
Requirements on Quality Specification Posed by Service
Orientation

Markus Garschhammer and Harald Roelle

Munich Network Management Team
University of Munich

Oettingenstr. 67
D-80538 Munich, Germany

{markus.garschammer,harald.roelle}@ifi.lmu.de

Abstract. As service orientation is gaining more and more momentum, the need
for common concepts regarding Quality of Service (QoS) and its specification
emerges. In recent years numerous approaches to specifying QoS were developed
for special subjects like multimedia applications or middleware for distributed
systems. However, a survey of existing approaches regarding their contribution to
service oriented QoS specification is still missing.
In this paper we present a strictly service oriented, comprehensible classification
scheme for QoS specification languages. The scheme is based on the MNM
Service Model and the newly introduced LAL–brick which aggregates the
dimensions Life cycle, Aspect and Layer of a QoS specification. Using the
terminology of the MNM Service Model and the graphical notation of the
LAL–brick we are able to classify existing approaches to QoS specification.
Furthermore we derive requirements for future specification concepts applicable
in service oriented environments.

Keywords: QoS specification, service orientation, classification scheme

1 Introduction

In recent years Telco and IT industries have been shifting their business from monolithic
realizations to the composition of products by outsourcing, which results in creating
business critical value chains. This trend has had its impact on IT management and
paved the way for concepts subsumed under the term service (oriented) management.
Now, that relations involved in providing a service are crossing organizational bound-
aries, unambiguous specifications of interfaces are more important than ever before. In
federated environments they are a fundament for rapid and successful negotiation as
well as for smooth operation. Here, not only functional aspects have to be addressed,
but quality is also an important issue.

In the context of service management, the technical term Quality of Service (QoS)
is now perceived in its original sense. Prior to the era of service orientation, the term
QoS was mainly referred to as some more or less well defined technical criterion on
the network layer. Nowadays, QoS is regaining its original meaning of describing a
service’s quality in terms which are intrinsic to the service itself. Furthermore, QoS now

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 1–14, 2004.
c© IFIP International Federation for Information Processing 2004

2 M. Garschhammer and H. Roelle

reflects the demand for customer orientation, as QoS should be expressed in a way that
customers understand, and not in the way a provider’s implementation dictates it.

In the past, a number of QoS specification concepts and languages have been pro-
posed. Unfortunately, when applied to real world scenarios in a service oriented way,
each shows weaknesses in different situations. For example, considering negotiations
between a customer and a provider, some are well suited regarding customer orienta-
tion, as they are easily understood by the customer. But they are of only limited use for
the provider’s feasibility and implementation concerns. Other specification techniques
suffer from the inverse problem.

Apparently there is room for improvement in service oriented specification of service
quality. This paper contributes to the field by introducing a classification scheme for
quality specification techniques which is strictly service oriented. This is accomplished
by considering e.g. the service life cycle, different roles and types of functionality. By
applying the classification scheme to representative examples of quality specification
techniques, the current status in the field is outlined. To contribute to the advancement of
service orientation, we derive requirements for next generation specification techniques
by two ways: First we analyze today’s works’ flaws and second we deduce requirements
from our classification scheme.

The paper is organized as follows. In the next section (Sec. 2) the classification
scheme for QoS specification languages and concepts is introduced. Application to typi-
cal examples of QoS specification techniques is discussed in Sec. 3. Using these results,
the following section (Sec. 4) identifies requirements for future quality specification
approaches. Section 5 concludes the paper and gives an outlook on further work.

2 Classification Scheme

In this section a classification scheme for quality specification concepts and languages
is developed. In doing so, the paradigm of service orientation is strictly followed. Mul-
tiple aspects of services are covered, functional aspects of a specification as well as its
expressiveness in relation to service properties.

In order to develop the classification, the MNM Service Model [GHH+02,GHK+01]
is used as the foundation for the classification. It is a bottom–up developed model which
defines a common terminology in generic service management, specifies atomic roles
and denotes the major building blocks a service is composed of. Doing so, it offers a
generic view on the building blocks rather than a specification for direct implementation.
As the MNM Service Model is a generic model, which is not focusing a certain scenario,
it serves well as a starting point for our classification, in respect to develop a model
where completeness, generic applicability and scenario independency is ensured.

