurodes has conducted our
research in different directions to tackle non-trivial classification problems. As
demonstrated in this paper, trained SLMPs, configured with specific excitatory
and inhibitory weights and responses in dendrites, imitate biological neurons
more closely than their traditional artificial models. The SLMP learning algo-
rithm “grows” dendrites as needed and the n-bit parity data set is an extreme
case corresponding to a worst case situation. However, SLMPs offer complete
recognition capability as well as competitive computational performance in com-
parison to other artificial neural network architectures and training algorithms.
Future research with the SLMP training algorithm used here, will consider its
computational complexity and its application to other benchmark problems.
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