The second ingredient for our classification is the set of common concepts that can
be found in various quality specification schemes. This set was derived from the survey
of Jin and Nahrstedt [JN04] and is an enhancement of the taxonomy presented there.

2.1 The MNM Service Model as a Map for Specification Concepts

The MNM Service Model offers two major views (Service and Realization View) which
group a service’s building blocks into different domains, according to their roles and

Requirements on Quality Specification Posed by Service Orientation 3

related responsibilities. Figure 1 combines the two views. One major characteristic of
the model is the so called Side Independent Part1. Beside the service itself, it depicts
additional building blocks which should be specified independently from realization
details on either the provider side and the customer side.

The MNM Service Model decomposes the specification of a service’s quality in
two parts. The first part describes quality relevant properties of a service (class QoS
Parameters in Fig. 1). The second part poses constraints on those specified properties
which have to be met by the provider and are agreed upon in an service agreement.
For both parts, relevant properties of the system have to be defined in an unambiguous
manner.

uses

implements observesrealizes

provides directs

implementsrealizes

usesuses

manages

manages

concludes

acts as

service implementation service management implementation
manages

uses

acts as

sub-service
client

service
client

CSM
client

uses usesuses

sub-service
management client

«role»

customer

«role»

provider

«role»

user

supplies supplies

accesses uses concludes accesses

substantiates

uses

manages

service

QoS
parameters

usage
functionality

management
functionality

service
agreement

«role»

user
«role»

customer
service
client

CSM
client

p
ro

vi
d

er
 s

id
e

si
d

e
in

d
ep

en
d

en
t

service
access point

CSM
access point

service manage-
ment logic

service
logic

resources basic manage-
ment functionality

interception of
method invocation

flow
analysis

code
injection

resource
parameters

cu
st

o
m

er
 s

id
e

Fig. 1. Reference Points located in combined view of the MNM Service Model

QoS parameters may be specified against different reference points. Thus, even
when they bear the same name, they may have different semantics. For example, a delay
specification could be measured at the user’s client or inside the service implementa-
tion, which results in different QoS parameters. In fact, our extension of the taxonomy
presented in [JN04] describes such possible reference points for quality specification.

1 In the following, parts of the model will be printed in italics

4 M. Garschhammer and H. Roelle

By locating the reference points in the MNM Service Model characteristics of these
reference points can be identified. First of all, the model’s part where the reference
point is located, enables us to identify the affected roles. Furthermore, this allows us
to draw conclusions on dependencies to other parts of a service. Thus we can identify
typical properties of reference points, like limitations regarding portability to different
realizations or the applicability in situations, when service chains come into play.

The following paragraphs first describe those reference points. In each paragraph’s
second part the reference point is located in the MNM Service Model as depicted in Fig.
1. By this, basic characteristics of specification techniques using the respective reference
point can be pointed out later on by simply marking the corresponding reference point
in the MNM Service Model.

Flow/Communication. Most of today’s common QoS parameters, such as throughput
or delay, are measured and thus specified from a communications point of view. Quality
related properties of a service are derived from properties of a data stream or, in general,
a flow. Constraints on the quality of a service are simply mapped onto constraints of the
flow (e.g. “the transmission delay must not exceed 10ms”). So the quality of a service
is only implicitly defined by properties of the communication it induces. This definition
is therefore at the risk of being too coarse in respect to the service’s functionality.
However, this way of expressing quality is widespread because properties of a flow can
be easily derived in real world scenarios. A typical example would be an ATM based
video conferencing service where its properties are described as ATM QoS parameters.

In the MNM Service Model a communication flow in general can be observed be-
tween a client and the corresponding service access point (SAP). This relation exists
between the service client and service access point (when accessing the service’s us-
age functionality) as well as between the customer service management (CSM) client
and the customer service management (CSM) access point (when accessing the man-
agement functionality). Hence, a quality specification has to be applied not only to the
usage functionality but also to the management side.

As can be seen in Fig. 1, the relation between the service client and the service access
point crosses the boundary between the customer side and the side independent part of
the model (the same applies for the management side). Any analysis of flows depend
on the service clients, thus, it cannot be implementation independent. In consequence,
specifications using the technique of flow analysis depend on a client’s implementation
as well.

Method/API Invocation. Another technique to derive quality relevant properties of
a service is motivated by object oriented (OO) design, programming and middleware
architectures. Here, quality is specified as properties of a method invocation, e.g. the time
it takes a method for encoding a video frame to finish. Constraints on these properties
can be posed as easily as in the former case. This method of quality measurement and
description requires the interception of method invocations. As this is naturally done in
component oriented middleware, this technique is mostly used there.

Method invocation may occur at almost any functional component of the MNM
Service Model. However, the invocation interception concept used in OO environments

Requirements on Quality Specification Posed by Service Orientation 5

or middlewares can be mapped best to the service’s access points where methods in the
sense of service (management) functions can be invoked. The idea of interception of
method invocations is therefore depicted in Fig. 1 at the service access point and the
customer service management (CSM) access point. As this concept only uses blocks of
the model which are located in the side independent part, it does not depend on any
implementation, neither on the customer nor on the provider side.

Code Injection. The idea of code injection is to directly integrate constraints on quality
into a service’s implementation — into its executable code. Steps of execution monitored
by injected code yield service properties (such as processing time or memory consump-
tion). Constraints on these properties are inferred by directly coding conditional actions
to be executed when a constraint is satisfied or violated. For example, information on
memory usage during the decoding of a video stream is measured. If it exceeds a cer-
tain value, a less memory consuming but also worse performing decoding method is
used. This procedure automatically assures a certain quality, in this case a guaranteed
maximum amount of memory used.

The MNM Service Model divides a service’s implementation into three parts: sub-
service client, service logic and resources. The service logic orchestrates resources and
subservices to implement the service’s usage functionality as a whole. The idea of code
injection, in the sense of the service model, is to enhance the service logic with inserted
code to automatically derive properties of the running service. Observation of these
properties and reaction to changes are directly coupled. As the Service Model distin-
guishes between a service’s usage functionality and its management functionality, this
concept is shown in both the service logic and the service management logic. As one
can easily see, the idea of code injection depends directly on a service’s implementation
by a provider. It is therefore an instrument for providers to assure a certain quality, but
obviously should not be used in service negotiation when customer and provider need
to establish a common understanding of a service’s quality parameters.

Resource Parameters. Quality relevant properties of a service can also be derived
from the parameters of resources the service is realized with. For this purpose, resource
parameters can be aggregated in various ways.

However, details of the gathering and aggregation process have to be defined after
service deployment, because relevant details of concrete resources used are unknown
before deployment. Even worse, the specification may have to be adapted on a service
instance basis because different service instances might use different resources, whose
concrete characteristics might be needed for specification. Constraints on these resource
oriented properties can be posed at various aggregation levels, but their derivation from
constraints posed on the service itself is not a trivial task.

In the MNM Service Model, information about resources can be directly gathered
from the resources, but can also be obtained via the class basic management functionality.
When specifying quality aspects of the management functionality the basic management
functionality itself is targeted in a QoS specification. As the location of both resources
and basic management functionality inside the provider’s domain illustrates, even with
a suitable aggregation method, this concept of specification can only express quality that

6 M. Garschhammer and H. Roelle

directly depends on the provider’s own implementation. As most services realized today
depend on subservices, this specification can be used for basic services only.

By introducing the various reference points, locating them in the MNM Service Model
and by identifying their basic properties and limitations, the first part of our classification
scheme is now explained. While up to here our analysis focused mostly on functional
aspects of the MNM Service Model’s views, additional non–functional aspects have to
be regarded for a comprehensive classification of quality specification techniques. This
will be carried out in the next section.

2.2 Dimensions Covered by Quality Specifications – The LAL-Brick

Apart from its decompositions into functional building blocks and related roles, as de-
scribed with the MNM Service Model, a service can also be described in another view,
which focuses on non–functional properties of a service.As shown in the following para-
graphs, we describe this non-functional view using a three dimensional brick, depicted
in Fig. 2. The brick’s three dimensions are Life cycle, Aspect, Layer and is therefore
called the LAL–brick from here on. The axes of the brick, its dimensions, can be marked
with typical properties. A tiny cube is attached to each property and as the dimensions
are independent from each other, all tiny cubes together form the brick. The dimensions
and their properties are described in the following.

deinstallation

usage

provisioning

negotiation

life
 cy

cle
 p

ha
se

information management functionality

user

application

resources

service aspect

la
ye

r
of

 a
bs

tr
ac

tio
n

Fig. 2. Dimensions of quality specification arranged in a brick

Approaches to specify QoS can easily be depicted in the brick by simply marking
the cubes corresponding to the properties this specification approach fulfills. Different
“marking patterns” of different approaches explicitely visualize their classification.

Requirements on Quality Specification Posed by Service Orientation 7

Life Cycle. The process traversed by a service – when seen as an object of management
– is called the life cycle. This process can be split up into different phases. According to
[GHH+02] it begins with the negotiation phase where customer and provider determine
a service’s functionality, its QoS and suitable accounting schemes. In the next phase,
the provisioning phase, the provider implements the service using its own resources and
subservices he buys (then acting in the role of a customer). When the implementation is
completed, the usage phase begins with users actually using the service. The life cycle
ends with the deinstallation of the service.

The mapping of the reference points on the MNM Service Model already suggested
that the service life cycle is a relevant dimension in quality specification. For example,
as explained above, specification schemes based on resource parameters have a strong
relation to the finalization of the provisioning phase, while using method/API invocation
as reference points, quality specification could be fully done in the negotiation phase.
Thus, concepts and methodologies dealing with service should be aware of the life
cycle and ensure reusability of results they deliver to other phases. At least they should
explicitly denote which phase they cover or were designed for.

Aspects of a Service. The notion of a service not only defines a set of functions accessible
to a user. In an integrated view it also defines how the management of a service is
accomplished by the customer (see Fig. 1).As shown above, independently from the type
of reference points used in a specification mechanism, management functionality must be
targeted as well as a service’s usage functionality. Of course, when a service is specified,
the content it delivers or the information it deals with are defined. In consequence, this
information might be subject to quality considerations as well. From now on, we use
the notion of aspects of a service to denote the triple of function, management and
information.

Layer of abstraction. When concepts or methodologies dealing with services are pre-
sented, different layers of abstraction can be recognized. Some ideas focus on the re-
sources that a service is built upon, some describe a service from an application’s point
of view. At last, the service can be described from an user’s point of view (as of [JN04]).

Service orientation demands concepts spanning all three layers of abstraction denoted
above, so providers, customers and users can use them. At least, mappings between the
different layers should exist so that an integrated concept could be built up out of ideas
only spanning one layer of abstraction.

2.3 Comprehensible, Service Oriented Classification Scheme

The set of reference points marked within the MNM Service Model in conjunction
with the LAL–brick now delivers a comprehensive classification scheme for approaches
specifying QoS. It should be emphasized that reference points are not exclusive to each
other. This means, that a concrete quality specification mechanism might use several
types of reference points. Section 3.4 shows an example for this.

The MNM Service Model and the LAL–brick offer different views on the specifica-
tion of QoS. The Service Model, used as a map to visualize different reference points,

8 M. Garschhammer and H. Roelle

focuses on functional aspects, whereas the LAL–brick gives an easy to use scheme
to denote non-functional properties of specification techniques. Together, both views
offer the possibility of a comprehensive classification of existing approaches in QoS
specification, as will be shown in the following section.

3 The Classification Scheme Applied – State of the Art in QoS
Specification by Example

After presenting a comprehensive and service oriented classification scheme in the previ-
ous section, we will now discuss typical representatives of specification languages. Each
specification language realizes one of the approaches denoted in Sec. 2. We do not give
a full survey on QoS specification languages and techniques here. But we demonstrate
the application of our classification scheme to existing approaches in order to derive
requirements on a service oriented QoS specification in the following Sec. 4.

3.1 QUAL – A Calculation Language

In her professorial dissertation [DR02a] Dreo introduces QUAL as part of “a Frame-
work for IT Service Management”. The approach of QUAL as such is also presented
in [DR02b]. The key concept of QUAL is to aggregate quality parameters of devices
(named as quality of device, QoD) to basic quality parameters which themselves can be
aggregated to service relevant QoS parameters. The aggregation process is based upon
dependency graphs which describe service and device interdependencies.

As QoD is gathered on the resource level, QUAL obviously uses resource parameters.
Although QUAL can express higher level quality parameters at the application level,
they always depend on the on the QoD gathered from the resources. Thus, resource
parameters are the only reference point directly used in QUAL, as application level QoS
is specified through aggregation.

QUAL covers a wide range of abstraction from resource to service oriented quality
parameters. However, QUAL does not directly address the specification of user–oriented
QoS. In our classification scheme, it therefore covers the two lower abstraction layers,
resource layer and application layer. QUAL focuses on the functionality aspect, the
management aspect and the information aspect are not explicitly mentioned.

As QUAL is based on resource parameters, its application is restricted to the usage
phase of the life cycle where these parameters are available. Even though QUAL covers
only the usage phase, it is highly dependent on specifications and decisions made in
the negotiation and provisioning phase. This results from the fact, that aggregation of
quality parameters is based on dependency graphs which have to be determined before
QUAL is applied.

3.2 QDL – QoS Description Language

QDL [PJS+00] is an extension to the interface description language (IDL) [ITU97] which
is used to specify functional interfaces in CORBA [COR04]. It is the description language
used in the QuO (Quality of Service for CORBA Objects) framework introduced in

Requirements on Quality Specification Posed by Service Orientation 9

[ZBS97]. The key concept of QuO is to enhance the CORBA middleware concepts
with QoS mechanisms. For this purpose, additional facilities are added to the CORBA
runtime to ensure a specified quality. The desired quality is determined in QDL and its
sublanguages.

Based on QDL statements, extra code is generated in the QuO framework which is
joined with the functional code when the corresponding object files are linked together.
Thus, QDL uses code injection as a reference point for the specification of QoS. By
using CORBA as an implementation basis, QuO and QDL abstract from real resources
and specify QoS at the application layer of abstraction. Naturally the CORBA based
approach limits the expressiveness of QDL and prevents the specification of user–level
QoS.

QDL only covers the of aspect of functionality and does not mention any possibilities
to extend its approach to the other aspects management and information. QDL, together
with the supporting framework QuO, covers the life cycle phases provisioning and usage.
The reason for this is, that code executed in the usage phase is automatically generated
from specifications laid down in the provisioning phase, when a service is realized
according to customer’s needs.

3.3 QML – Quality Modeling Language

The Quality Modeling Language QML [FK98] was developed at HP-Labs, another, quite
similar approach was presented in a thesis [Aag01]. QML separates the specification of
(desired) quality from its assurance or implementation respectively.As specifications are
bound to abstract method definitions of the considered application, QML uses method
invocation as the reference point. The authors of QML also propose a corresponding
runtime engine that could be used to implement the specifications made in QML.

Thus, the system as a whole (QML and its runtime engine) offers support for the
whole service life cycle: As specifications made in QML are independent of an imple-
mentation, they could be easily used in the negotiation phase. Provisioning and usage
phase are supported by the runtime engine QRR (QoS Runtime Representation) which
unfortunately has not been implemented yet.

Obviously, due to their binding to abstract methods, specifications in QML are made
at the application level of abstraction.As long as resources are encapsulated in an (object
oriented) interface, QML specifications might be used at the resource level as well.
However, this possible extension is not mentioned by the authors of QML. A distinction
of different aspects of QoS is not made either. QML, like all the other specification
languages introduced so far, definitely focuses on the aspect of functionality.

3.4 QUAL – Quality Assurance Language

The quality assurance language was introduced in [Flo96] as part of QoSME the QoS
Management Environment. Although equal in names, QUAL by Florissi and QUAL
introduced at the very beginning of Sec. 3 follow quite different approaches. QoSME–
QUAL specifies quality in relation to communication properties observable at a so called
port. So, it uses a flow of communication as reference point. QoSME also provides a
runtime engine to ensure the specifications made in QUAL. As this engine is directly

10 M. Garschhammer and H. Roelle

woven into an application’s executable code, QoSME uses the concept of code injection
as well. Even though this is only done for the assurance and not for the specification of
QoS, it leads to a form of specification closely related to the executable code.

QUAL statements are not very meaningful without a specific implementation in
mind. Thus, QUAL cannot be used during the negotiation of a service, where an imple-
mentation is not yet existent. However, QUAL supports the provisioning phase by QoS
specification directly attached to the code to be executed later. Together with the runtime
system of QoSME, QUAL also supports the usage phase.

QUAL claims to specify QoS at the application layer of abstraction but does neither
mention nor address the other abstraction layers (resources and user). Because QUAL
analyzes communication flows, it primarily covers the aspect of functionality, but could
in some sense also be related to the aspect of information when the content of flows is
examined.

deinstallation

usage

provisioning

negotiation

life
 cy

cle
 p

ha
se

information management functionality

user

application

resources

service aspect

la
ye

r
of

 a
bs

tr
ac

tio
n

Fig. 3. Approaches marked in the LAL-brick

3.5 The Big Picture

To conclude our presentation of existing approaches we again show the LAL–brick
in Fig. 3. In this figure, the parts covered by the reviewed specification languages are
marked. Possible extensions of existing approaches, as mentioned above, are spotted,
whereas the parts exactly matched are marked dark grey.

As one can easily observe, huge parts of the LAL–brick are not covered at all.
Requirements for future specification languages resulting from this “gap” are discussed
in the next section.

Requirements on Quality Specification Posed by Service Orientation 11

4 Directions and Requirements for Future Research

As the previous section shows, current work has deficiencies regarding extensive service
orientation capabilities. By summing up the flaws and comparing it to the classification
scheme, this identifies new requirements which should be met by the next steps in the
field. The classification scheme of Sec. 2, which consists of the set of reference points
on the one hand, and of the LAL–brick on the other hand, is used here again.

As a service oriented, generic and comprehensive solution for QoS specification
technique is required, a full coverage of the LAL–brick should be achieved. Therefore,
the still missing cubes in the LAL–brick are investigated. Additionally, in conjunction
with the MNM Service Model as generic reference, the individual limitations of the
reference points, induce additional requirements.

Side independency. Following the MNM Service Model, QoS should be described in a
side independent manner.As already explained in Sec. 2.1, side dependency is influenced
by the actual set of reference point used. A number of specification schemes suffer from
the problem, that they exclusively focus on reference points which import realization de-
pendency by design. Namely, just using Code Injection or Resource Parameters induces
dependencies on the provider’s realization of a service. In case of Code Injection, using
a middleware architecture mitigates the dependencies from specific resources, but be-
ing specific on this middleware persists. Relying solely on Resource Parameters is even
more problematic as only provider–internal resources, but not the subservices purchased
by the provider are reflected. Additionally, side independency is not only desirable in
the relation to customers. With quality specification being driven by a provider’s imple-
mentation, when it comes to outsourcing, it will be difficult for the provider to create
comprehensible bid invitations for subproviders.

Consequently, quality specification languages should support specification tech-
niques which are independent from implementation details. As pointed out, this is not
only required for customer orientation, but also aids providers in outsourcing processes.
Additionally, in the LAL–brick, side independency is a first step towards the coverage
of the user layer of abstraction.

Life cycle span. Regarding the LAL–brick, the previous section has shown that not
all quality specification techniques are qualified to cover a service’s full life cycle. As
quality specification is already needed in the beginning (the negotiation phase), a quality
description mechanism should try to cover the whole life cycle.

Especially the ability to reuse specification results should be addressed. This is
desirable, as it would help providers in estimating feasibility of a customer’s demands
during the negotiation phase. Second, it would aid providers in realizing services, as
agreed quality could be more smoothly implemented during the provisioning phase.
Third, for the usage phase, a life cycle spanning approach could help in measurement of
quality characteristics. As a minimum requirement, specification techniques at the very
least should point out which phase of the life cycle they were designed for.

12 M. Garschhammer and H. Roelle

Management functionality subject to quality. As the MNM Service Model points
out, management functionality is a vital part of any service, a point also reflected in
the design of the LAL–brick. In fact, management functionality not only reports and
manipulates quality aspects, but is also subject to quality considerations itself. This is
even more important, as quality of management functionality can have influence on a
service’s usage quality.

For this, an example are situations when a main service is composed of subservices.
Reporting of QoS from a subservice is part of its customer service management (CSM)
functionality. When this reporting functionality has deficiencies, quality degradation
from the subservice might not be determined by the main service. As a consequence
its own usage functionality might be affected without being noticed, because quality
degradations of the involved subservice are not noticed as the reporting functionality is
degraded.

However, in current work the topic of applying quality to management functionality is
not addressed.Although one can suppose that some tasks are similar to specifying quality
of usage functionality, further research is needed. At least, specification techniques must
be able to cope with the fact that in case of management functionality a different role
(namely the customer instead of the user) is involved.

Awareness of Quality of Information (QoI). As the LAL–brick shows, a service’s
content may be a quality aspect, here referred to as the information aspect. Taking
a web–based news service as an example, up–to–dateness of messages is, without a
doubt, a quality criterion of the service. Dividing quality aspects of functionality (here:
e.g. reachability of the service) from information quality (here: e.g. up–to–dateness
and trustability of news) can aid over the whole service life cycle. During negotiation
and deployment, service agreements with customers and subcontractors will be more
accurate, outsourcing decisions gain a clearer basis. Naturally, technical infrastructure
might influence the QoI. Regarding the news service, a certain up–to–dateness might
require a different content management system or a faster communication infrastructure
to subcontractors delivering news content. In the usage phase, e.g. in fault situations,
root causes might be easier to find.

One might argue that this starts to involve high level semantics, a field which is
hard to cope with. Nevertheless, separating quality aspects of a service’s content from
its functionality in fact already took place in some research areas. Context sensitive
services are dealing with “Quality of Context” [HKLPR03,BKS03], for example the
accuracy of location coordinates or temperature readings. Speaking in the terminology
introduced by this paper, these are quality aspects of information. Future research in
service management should be aware of this separation, should try to develop a generic
approach and should try to invent techniques and mechanisms to incorporate and support
Quality of Information (QoI).

It should be pointed out here that it would be unrealistic to demand or predict one single
approach which is capable to span the whole LAL–brick and which can fulfill all of the
requirements posed here. Instead, multiple approaches for different slices of the LAL–
brick are more likely. But what should definitely be approached, is the interoperability

Requirements on Quality Specification Posed by Service Orientation 13

between approaches and standards covering parts of the LAL–brick. These questions on
interoperability are also subject for further research.

5 Conclusion and Outlook

In this paper a classification scheme for quality specification mechanisms and languages
is presented. The classification emphasizes service orientation and consists of two parts.
First a set of reference points is given, denoting the place in the MNM Service Model
which is used to define quality properties of a service and on which later quality con-
straints are built upon. The second part of the classification scheme, called the LAL–
brick, defines the dimensions along which quality description schemes can be classified.
The classification scheme is applied to typical examples of current approaches in QoS
specification. By this, the current state of the art in the field is outlined.

In the last part of the paper, observations of the classification scheme’s application
in conjunction with basic properties of the scheme itself are used to identify basic
requirements and directions for future research in the field. Among others, one of the
basic directions here is the awareness of the service life cycle. Additionally, a service
content, or more abstract, the information it deals with, is also subject to quality (Quality
of Information, QoI), which has to be separated from the quality of a service’s usage
and management functionality.

Further directions in our work include a specification scheme which focuses on the
ability to reuse specification properties from preceding life cycle phases. Our second
focus is targeted on the MNM Service Model. According to the results of this paper, it
needs extensions regarding QoI, by that broadening its applicability to mobile and context
aware service scenarios. Looking even further, approaches which claim the software
development life cycle to be vital for quality specification (like [FK98,ZBS97]) must be
investigated more precisely and eventually incorporated with the presented work.

Acknowledgment. The authors wish to thank the members of the Munich Network
Management (MNM) Team for helpful discussions and valuable comments on previous
versions of this paper. The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a
group of researchers of the University of Munich, the Munich University of Technology,
and the Leibniz Supercomputing Center of the Bavarian Academy of Sciences. Its web–
server is located at http://wwwmnmteam.ifi.lmu.de/.

References

[Aag01] J. Ø Aagedal. Quality of Service Support in Development of Distributed Systems.
Dr. scient. thesis, Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo, March 2001.

[BKS03] T. Buchholz, A. Küpper, and M. Schiffers. Quality of Context Information: What
it is and why we need it. In Proceedings of the 10th HP–OVUA Workshop, volume
2003, Geneva, Switzerland, July 2003.

[COR04] Common object request broker architecture (corba/iiop). Specification version
3.0.2, OMG, March 2004.

http://wwwmnmteam.ifi.lmu.de/

14 M. Garschhammer and H. Roelle

[DR02a] G. Dreo Rodosek. A Framework for IT Service Management. Habilitation, Lud-
wig-Maximilians-Universität München, June 2002.

[DR02b] G. Dreo Rodosek. Quality Aspects in IT Service Management. In M. Feridun,
P. Kropf, and G. Babin, editors, Proceedings of the 13th IFIP/IEEE International
Workshop on Distributed Systems: Operations & Management (DSOM 2002), Lec-
ture Notes in Computer Science (LNCS) 2506, pages 82–93, Montreal, Canada,
October 2002. IFIP/IEEE, Springer.

[FK98] Svend Frølund and Jari Koistinen. Qml: A language for quality of service spec-
ification. Report hpl-98-10, Software Technology Laboratory, Hewlett-Packard
Company, September 1998.

[Flo96] Patrícia Gomes Soares Florissi. QoSME: QoS Management Environment. Phd
thesis, Columbia University, 1996.

[GHH+02] M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, I. Radisic, H. Roelle,
and H. Schmidt. A Case–Driven Methodology for Applying the MNM Service
Model. In R. Stadler and M. Ulema, editors, Proceedings of the 8th International
IFIP/IEEE Network Operations and Management Symposium (NOMS 2002), pages
697–710, Florence, Italy, April 2002. IFIP/IEEE, IEEE Publishing.

[GHK+01] M. Garschhammer, R. Hauck, B. Kempter, I. Radisic, H. Roelle, and H. Schmidt.
The MNM Service Model — Refined Views on Generic Service Management.
Journal of Communications and Networks, 3(4):297–306, December 2001.

[HAN99] H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked
Systems – Concepts, Architectures and their Operational Application. Morgan
Kaufmann Publishers, ISBN 1-55860-571-1, 1999.

[HKLPR03] H.-G. Hegering,A. Küpper, C. Linnhoff-Popien, and H. Reiser. Management Chal-
lenges of Context–Aware Services in Ubiquitous Environments. In Self–Managing
Distributed Systems; 14th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations and Management, DSOM 2003, Heidelberg, Germany, October
2003, Proceedings, number LNCS 2867, pages 246–259, Heidelberg, Germany,
October 2003. Springer.

[ITU97] Open Distributed Processing – Interface Definition Language. Draft Recommen-
dation X.920, ITU, November 1997.

[JN04] Jingwen Jin and Klara Nahrstedt. QoS Specification Languages for Distributed
MultimediaApplications:A Survey andTaxonomy. In IEEE Multimedia Magazine,
to apear 2004.

[PJS+00] P Pal, Loyall J., R. Schantz, J. Zinky, R. Shapiro, and J. Megquier. Using QDL to
Specify QoS Aware Distributed (QuO) Application Configuration. In Proceedings
of ISORC 2000, The Third IEEE International Symposium on Object-Oriented
Real-time Distributed Computing, Newport Beach, CA., March 2000.

[ZBS97] J. Zinky, D. Bakken, and R. Schantz. Architectural Support for Quality of Service
for CORBA Objects. In Theory and Practice of Object Systems, January 1997.

	Introduction
	Classification Scheme
	 The MNM Service Model as a Map for Specification Concepts
	Dimensions Covered by Quality Specifications -- The LAL-Brick
	Comprehensible, Service Oriented Classification Scheme

	The Classification Scheme Applied -- State of the Art in QoS Specification by Example
	QUAL -- A Calculation Language
	QDL -- QoS Description Language
	QML -- Quality Modeling Language
	QUAL -- Quality Assurance Language
	The Big Picture

	Directions and Requirements for Future Research
	Conclusion and Outlook

